summaryrefslogtreecommitdiffstats
path: root/third_party/jpeg-xl/lib/jxl/modular/encoding/enc_encoding.cc
blob: 84d8137d21a814cf50ab6bf72614f37fe7f1fd32 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
// Copyright (c) the JPEG XL Project Authors. All rights reserved.
//
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.

#include <stdint.h>
#include <stdlib.h>

#include <limits>
#include <queue>

#include "lib/jxl/base/common.h"
#include "lib/jxl/base/printf_macros.h"
#include "lib/jxl/base/status.h"
#include "lib/jxl/enc_ans.h"
#include "lib/jxl/enc_aux_out.h"
#include "lib/jxl/enc_bit_writer.h"
#include "lib/jxl/enc_fields.h"
#include "lib/jxl/fields.h"
#include "lib/jxl/image_ops.h"
#include "lib/jxl/modular/encoding/context_predict.h"
#include "lib/jxl/modular/encoding/enc_ma.h"
#include "lib/jxl/modular/encoding/encoding.h"
#include "lib/jxl/modular/encoding/ma_common.h"
#include "lib/jxl/modular/options.h"
#include "lib/jxl/pack_signed.h"

namespace jxl {

namespace {
// Plot tree (if enabled) and predictor usage map.
constexpr bool kWantDebug = true;
// constexpr bool kPrintTree = false;

inline std::array<uint8_t, 3> PredictorColor(Predictor p) {
  switch (p) {
    case Predictor::Zero:
      return {{0, 0, 0}};
    case Predictor::Left:
      return {{255, 0, 0}};
    case Predictor::Top:
      return {{0, 255, 0}};
    case Predictor::Average0:
      return {{0, 0, 255}};
    case Predictor::Average4:
      return {{192, 128, 128}};
    case Predictor::Select:
      return {{255, 255, 0}};
    case Predictor::Gradient:
      return {{255, 0, 255}};
    case Predictor::Weighted:
      return {{0, 255, 255}};
      // TODO(jon)
    default:
      return {{255, 255, 255}};
  };
}

// `cutoffs` must be sorted.
Tree MakeFixedTree(int property, const std::vector<int32_t> &cutoffs,
                   Predictor pred, size_t num_pixels) {
  size_t log_px = CeilLog2Nonzero(num_pixels);
  size_t min_gap = 0;
  // Reduce fixed tree height when encoding small images.
  if (log_px < 14) {
    min_gap = 8 * (14 - log_px);
  }
  Tree tree;
  struct NodeInfo {
    size_t begin, end, pos;
  };
  std::queue<NodeInfo> q;
  // Leaf IDs will be set by roundtrip decoding the tree.
  tree.push_back(PropertyDecisionNode::Leaf(pred));
  q.push(NodeInfo{0, cutoffs.size(), 0});
  while (!q.empty()) {
    NodeInfo info = q.front();
    q.pop();
    if (info.begin + min_gap >= info.end) continue;
    uint32_t split = (info.begin + info.end) / 2;
    tree[info.pos] =
        PropertyDecisionNode::Split(property, cutoffs[split], tree.size());
    q.push(NodeInfo{split + 1, info.end, tree.size()});
    tree.push_back(PropertyDecisionNode::Leaf(pred));
    q.push(NodeInfo{info.begin, split, tree.size()});
    tree.push_back(PropertyDecisionNode::Leaf(pred));
  }
  return tree;
}

}  // namespace

Status GatherTreeData(const Image &image, pixel_type chan, size_t group_id,
                      const weighted::Header &wp_header,
                      const ModularOptions &options, TreeSamples &tree_samples,
                      size_t *total_pixels) {
  const Channel &channel = image.channel[chan];

