summaryrefslogtreecommitdiffstats
path: root/third_party/jpeg-xl/lib/jxl/modular/encoding/enc_ma.cc
blob: de629ad038cc75e1fbafed65b987902ce38ec0a5 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
// Copyright (c) the JPEG XL Project Authors. All rights reserved.
//
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.

#include "lib/jxl/modular/encoding/enc_ma.h"

#include <algorithm>
#include <limits>
#include <numeric>
#include <queue>
#include <unordered_map>
#include <unordered_set>

#include "lib/jxl/modular/encoding/ma_common.h"

#undef HWY_TARGET_INCLUDE
#define HWY_TARGET_INCLUDE "lib/jxl/modular/encoding/enc_ma.cc"
#include <hwy/foreach_target.h>
#include <hwy/highway.h>

#include "lib/jxl/base/fast_math-inl.h"
#include "lib/jxl/base/random.h"
#include "lib/jxl/enc_ans.h"
#include "lib/jxl/modular/encoding/context_predict.h"
#include "lib/jxl/modular/options.h"
#include "lib/jxl/pack_signed.h"
HWY_BEFORE_NAMESPACE();
namespace jxl {
namespace HWY_NAMESPACE {

// These templates are not found via ADL.
using hwy::HWY_NAMESPACE::Eq;
using hwy::HWY_NAMESPACE::IfThenElse;
using hwy::HWY_NAMESPACE::Lt;
using hwy::HWY_NAMESPACE::Max;

const HWY_FULL(float) df;
const HWY_FULL(int32_t) di;
size_t Padded(size_t x) { return RoundUpTo(x, Lanes(df)); }

// Compute entropy of the histogram, taking into account the minimum probability
// for symbols with non-zero counts.
float EstimateBits(const int32_t *counts, size_t num_symbols) {
  int32_t total = std::accumulate(counts, counts + num_symbols, 0);
  const auto zero = Zero(df);
  const auto minprob = Set(df, 1.0f / ANS_TAB_SIZE);
  const auto inv_total = Set(df, 1.0f / total);
  auto bits_lanes = Zero(df);
  auto total_v = Set(di, total);
  for (size_t i = 0; i < num_symbols; i += Lanes(df)) {
    const auto counts_iv = LoadU(di, &counts[i]);
    const auto counts_fv = ConvertTo(df, counts_iv);
    const auto probs = Mul(counts_fv, inv_total);
    const auto mprobs = Max(probs, minprob);
    const auto nbps = IfThenElse(Eq(counts_iv, total_v), BitCast(di, zero),
                                 BitCast(di, FastLog2f(df, mprobs)));
    bits_lanes = Sub(bits_lanes, Mul(counts_fv, BitCast(df, nbps)));
  }
  return GetLane(SumOfLanes(df, bits_lanes));
}

void MakeSplitNode(size_t pos, int property, int splitval, Predictor lpred,
                   int64_t loff, Predictor rpred, int64_t roff, Tree *tree) {
  // Note that the tree splits on *strictly greater*.
  (*tree)[pos].lchild = tree->size();
  (*tree)[pos].rchild = tree->size() + 1;
  (*tree)[pos].splitval = splitval;
  (*tree)[pos].property = property;
  tree->emplace_back();
  tree->back().property = -1;
  tree->back().predictor = rpred;
  tree->back().predictor_offset = roff;
  tree->back().multiplier = 1;
  tree->emplace_back();
  tree->back().property = -1;
  tree->back().predictor = lpred;
  tree->back().predictor_offset = loff;
  tree->back().multiplier = 1;
}

enum class IntersectionType { kNone, kPartial, kInside };
IntersectionType BoxIntersects(StaticPropRange needle, StaticPropRange haystack,
                               uint32_t &partial_axis, uint32_t &partial_val) {
  bool partial = false;
  for (size_t i = 0; i < kNumStaticProperties; i++) {
    if (haystack[i][0] >= needle[i][1]) {
      return IntersectionType::kNone;
    }
    if (haystack[i][1] <= needle[i][0]) {
      return IntersectionType::kNone;
    }
    if (haystack[i][0] <= needle[i][0] && haystack[i][1] >= needle[i][1]) {
      continue;
    }
    partial = true;
    partial_axis = i;
    if (haystack[i][0] > needle[i][0] && haystack[i][0] < needle[i][1]) {
      partial_val = haystack[i][0] - 1;
    } else {
      JXL_DASSERT(haystack[i][1] > needle[i][0] &&
                  haystack[i][1] < needle[i][1]);
      partial_val = haystack[i][1] - 1;
    }
  }
  return partial ? IntersectionType::kPartial : IntersectionType::kInside;
}