  JXL_DEBUG_V(7, "Learning %" PRIuS "x%" PRIuS " channel %d", channel.w,
              channel.h, chan);

  std::array<pixel_type, kNumStaticProperties> static_props = {
      {chan, static_cast<int>(group_id)}};
  Properties properties(kNumNonrefProperties +
                        kExtraPropsPerChannel * options.max_properties);
  double pixel_fraction = std::min(1.0f, options.nb_repeats);
  // a fraction of 0 is used to disable learning entirely.
  if (pixel_fraction > 0) {
    pixel_fraction = std::max(pixel_fraction,
                              std::min(1.0, 1024.0 / (channel.w * channel.h)));
  }
  uint64_t threshold =
      (std::numeric_limits<uint64_t>::max() >> 32) * pixel_fraction;
  uint64_t s[2] = {static_cast<uint64_t>(0x94D049BB133111EBull),
                   static_cast<uint64_t>(0xBF58476D1CE4E5B9ull)};
  // Xorshift128+ adapted from xorshift128+-inl.h
  auto use_sample = [&]() {
    auto s1 = s[0];
    const auto s0 = s[1];
    const auto bits = s1 + s0;  // b, c
    s[0] = s0;
    s1 ^= s1 << 23;
    s1 ^= s0 ^ (s1 >> 18) ^ (s0 >> 5);
    s[1] = s1;
    return (bits >> 32) <= threshold;
  };

  const intptr_t onerow = channel.plane.PixelsPerRow();
  JXL_ASSIGN_OR_RETURN(
      Channel references,
      Channel::Create(properties.size() - kNumNonrefProperties, channel.w));
  weighted::State wp_state(wp_header, channel.w, channel.h);
  tree_samples.PrepareForSamples(pixel_fraction * channel.h * channel.w + 64);
  const bool multiple_predictors = tree_samples.NumPredictors() != 1;
  auto compute_sample = [&](const pixel_type *p, size_t x, size_t y) {
    pixel_type_w pred[kNumModularPredictors];
    if (multiple_predictors) {
      PredictLearnAll(&properties, channel.w, p + x, onerow, x, y, references,
                      &wp_state, pred);
    } else {
      pred[static_cast<int>(tree_samples.PredictorFromIndex(0))] =
          PredictLearn(&properties, channel.w, p + x, onerow, x, y,
                       tree_samples.PredictorFromIndex(0), references,
                       &wp_state)
              .guess;
    }
    (*total_pixels)++;
    if (use_sample()) {
      tree_samples.AddSample(p[x], properties, pred);
    }
    wp_state.UpdateErrors(p[x], x, y, channel.w);
  };

  for (size_t y = 0; y < channel.h; y++) {
    const pixel_type *JXL_RESTRICT p = channel.Row(y);
    PrecomputeReferences(channel, y, image, chan, &references);
    InitPropsRow(&properties, static_props, y);

    // TODO(veluca): avoid computing WP if we don't use its property or
    // predictions.
    if (y > 1 && channel.w > 8 && references.w == 0) {
      for (size_t x = 0; x < 2; x++) {
        compute_sample(p, x, y);
      }
      for (size_t x = 2; x < channel.w - 2; x++) {
        pixel_type_w pred[kNumModularPredictors];
        if (multiple_predictors) {
          PredictLearnAllNEC(&properties, channel.w, p + x, onerow, x, y,
                             references, &wp_state, pred);
        } else {
          pred[static_cast<int>(tree_samples.PredictorFromIndex(0))] =
              PredictLearnNEC(&properties, channel.w, p + x, onerow, x, y,
                              tree_samples.PredictorFromIndex(0), references,
                              &wp_state)
                  .guess;
        }
        (*total_pixels)++;
        if (use_sample()) {
          tree_samples.AddSample(p[x], properties, pred);
        }
        wp_state.UpdateErrors(p[x], x, y, channel.w);
      }
      for (size_t x = channel.w - 2; x < channel.w; x++) {
        compute_sample(p, x, y);
      }
    } else {
      for (size_t x = 0; x < channel.w; x++) {
        compute_sample(p, x, y);
      }
    }
  }
  return true;
}