void SplitTreeSamples(TreeSamples &tree_samples, size_t begin, size_t pos,
                      size_t end, size_t prop) {
  auto cmp = [&](size_t a, size_t b) {
    return static_cast<int32_t>(tree_samples.Property(prop, a)) -
           static_cast<int32_t>(tree_samples.Property(prop, b));
  };
  Rng rng(0);
  while (end > begin + 1) {
    {
      size_t pivot = rng.UniformU(begin, end);
      tree_samples.Swap(begin, pivot);
    }
    size_t pivot_begin = begin;
    size_t pivot_end = pivot_begin + 1;
    for (size_t i = begin + 1; i < end; i++) {
      JXL_DASSERT(i >= pivot_end);
      JXL_DASSERT(pivot_end > pivot_begin);
      int32_t cmp_result = cmp(i, pivot_begin);
      if (cmp_result < 0) {  // i < pivot, move pivot forward and put i before
                             // the pivot.
        tree_samples.ThreeShuffle(pivot_begin, pivot_end, i);
        pivot_begin++;
        pivot_end++;
      } else if (cmp_result == 0) {
        tree_samples.Swap(pivot_end, i);
        pivot_end++;
      }
    }
    JXL_DASSERT(pivot_begin >= begin);
    JXL_DASSERT(pivot_end > pivot_begin);
    JXL_DASSERT(pivot_end <= end);
    for (size_t i = begin; i < pivot_begin; i++) {
      JXL_DASSERT(cmp(i, pivot_begin) < 0);
    }
    for (size_t i = pivot_end; i < end; i++) {
      JXL_DASSERT(cmp(i, pivot_begin) > 0);
    }
    for (size_t i = pivot_begin; i < pivot_end; i++) {
      JXL_DASSERT(cmp(i, pivot_begin) == 0);
    }
    // We now have that [begin, pivot_begin) is < pivot, [pivot_begin,
    // pivot_end) is = pivot, and [pivot_end, end) is > pivot.
    // If pos falls in the first or the last interval, we continue in that
    // interval; otherwise, we are done.
    if (pivot_begin > pos) {
      end = pivot_begin;
    } else if (pivot_end < pos) {
      begin = pivot_end;
    } else {
      break;
    }
  }
}

void FindBestSplit(TreeSamples &tree_samples, float threshold,
                   const std::vector<ModularMultiplierInfo> &mul_info,
                   StaticPropRange initial_static_prop_range,
                   float fast_decode_multiplier, Tree *tree) {
  struct NodeInfo {
    size_t pos;
    size_t begin;
    size_t end;
    uint64_t used_properties;
    StaticPropRange static_prop_range;
  };
  std::vector<NodeInfo> nodes;
  nodes.push_back(NodeInfo{0, 0, tree_samples.NumDistinctSamples(), 0,
                           initial_static_prop_range});

  size_t num_predictors = tree_samples.NumPredictors();
  size_t num_properties = tree_samples.NumProperties();

  // TODO(veluca): consider parallelizing the search (processing multiple nodes
  // at a time).
  while (!nodes.empty()) {
    size_t pos = nodes.back().pos;
    size_t begin = nodes.back().begin;
    size_t end = nodes.back().end;
    uint64_t used_properties = nodes.back().used_properties;
    StaticPropRange static_prop_range = nodes.back().static_prop_range;
    nodes.pop_back();
    if (begin == end) continue;

    struct SplitInfo {
      size_t prop = 0;
      uint32_t val = 0;
      size_t pos = 0;
      float lcost = std::numeric_limits<float>::max();
      float rcost = std::numeric_limits<float>::max();
      Predictor lpred = Predictor::Zero;
      Predictor rpred = Predictor::Zero;
      float Cost() { return lcost + rcost; }
    };

    SplitInfo best_split_static_constant;
    SplitInfo best_split_static;
    SplitInfo best_split_nonstatic;
    SplitInfo best_split_nowp;