Tree PredefinedTree(ModularOptions::TreeKind tree_kind, size_t total_pixels) {
  if (tree_kind == ModularOptions::TreeKind::kJpegTranscodeACMeta ||
      tree_kind == ModularOptions::TreeKind::kTrivialTreeNoPredictor) {
    // All the data is 0, so no need for a fancy tree.
    return {PropertyDecisionNode::Leaf(Predictor::Zero)};
  }
  if (tree_kind == ModularOptions::TreeKind::kFalconACMeta) {
    // All the data is 0 except the quant field. TODO(veluca): make that 0 too.
    return {PropertyDecisionNode::Leaf(Predictor::Left)};
  }
  if (tree_kind == ModularOptions::TreeKind::kACMeta) {
    // Small image.
    if (total_pixels < 1024) {
      return {PropertyDecisionNode::Leaf(Predictor::Left)};
    }
    Tree tree;
    // 0: c > 1
    tree.push_back(PropertyDecisionNode::Split(0, 1, 1));
    // 1: c > 2
    tree.push_back(PropertyDecisionNode::Split(0, 2, 3));
    // 2: c > 0
    tree.push_back(PropertyDecisionNode::Split(0, 0, 5));
    // 3: EPF control field (all 0 or 4), top > 0
    tree.push_back(PropertyDecisionNode::Split(6, 0, 21));
    // 4: ACS+QF, y > 0
    tree.push_back(PropertyDecisionNode::Split(2, 0, 7));
    // 5: CfL x
    tree.push_back(PropertyDecisionNode::Leaf(Predictor::Gradient));
    // 6: CfL b
    tree.push_back(PropertyDecisionNode::Leaf(Predictor::Gradient));
    // 7: QF: split according to the left quant value.
    tree.push_back(PropertyDecisionNode::Split(7, 5, 9));
    // 8: ACS: split in 4 segments (8x8 from 0 to 3, large square 4-5, large
    // rectangular 6-11, 8x8 12+), according to previous ACS value.
    tree.push_back(PropertyDecisionNode::Split(7, 5, 15));
    // QF
    tree.push_back(PropertyDecisionNode::Split(7, 11, 11));
    tree.push_back(PropertyDecisionNode::Split(7, 3, 13));
    tree.push_back(PropertyDecisionNode::Leaf(Predictor::Left));
    tree.push_back(PropertyDecisionNode::Leaf(Predictor::Left));
    tree.push_back(PropertyDecisionNode::Leaf(Predictor::Left));
    tree.push_back(PropertyDecisionNode::Leaf(Predictor::Left));
    // ACS
    tree.push_back(PropertyDecisionNode::Split(7, 11, 17));
    tree.push_back(PropertyDecisionNode::Split(7, 3, 19));
    tree.push_back(PropertyDecisionNode::Leaf(Predictor::Zero));
    tree.push_back(PropertyDecisionNode::Leaf(Predictor::Zero));
    tree.push_back(PropertyDecisionNode::Leaf(Predictor::Zero));
    tree.push_back(PropertyDecisionNode::Leaf(Predictor::Zero));
    // EPF, left > 0
    tree.push_back(PropertyDecisionNode::Split(7, 0, 23));
    tree.push_back(PropertyDecisionNode::Split(7, 0, 25));
    tree.push_back(PropertyDecisionNode::Leaf(Predictor::Zero));
    tree.push_back(PropertyDecisionNode::Leaf(Predictor::Zero));
    tree.push_back(PropertyDecisionNode::Leaf(Predictor::Zero));
    tree.push_back(PropertyDecisionNode::Leaf(Predictor::Zero));
    return tree;
  }
  if (tree_kind == ModularOptions::TreeKind::kWPFixedDC) {
    std::vector<int32_t> cutoffs = {
        -500, -392, -255, -191, -127, -95, -63, -47, -31, -23, -15,
        -11,  -7,   -4,   -3,   -1,   0,   1,   3,   5,   7,   11,
        15,   23,   31,   47,   63,   95,  127, 191, 255, 392, 500};
    return MakeFixedTree(kWPProp, cutoffs, Predictor::Weighted, total_pixels);
  }
  if (tree_kind == ModularOptions::TreeKind::kGradientFixedDC) {
    std::vector<int32_t> cutoffs = {
        -500, -392, -255, -191, -127, -95, -63, -47, -31, -23, -15,
        -11,  -7,   -4,   -3,   -1,   0,   1,   3,   5,   7,   11,
        15,   23,   31,   47,   63,   95,  127, 191, 255, 392, 500};
    return MakeFixedTree(kGradientProp, cutoffs, Predictor::Gradient,
                         total_pixels);
  }
  JXL_UNREACHABLE("Unreachable");
  return {};
}

Tree LearnTree(TreeSamples &&tree_samples, size_t total_pixels,
               const ModularOptions &options,
               const std::vector<ModularMultiplierInfo> &multiplier_info = {},
               StaticPropRange static_prop_range = {}) {
  for (size_t i = 0; i < kNumStaticProperties; i++) {
    if (static_prop_range[i][1] == 0) {
      static_prop_range[i][1] = std::numeric_limits<uint32_t>::max();
    }
  }
  if (!tree_samples.HasSamples()) {
    Tree tree;
    tree.emplace_back();
    tree.back().predictor = tree_samples.PredictorFromIndex(0);
    tree.back().property = -1;
    tree.back().predictor_offset = 0;
    tree.back().multiplier = 1;
    return tree;
  }
  float pixel_fraction = tree_samples.NumSamples() * 1.0f / total_pixels;
  float required_cost = pixel_fraction * 0.9 + 0.1;
  tree_samples.AllSamplesDone();
  Tree tree;
  ComputeBestTree(tree_samples,
                  options.splitting_heuristics_node_threshold * required_cost,
                  multiplier_info, static_prop_range,
                  options.fast_decode_multiplier, &tree);
  return tree;
}

Status EncodeModularChannelMAANS(const Image &image, pixel_type chan,
                                 const weighted::Header &wp_header,
                                 const Tree &global_tree, Token **tokenpp,
                                 AuxOut *aux_out, size_t group_id,
                                 bool skip_encoder_fast_path) {
  const Channel &channel = image.channel[chan];
  Token *tokenp = *tokenpp;
  JXL_ASSERT(channel.w != 0 && channel.h != 0);

  Image3F predictor_img;
  if (kWantDebug) {
    JXL_ASSIGN_OR_RETURN(predictor_img, Image3F::Create(channel.w, channel.h));
  }

  JXL_DEBUG_V(6,
              "Encoding %" PRIuS "x%" PRIuS
              " channel %d, "
              "(shift=%i,%i)",
              channel.w, channel.h, chan, channel.hshift, channel.vshift);

  std::array<pixel_type, kNumStaticProperties> static_props = {
      {chan, static_cast<int>(group_id)}};
  bool use_wp;
  bool is_wp_only;
  bool is_gradient_only;
  size_t num_props;
  FlatTree tree = FilterTree(global_tree, static_props, &num_props, &use_wp,
                             &is_wp_only, &is_gradient_only);
  Properties properties(num_props);
  MATreeLookup tree_lookup(tree);
  JXL_DEBUG_V(3, "Encoding using a MA tree with %" PRIuS " nodes", tree.size());

  // Check if this tree is a WP-only tree with a small enough property value
  // range.
  // Initialized to avoid clang-tidy complaining.
  auto tree_lut = jxl::make_unique<TreeLut<uint16_t, false>>();
  if (is_wp_only) {
    is_wp_only = TreeToLookupTable(tree, *tree_lut);
  }
  if (is_gradient_only) {
    is_gradient_only = TreeToLookupTable(tree, *tree_lut);
  }