    JXL_DASSERT(begin <= end);
    JXL_DASSERT(end <= tree_samples.NumDistinctSamples());

    // Compute the maximum token in the range.
    size_t max_symbols = 0;
    for (size_t pred = 0; pred < num_predictors; pred++) {
      for (size_t i = begin; i < end; i++) {
        uint32_t tok = tree_samples.Token(pred, i);
        max_symbols = max_symbols > tok + 1 ? max_symbols : tok + 1;
      }
    }
    max_symbols = Padded(max_symbols);
    std::vector<int32_t> counts(max_symbols * num_predictors);
    std::vector<uint32_t> tot_extra_bits(num_predictors);
    for (size_t pred = 0; pred < num_predictors; pred++) {
      for (size_t i = begin; i < end; i++) {
        counts[pred * max_symbols + tree_samples.Token(pred, i)] +=
            tree_samples.Count(i);
        tot_extra_bits[pred] +=
            tree_samples.NBits(pred, i) * tree_samples.Count(i);
      }
    }

    float base_bits;
    {
      size_t pred = tree_samples.PredictorIndex((*tree)[pos].predictor);
      base_bits =
          EstimateBits(counts.data() + pred * max_symbols, max_symbols) +
          tot_extra_bits[pred];
    }

    SplitInfo *best = &best_split_nonstatic;

    SplitInfo forced_split;
    // The multiplier ranges cut halfway through the current ranges of static
    // properties. We do this even if the current node is not a leaf, to
    // minimize the number of nodes in the resulting tree.
    for (size_t i = 0; i < mul_info.size(); i++) {
      uint32_t axis;
      uint32_t val;
      IntersectionType t =
          BoxIntersects(static_prop_range, mul_info[i].range, axis, val);
      if (t == IntersectionType::kNone) continue;
      if (t == IntersectionType::kInside) {
        (*tree)[pos].multiplier = mul_info[i].multiplier;
        break;
      }
      if (t == IntersectionType::kPartial) {
        forced_split.val = tree_samples.QuantizeProperty(axis, val);
        forced_split.prop = axis;
        forced_split.lcost = forced_split.rcost = base_bits / 2 - threshold;
        forced_split.lpred = forced_split.rpred = (*tree)[pos].predictor;
        best = &forced_split;
        best->pos = begin;
        JXL_ASSERT(best->prop == tree_samples.PropertyFromIndex(best->prop));
        for (size_t x = begin; x < end; x++) {
          if (tree_samples.Property(best->prop, x) <= best->val) {
            best->pos++;
          }
        }
        break;
      }
    }

    if (best != &forced_split) {
      std::vector<int> prop_value_used_count;
      std::vector<int> count_increase;
      std::vector<size_t> extra_bits_increase;
      // For each property, compute which of its values are used, and what
      // tokens correspond to those usages. Then, iterate through the values,
      // and compute the entropy of each side of the split (of the form `prop >
      // threshold`). Finally, find the split that minimizes the cost.
      struct CostInfo {
        float cost = std::numeric_limits<float>::max();
        float extra_cost = 0;
        float Cost() const { return cost + extra_cost; }
        Predictor pred;  // will be uninitialized in some cases, but never used.
      };
      std::vector<CostInfo> costs_l;
      std::vector<CostInfo> costs_r;

      std::vector<int32_t> counts_above(max_symbols);
      std::vector<int32_t> counts_below(max_symbols);

      // The lower the threshold, the higher the expected noisiness of the
      // estimate. Thus, discourage changing predictors.
      float change_pred_penalty = 800.0f / (100.0f + threshold);
      for (size_t prop = 0; prop < num_properties && base_bits > threshold;
           prop++) {
        costs_l.clear();
        costs_r.clear();
        size_t prop_size = tree_samples.NumPropertyValues(prop);
        if (extra_bits_increase.size() < prop_size) {
          count_increase.resize(prop_size * max_symbols);
          extra_bits_increase.resize(prop_size);
        }
        // Clear prop_value_used_count (which cannot be cleared "on the go")
        prop_value_used_count.clear();
        prop_value_used_count.resize(prop_size);

        size_t first_used = prop_size;
        size_t last_used = 0;