  if (is_wp_only && !skip_encoder_fast_path) {
    for (size_t c = 0; c < 3; c++) {
      FillImage(static_cast<float>(PredictorColor(Predictor::Weighted)[c]),
                &predictor_img.Plane(c));
    }
    const intptr_t onerow = channel.plane.PixelsPerRow();
    weighted::State wp_state(wp_header, channel.w, channel.h);
    Properties properties(1);
    for (size_t y = 0; y < channel.h; y++) {
      const pixel_type *JXL_RESTRICT r = channel.Row(y);
      for (size_t x = 0; x < channel.w; x++) {
        size_t offset = 0;
        pixel_type_w left = (x ? r[x - 1] : y ? *(r + x - onerow) : 0);
        pixel_type_w top = (y ? *(r + x - onerow) : left);
        pixel_type_w topleft = (x && y ? *(r + x - 1 - onerow) : left);
        pixel_type_w topright =
            (x + 1 < channel.w && y ? *(r + x + 1 - onerow) : top);
        pixel_type_w toptop = (y > 1 ? *(r + x - onerow - onerow) : top);
        int32_t guess = wp_state.Predict</*compute_properties=*/true>(
            x, y, channel.w, top, left, topright, topleft, toptop, &properties,
            offset);
        uint32_t pos =
            kPropRangeFast + std::min(std::max(-kPropRangeFast, properties[0]),
                                      kPropRangeFast - 1);
        uint32_t ctx_id = tree_lut->context_lookup[pos];
        int32_t residual = r[x] - guess - tree_lut->offsets[pos];
        *tokenp++ = Token(ctx_id, PackSigned(residual));
        wp_state.UpdateErrors(r[x], x, y, channel.w);
      }
    }
  } else if (tree.size() == 1 && tree[0].predictor == Predictor::Gradient &&
             tree[0].multiplier == 1 && tree[0].predictor_offset == 0 &&
             !skip_encoder_fast_path) {
    for (size_t c = 0; c < 3; c++) {
      FillImage(static_cast<float>(PredictorColor(Predictor::Gradient)[c]),
                &predictor_img.Plane(c));
    }
    const intptr_t onerow = channel.plane.PixelsPerRow();
    for (size_t y = 0; y < channel.h; y++) {
      const pixel_type *JXL_RESTRICT r = channel.Row(y);
      for (size_t x = 0; x < channel.w; x++) {
        pixel_type_w left = (x ? r[x - 1] : y ? *(r + x - onerow) : 0);
        pixel_type_w top = (y ? *(r + x - onerow) : left);
        pixel_type_w topleft = (x && y ? *(r + x - 1 - onerow) : left);
        int32_t guess = ClampedGradient(top, left, topleft);
        int32_t residual = r[x] - guess;
        *tokenp++ = Token(tree[0].childID, PackSigned(residual));
      }
    }
  } else if (is_gradient_only && !skip_encoder_fast_path) {
    for (size_t c = 0; c < 3; c++) {
      FillImage(static_cast<float>(PredictorColor(Predictor::Gradient)[c]),
                &predictor_img.Plane(c));
    }
    const intptr_t onerow = channel.plane.PixelsPerRow();
    for (size_t y = 0; y < channel.h; y++) {
      const pixel_type *JXL_RESTRICT r = channel.Row(y);
      for (size_t x = 0; x < channel.w; x++) {
        pixel_type_w left = (x ? r[x - 1] : y ? *(r + x - onerow) : 0);
        pixel_type_w top = (y ? *(r + x - onerow) : left);
        pixel_type_w topleft = (x && y ? *(r + x - 1 - onerow) : left);
        int32_t guess = ClampedGradient(top, left, topleft);
        uint32_t pos =
            kPropRangeFast +
            std::min<pixel_type_w>(
                std::max<pixel_type_w>(-kPropRangeFast, top + left - topleft),
                kPropRangeFast - 1);
        uint32_t ctx_id = tree_lut->context_lookup[pos];
        int32_t residual = r[x] - guess - tree_lut->offsets[pos];
        *tokenp++ = Token(ctx_id, PackSigned(residual));
      }
    }
  } else if (tree.size() == 1 && tree[0].predictor == Predictor::Zero &&
             tree[0].multiplier == 1 && tree[0].predictor_offset == 0 &&
             !skip_encoder_fast_path) {
    for (size_t c = 0; c < 3; c++) {
      FillImage(static_cast<float>(PredictorColor(Predictor::Zero)[c]),
                &predictor_img.Plane(c));
    }
    for (size_t y = 0; y < channel.h; y++) {
      const pixel_type *JXL_RESTRICT p = channel.Row(y);
      for (size_t x = 0; x < channel.w; x++) {
        *tokenp++ = Token(tree[0].childID, PackSigned(p[x]));
      }
    }
  } else if (tree.size() == 1 && tree[0].predictor != Predictor::Weighted &&
             (tree[0].multiplier & (tree[0].multiplier - 1)) == 0 &&
             tree[0].predictor_offset == 0 && !skip_encoder_fast_path) {
    // multiplier is a power of 2.
    for (size_t c = 0; c < 3; c++) {
      FillImage(static_cast<float>(PredictorColor(tree[0].predictor)[c]),
                &predictor_img.Plane(c));
    }
    uint32_t mul_shift =
        FloorLog2Nonzero(static_cast<uint32_t>(tree[0].multiplier));
    const intptr_t onerow = channel.plane.PixelsPerRow();
    for (size_t y = 0; y < channel.h; y++) {
      const pixel_type *JXL_RESTRICT r = channel.Row(y);
      for (size_t x = 0; x < channel.w; x++) {
        PredictionResult pred = PredictNoTreeNoWP(channel.w, r + x, onerow, x,
                                                  y, tree[0].predictor);
        pixel_type_w residual = r[x] - pred.guess;
        JXL_DASSERT((residual >> mul_shift) * tree[0].multiplier == residual);
        *tokenp++ = Token(tree[0].childID, PackSigned(residual >> mul_shift));
      }
    }