        // TODO(veluca): consider finding multiple splits along a single
        // property at the same time, possibly with a bottom-up approach.
        for (size_t i = begin; i < end; i++) {
          size_t p = tree_samples.Property(prop, i);
          prop_value_used_count[p]++;
          last_used = std::max(last_used, p);
          first_used = std::min(first_used, p);
        }
        costs_l.resize(last_used - first_used);
        costs_r.resize(last_used - first_used);
        // For all predictors, compute the right and left costs of each split.
        for (size_t pred = 0; pred < num_predictors; pred++) {
          // Compute cost and histogram increments for each property value.
          for (size_t i = begin; i < end; i++) {
            size_t p = tree_samples.Property(prop, i);
            size_t cnt = tree_samples.Count(i);
            size_t sym = tree_samples.Token(pred, i);
            count_increase[p * max_symbols + sym] += cnt;
            extra_bits_increase[p] += tree_samples.NBits(pred, i) * cnt;
          }
          memcpy(counts_above.data(), counts.data() + pred * max_symbols,
                 max_symbols * sizeof counts_above[0]);
          memset(counts_below.data(), 0, max_symbols * sizeof counts_below[0]);
          size_t extra_bits_below = 0;
          // Exclude last used: this ensures neither counts_above nor
          // counts_below is empty.
          for (size_t i = first_used; i < last_used; i++) {
            if (!prop_value_used_count[i]) continue;
            extra_bits_below += extra_bits_increase[i];
            // The increase for this property value has been used, and will not
            // be used again: clear it. Also below.
            extra_bits_increase[i] = 0;
            for (size_t sym = 0; sym < max_symbols; sym++) {
              counts_above[sym] -= count_increase[i * max_symbols + sym];
              counts_below[sym] += count_increase[i * max_symbols + sym];
              count_increase[i * max_symbols + sym] = 0;
            }
            float rcost = EstimateBits(counts_above.data(), max_symbols) +
                          tot_extra_bits[pred] - extra_bits_below;
            float lcost = EstimateBits(counts_below.data(), max_symbols) +
                          extra_bits_below;
            JXL_DASSERT(extra_bits_below <= tot_extra_bits[pred]);
            float penalty = 0;
            // Never discourage moving away from the Weighted predictor.
            if (tree_samples.PredictorFromIndex(pred) !=
                    (*tree)[pos].predictor &&
                (*tree)[pos].predictor != Predictor::Weighted) {
              penalty = change_pred_penalty;
            }
            // If everything else is equal, disfavour Weighted (slower) and
            // favour Zero (faster if it's the only predictor used in a
            // group+channel combination)
            if (tree_samples.PredictorFromIndex(pred) == Predictor::Weighted) {
              penalty += 1e-8;
            }
            if (tree_samples.PredictorFromIndex(pred) == Predictor::Zero) {
              penalty -= 1e-8;
            }
            if (rcost + penalty < costs_r[i - first_used].Cost()) {
              costs_r[i - first_used].cost = rcost;
              costs_r[i - first_used].extra_cost = penalty;
              costs_r[i - first_used].pred =
                  tree_samples.PredictorFromIndex(pred);
            }
            if (lcost + penalty < costs_l[i - first_used].Cost()) {
              costs_l[i - first_used].cost = lcost;
              costs_l[i - first_used].extra_cost = penalty;
              costs_l[i - first_used].pred =
                  tree_samples.PredictorFromIndex(pred);
            }
          }
        }
        // Iterate through the possible splits and find the one with minimum sum
        // of costs of the two sides.
        size_t split = begin;
        for (size_t i = first_used; i < last_used; i++) {
          if (!prop_value_used_count[i]) continue;
          split += prop_value_used_count[i];
          float rcost = costs_r[i - first_used].cost;
          float lcost = costs_l[i - first_used].cost;
          // WP was not used + we would use the WP property or predictor
          bool adds_wp =
              (tree_samples.PropertyFromIndex(prop) == kWPProp &&
               (used_properties & (1LU << prop)) == 0) ||
              ((costs_l[i - first_used].pred == Predictor::Weighted ||
                costs_r[i - first_used].pred == Predictor::Weighted) &&
               (*tree)[pos].predictor != Predictor::Weighted);
          bool zero_entropy_side = rcost == 0 || lcost == 0;

          SplitInfo &best =
              prop < kNumStaticProperties
                  ? (zero_entropy_side ? best_split_static_constant
                                       : best_split_static)
                  : (adds_wp ? best_split_nonstatic : best_split_nowp);
          if (lcost + rcost < best.Cost()) {
            best.prop = prop;
            best.val = i;
            best.pos = split;
            best.lcost = lcost;
            best.lpred = costs_l[i - first_used].pred;
            best.rcost = rcost;
            best.rpred = costs_r[i - first_used].pred;
          }
        }
        // Clear extra_bits_increase and cost_increase for last_used.
        extra_bits_increase[last_used] = 0;
        for (size_t sym = 0; sym < max_symbols; sym++) {
          count_increase[last_used * max_symbols + sym] = 0;
        }
      }

      // Try to avoid introducing WP.
      if (best_split_nowp.Cost() + threshold < base_bits &&
          best_split_nowp.Cost() <= fast_decode_multiplier * best->Cost()) {
        best = &best_split_nowp;
      }
      // Split along static props if possible and not significantly more
      // expensive.
      if (best_split_static.Cost() + threshold < base_bits &&
          best_split_static.Cost() <= fast_decode_multiplier * best->Cost()) {
        best = &best_split_static;
      }
      // Split along static props to create constant nodes if possible.
      if (best_split_static_constant.Cost() + threshold < base_bits) {
        best = &best_split_static_constant;
      }
    }

    if (best->Cost() + threshold < base_bits) {
      uint32_t p = tree_samples.PropertyFromIndex(best->prop);
      pixel_type dequant =
          tree_samples.UnquantizeProperty(best->prop, best->val);
      // Split node and try to split children.
      MakeSplitNode(pos, p, dequant, best->lpred, 0, best->rpred, 0, tree);
      // "Sort" according to winning property
      SplitTreeSamples(tree_samples, begin, best->pos, end, best->prop);
      if (p >= kNumStaticProperties) {
        used_properties |= 1 << best->prop;
      }
      auto new_sp_range = static_prop_range;
      if (p < kNumStaticProperties) {
        JXL_ASSERT(static_cast<uint32_t>(dequant + 1) <= new_sp_range[p][1]);
        new_sp_range[p][1] = dequant + 1;
        JXL_ASSERT(new_sp_range[p][0] < new_sp_range[p][1]);
      }
      nodes.push_back(NodeInfo{(*tree)[pos].rchild, begin, best->pos,
                               used_properties, new_sp_range});
      new_sp_range = static_prop_range;
      if (p < kNumStaticProperties) {
        JXL_ASSERT(new_sp_range[p][0] <= static_cast<uint32_t>(dequant + 1));
        new_sp_range[p][0] = dequant + 1;
        JXL_ASSERT(new_sp_range[p][0] < new_sp_range[p][1]);
      }
      nodes.push_back(NodeInfo{(*tree)[pos].lchild, best->pos, end,
                               used_properties, new_sp_range});
    }
  }
}

// NOLINTNEXTLINE(google-readability-namespace-comments)
}  // namespace HWY_NAMESPACE
}  // namespace jxl
HWY_AFTER_NAMESPACE();

#if HWY_ONCE
namespace jxl {

HWY_EXPORT(FindBestSplit);  // Local function.

void ComputeBestTree(TreeSamples &tree_samples, float threshold,
                     const std::vector<ModularMultiplierInfo> &mul_info,
                     StaticPropRange static_prop_range,
                     float fast_decode_multiplier, Tree *tree) {
  // TODO(veluca): take into account that different contexts can have different
  // uint configs.
  //
  // Initialize tree.
  tree->emplace_back();
  tree->back().property = -1;
  tree->back().predictor = tree_samples.PredictorFromIndex(0);
  tree->back().predictor_offset = 0;
  tree->back().multiplier = 1;
  JXL_ASSERT(tree_samples.NumProperties() < 64);

  JXL_ASSERT(tree_samples.NumDistinctSamples() <=
             std::numeric_limits<uint32_t>::max());
  HWY_DYNAMIC_DISPATCH(FindBestSplit)
  (tree_samples, threshold, mul_info, static_prop_range, fast_decode_multiplier,
   tree);
}

constexpr int32_t TreeSamples::kPropertyRange;
constexpr uint32_t TreeSamples::kDedupEntryUnused;