  } else if (!use_wp && !skip_encoder_fast_path) {
    const intptr_t onerow = channel.plane.PixelsPerRow();
    JXL_ASSIGN_OR_RETURN(
        Channel references,
        Channel::Create(properties.size() - kNumNonrefProperties, channel.w));
    for (size_t y = 0; y < channel.h; y++) {
      const pixel_type *JXL_RESTRICT p = channel.Row(y);
      PrecomputeReferences(channel, y, image, chan, &references);
      float *pred_img_row[3];
      if (kWantDebug) {
        for (size_t c = 0; c < 3; c++) {
          pred_img_row[c] = predictor_img.PlaneRow(c, y);
        }
      }
      InitPropsRow(&properties, static_props, y);
      for (size_t x = 0; x < channel.w; x++) {
        PredictionResult res =
            PredictTreeNoWP(&properties, channel.w, p + x, onerow, x, y,
                            tree_lookup, references);
        if (kWantDebug) {
          for (size_t i = 0; i < 3; i++) {
            pred_img_row[i][x] = PredictorColor(res.predictor)[i];
          }
        }
        pixel_type_w residual = p[x] - res.guess;
        JXL_DASSERT(residual % res.multiplier == 0);
        *tokenp++ = Token(res.context, PackSigned(residual / res.multiplier));
      }
    }
  } else {
    const intptr_t onerow = channel.plane.PixelsPerRow();
    JXL_ASSIGN_OR_RETURN(
        Channel references,
        Channel::Create(properties.size() - kNumNonrefProperties, channel.w));
    weighted::State wp_state(wp_header, channel.w, channel.h);
    for (size_t y = 0; y < channel.h; y++) {
      const pixel_type *JXL_RESTRICT p = channel.Row(y);
      PrecomputeReferences(channel, y, image, chan, &references);
      float *pred_img_row[3];
      if (kWantDebug) {
        for (size_t c = 0; c < 3; c++) {
          pred_img_row[c] = predictor_img.PlaneRow(c, y);
        }
      }
      InitPropsRow(&properties, static_props, y);
      for (size_t x = 0; x < channel.w; x++) {
        PredictionResult res =
            PredictTreeWP(&properties, channel.w, p + x, onerow, x, y,
                          tree_lookup, references, &wp_state);
        if (kWantDebug) {
          for (size_t i = 0; i < 3; i++) {
            pred_img_row[i][x] = PredictorColor(res.predictor)[i];
          }
        }
        pixel_type_w residual = p[x] - res.guess;
        JXL_DASSERT(residual % res.multiplier == 0);
        *tokenp++ = Token(res.context, PackSigned(residual / res.multiplier));
        wp_state.UpdateErrors(p[x], x, y, channel.w);
      }
    }
  }
  /* TODO(szabadka): Add cparams to the call stack here.
  if (kWantDebug && WantDebugOutput(cparams)) {
    DumpImage(
        cparams,
        ("pred_" + ToString(group_id) + "_" + ToString(chan)).c_str(),
        predictor_img);
  }
  */
  *tokenpp = tokenp;
  return true;
}

Status ModularEncode(const Image &image, const ModularOptions &options,
                     BitWriter *writer, AuxOut *aux_out, size_t layer,
                     size_t group_id, TreeSamples *tree_samples,
                     size_t *total_pixels, const Tree *tree,
                     GroupHeader *header, std::vector<Token> *tokens,
                     size_t *width) {
  if (image.error) return JXL_FAILURE("Invalid image");
  size_t nb_channels = image.channel.size();
  JXL_DEBUG_V(
      2, "Encoding %" PRIuS "-channel, %i-bit, %" PRIuS "x%" PRIuS " image.",
      nb_channels, image.bitdepth, image.w, image.h);

  if (nb_channels < 1) {
    return true;  // is there any use for a zero-channel image?
  }

  // encode transforms
  GroupHeader header_storage;
  if (header == nullptr) header = &header_storage;
  Bundle::Init(header);
  if (options.predictor == Predictor::Weighted) {
    weighted::PredictorMode(options.wp_mode, &header->wp_header);
  }
  header->transforms = image.transform;
  // This doesn't actually work
  if (tree != nullptr) {
    header->use_global_tree = true;
  }
  if (tree_samples == nullptr && tree == nullptr) {
    JXL_RETURN_IF_ERROR(Bundle::Write(*header, writer, layer, aux_out));
  }

  TreeSamples tree_samples_storage;
  size_t total_pixels_storage = 0;
  if (!total_pixels) total_pixels = &total_pixels_storage;
  if (*total_pixels == 0) {
    for (size_t i = 0; i < nb_channels; i++) {
      if (i >= image.nb_meta_channels &&
          (image.channel[i].w > options.max_chan_size ||
           image.channel[i].h > options.max_chan_size)) {
        break;
      }
      *total_pixels += image.channel[i].w * image.channel[i].h;
    }
    *total_pixels = std::max<size_t>(*total_pixels, 1);
  }
  // If there's no tree, compute one (or gather data to).
  if (tree == nullptr &&
      options.tree_kind == ModularOptions::TreeKind::kLearn) {
    bool gather_data = tree_samples != nullptr;
    if (tree_samples == nullptr) {
      JXL_RETURN_IF_ERROR(tree_samples_storage.SetPredictor(
          options.predictor, options.wp_tree_mode));
      JXL_RETURN_IF_ERROR(tree_samples_storage.SetProperties(
          options.splitting_heuristics_properties, options.wp_tree_mode));
      std::vector<pixel_type> pixel_samples;
      std::vector<pixel_type> diff_samples;
      std::vector<uint32_t> group_pixel_count;
      std::vector<uint32_t> channel_pixel_count;
      CollectPixelSamples(image, options, 0, group_pixel_count,
                          channel_pixel_count, pixel_samples, diff_samples);
      std::vector<ModularMultiplierInfo> placeholder_multiplier_info;
      StaticPropRange range;
      tree_samples_storage.PreQuantizeProperties(
          range, placeholder_multiplier_info, group_pixel_count,
          channel_pixel_count, pixel_samples, diff_samples,
          options.max_property_values);
    }
    for (size_t i = 0; i < nb_channels; i++) {
      if (!image.channel[i].w || !image.channel[i].h) {
        continue;  // skip empty channels
      }
      if (i >= image.nb_meta_channels &&
          (image.channel[i].w > options.max_chan_size ||
           image.channel[i].h > options.max_chan_size)) {
        break;
      }
      JXL_RETURN_IF_ERROR(GatherTreeData(
          image, i, group_id, header->wp_header, options,
          gather_data ? *tree_samples : tree_samples_storage, total_pixels));
    }
    if (gather_data) return true;
  }

  JXL_ASSERT((tree == nullptr) == (tokens == nullptr));

  Tree tree_storage;
  std::vector<std::vector<Token>> tokens_storage(1);
  // Compute tree.
  if (tree == nullptr) {
    EntropyEncodingData code;
    std::vector<uint8_t> context_map;

    std::vector<std::vector<Token>> tree_tokens(1);

    tree_storage =
        options.tree_kind == ModularOptions::TreeKind::kLearn
            ? LearnTree(std::move(tree_samples_storage), *total_pixels, options)
            : PredefinedTree(options.tree_kind, *total_pixels);
    tree = &tree_storage;
    tokens = tokens_storage.data();