Status TreeSamples::SetPredictor(Predictor predictor,
                                 ModularOptions::TreeMode wp_tree_mode) {
  if (wp_tree_mode == ModularOptions::TreeMode::kWPOnly) {
    predictors = {Predictor::Weighted};
    residuals.resize(1);
    return true;
  }
  if (wp_tree_mode == ModularOptions::TreeMode::kNoWP &&
      predictor == Predictor::Weighted) {
    return JXL_FAILURE("Invalid predictor settings");
  }
  if (predictor == Predictor::Variable) {
    for (size_t i = 0; i < kNumModularPredictors; i++) {
      predictors.push_back(static_cast<Predictor>(i));
    }
    std::swap(predictors[0], predictors[static_cast<int>(Predictor::Weighted)]);
    std::swap(predictors[1], predictors[static_cast<int>(Predictor::Gradient)]);
  } else if (predictor == Predictor::Best) {
    predictors = {Predictor::Weighted, Predictor::Gradient};
  } else {
    predictors = {predictor};
  }
  if (wp_tree_mode == ModularOptions::TreeMode::kNoWP) {
    auto wp_it =
        std::find(predictors.begin(), predictors.end(), Predictor::Weighted);
    if (wp_it != predictors.end()) {
      predictors.erase(wp_it);
    }
  }
  residuals.resize(predictors.size());
  return true;
}

Status TreeSamples::SetProperties(const std::vector<uint32_t> &properties,
                                  ModularOptions::TreeMode wp_tree_mode) {
  props_to_use = properties;
  if (wp_tree_mode == ModularOptions::TreeMode::kWPOnly) {
    props_to_use = {static_cast<uint32_t>(kWPProp)};
  }
  if (wp_tree_mode == ModularOptions::TreeMode::kGradientOnly) {
    props_to_use = {static_cast<uint32_t>(kGradientProp)};
  }
  if (wp_tree_mode == ModularOptions::TreeMode::kNoWP) {
    auto it = std::find(props_to_use.begin(), props_to_use.end(), kWPProp);
    if (it != props_to_use.end()) {
      props_to_use.erase(it);
    }
  }
  if (props_to_use.empty()) {
    return JXL_FAILURE("Invalid property set configuration");
  }
  props.resize(props_to_use.size());
  return true;
}

void TreeSamples::InitTable(size_t size) {
  JXL_DASSERT((size & (size - 1)) == 0);
  if (dedup_table_.size() == size) return;
  dedup_table_.resize(size, kDedupEntryUnused);
  for (size_t i = 0; i < NumDistinctSamples(); i++) {
    if (sample_counts[i] != std::numeric_limits<uint16_t>::max()) {
      AddToTable(i);
    }
  }
}

bool TreeSamples::AddToTableAndMerge(size_t a) {
  size_t pos1 = Hash1(a);
  size_t pos2 = Hash2(a);
  if (dedup_table_[pos1] != kDedupEntryUnused &&
      IsSameSample(a, dedup_table_[pos1])) {
    JXL_DASSERT(sample_counts[a] == 1);
    sample_counts[dedup_table_[pos1]]++;
    // Remove from hash table samples that are saturated.
    if (sample_counts[dedup_table_[pos1]] ==
        std::numeric_limits<uint16_t>::max()) {
      dedup_table_[pos1] = kDedupEntryUnused;
    }
    return true;
  }
  if (dedup_table_[pos2] != kDedupEntryUnused &&
      IsSameSample(a, dedup_table_[pos2])) {
    JXL_DASSERT(sample_counts[a] == 1);
    sample_counts[dedup_table_[pos2]]++;
    // Remove from hash table samples that are saturated.
    if (sample_counts[dedup_table_[pos2]] ==
        std::numeric_limits<uint16_t>::max()) {
      dedup_table_[pos2] = kDedupEntryUnused;
    }
    return true;
  }
  AddToTable(a);
  return false;
}

void TreeSamples::AddToTable(size_t a) {
  size_t pos1 = Hash1(a);
  size_t pos2 = Hash2(a);
  if (dedup_table_[pos1] == kDedupEntryUnused) {
    dedup_table_[pos1] = a;
  } else if (dedup_table_[pos2] == kDedupEntryUnused) {
    dedup_table_[pos2] = a;
  }
}