    Tree decoded_tree;
    TokenizeTree(*tree, tree_tokens.data(), &decoded_tree);
    JXL_ASSERT(tree->size() == decoded_tree.size());
    tree_storage = std::move(decoded_tree);

    /* TODO(szabadka) Add text output callback
    if (kWantDebug && kPrintTree && WantDebugOutput(aux_out)) {
      PrintTree(*tree, aux_out->debug_prefix + "/tree_" + ToString(group_id));
    } */

    // Write tree
    BuildAndEncodeHistograms(options.histogram_params, kNumTreeContexts,
                             tree_tokens, &code, &context_map, writer,
                             kLayerModularTree, aux_out);
    WriteTokens(tree_tokens[0], code, context_map, 0, writer, kLayerModularTree,
                aux_out);
  }

  size_t image_width = 0;
  size_t total_tokens = 0;
  for (size_t i = 0; i < nb_channels; i++) {
    if (i >= image.nb_meta_channels &&
        (image.channel[i].w > options.max_chan_size ||
         image.channel[i].h > options.max_chan_size)) {
      break;
    }
    if (image.channel[i].w > image_width) image_width = image.channel[i].w;
    total_tokens += image.channel[i].w * image.channel[i].h;
  }
  if (options.zero_tokens) {
    tokens->resize(tokens->size() + total_tokens, {0, 0});
  } else {
    // Do one big allocation for all the tokens we'll need,
    // to avoid reallocs that might require copying.
    size_t pos = tokens->size();
    tokens->resize(pos + total_tokens);
    Token *tokenp = tokens->data() + pos;
    for (size_t i = 0; i < nb_channels; i++) {
      if (!image.channel[i].w || !image.channel[i].h) {
        continue;  // skip empty channels
      }
      if (i >= image.nb_meta_channels &&
          (image.channel[i].w > options.max_chan_size ||
           image.channel[i].h > options.max_chan_size)) {
        break;
      }
      JXL_RETURN_IF_ERROR(EncodeModularChannelMAANS(
          image, i, header->wp_header, *tree, &tokenp, aux_out, group_id,
          options.skip_encoder_fast_path));
    }
    // Make sure we actually wrote all tokens
    JXL_CHECK(tokenp == tokens->data() + tokens->size());
  }

  // Write data if not using a global tree/ANS stream.
  if (!header->use_global_tree) {
    EntropyEncodingData code;
    std::vector<uint8_t> context_map;
    HistogramParams histo_params = options.histogram_params;
    histo_params.image_widths.push_back(image_width);
    BuildAndEncodeHistograms(histo_params, (tree->size() + 1) / 2,
                             tokens_storage, &code, &context_map, writer, layer,
                             aux_out);
    WriteTokens(tokens_storage[0], code, context_map, 0, writer, layer,
                aux_out);
  } else {
    *width = image_width;
  }
  return true;
}

Status ModularGenericCompress(Image &image, const ModularOptions &opts,
                              BitWriter *writer, AuxOut *aux_out, size_t layer,
                              size_t group_id, TreeSamples *tree_samples,
                              size_t *total_pixels, const Tree *tree,
                              GroupHeader *header, std::vector<Token> *tokens,
                              size_t *width) {
  if (image.w == 0 || image.h == 0) return true;
  ModularOptions options = opts;  // Make a copy to modify it.

  if (options.predictor == kUndefinedPredictor) {
    options.predictor = Predictor::Gradient;
  }

  size_t bits = writer ? writer->BitsWritten() : 0;
  JXL_RETURN_IF_ERROR(ModularEncode(image, options, writer, aux_out, layer,
                                    group_id, tree_samples, total_pixels, tree,
                                    header, tokens, width));
  bits = writer ? writer->BitsWritten() - bits : 0;
  if (writer) {
    JXL_DEBUG_V(4,
                "Modular-encoded a %" PRIuS "x%" PRIuS
                " bitdepth=%i nbchans=%" PRIuS " image in %" PRIuS " bytes",
                image.w, image.h, image.bitdepth, image.channel.size(),
                bits / 8);
  }
  (void)bits;
  return true;
}

}  // namespace jxl