void TreeSamples::PrepareForSamples(size_t num_samples) {
  for (auto &res : residuals) {
    res.reserve(res.size() + num_samples);
  }
  for (auto &p : props) {
    p.reserve(p.size() + num_samples);
  }
  size_t total_num_samples = num_samples + sample_counts.size();
  size_t next_pow2 = 1LLU << CeilLog2Nonzero(total_num_samples * 3 / 2);
  InitTable(next_pow2);
}

size_t TreeSamples::Hash1(size_t a) const {
  constexpr uint64_t constant = 0x1e35a7bd;
  uint64_t h = constant;
  for (const auto &r : residuals) {
    h = h * constant + r[a].tok;
    h = h * constant + r[a].nbits;
  }
  for (const auto &p : props) {
    h = h * constant + p[a];
  }
  return (h >> 16) & (dedup_table_.size() - 1);
}
size_t TreeSamples::Hash2(size_t a) const {
  constexpr uint64_t constant = 0x1e35a7bd1e35a7bd;
  uint64_t h = constant;
  for (const auto &p : props) {
    h = h * constant ^ p[a];
  }
  for (const auto &r : residuals) {
    h = h * constant ^ r[a].tok;
    h = h * constant ^ r[a].nbits;
  }
  return (h >> 16) & (dedup_table_.size() - 1);
}

bool TreeSamples::IsSameSample(size_t a, size_t b) const {
  bool ret = true;
  for (const auto &r : residuals) {
    if (r[a].tok != r[b].tok) {
      ret = false;
    }
    if (r[a].nbits != r[b].nbits) {
      ret = false;
    }
  }
  for (const auto &p : props) {
    if (p[a] != p[b]) {
      ret = false;
    }
  }
  return ret;
}

void TreeSamples::AddSample(pixel_type_w pixel, const Properties &properties,
                            const pixel_type_w *predictions) {
  for (size_t i = 0; i < predictors.size(); i++) {
    pixel_type v = pixel - predictions[static_cast<int>(predictors[i])];
    uint32_t tok, nbits, bits;
    HybridUintConfig(4, 1, 2).Encode(PackSigned(v), &tok, &nbits, &bits);
    JXL_DASSERT(tok < 256);
    JXL_DASSERT(nbits < 256);
    residuals[i].emplace_back(
        ResidualToken{static_cast<uint8_t>(tok), static_cast<uint8_t>(nbits)});
  }
  for (size_t i = 0; i < props_to_use.size(); i++) {
    props[i].push_back(QuantizeProperty(i, properties[props_to_use[i]]));
  }
  sample_counts.push_back(1);
  num_samples++;
  if (AddToTableAndMerge(sample_counts.size() - 1)) {
    for (auto &r : residuals) r.pop_back();
    for (auto &p : props) p.pop_back();
    sample_counts.pop_back();
  }
}

void TreeSamples::Swap(size_t a, size_t b) {
  if (a == b) return;
  for (auto &r : residuals) {
    std::swap(r[a], r[b]);
  }
  for (auto &p : props) {
    std::swap(p[a], p[b]);
  }
  std::swap(sample_counts[a], sample_counts[b]);
}

void TreeSamples::ThreeShuffle(size_t a, size_t b, size_t c) {
  if (b == c) {
    Swap(a, b);
    return;
  }

  for (auto &r : residuals) {
    auto tmp = r[a];
    r[a] = r[c];
    r[c] = r[b];
    r[b] = tmp;
  }
  for (auto &p : props) {
    auto tmp = p[a];
    p[a] = p[c];
    p[c] = p[b];
    p[b] = tmp;
  }
  auto tmp = sample_counts[a];
  sample_counts[a] = sample_counts[c];
  sample_counts[c] = sample_counts[b];
  sample_counts[b] = tmp;
}

namespace {
std::vector<int32_t> QuantizeHistogram(const std::vector<uint32_t> &histogram,
                                       size_t num_chunks) {
  if (histogram.empty()) return {};
  // TODO(veluca): selecting distinct quantiles is likely not the best
  // way to go about this.
  std::vector<int32_t> thresholds;
  uint64_t sum = std::accumulate(histogram.begin(), histogram.end(), 0LU);
  uint64_t cumsum = 0;
  uint64_t threshold = 1;
  for (size_t i = 0; i + 1 < histogram.size(); i++) {
    cumsum += histogram[i];
    if (cumsum >= threshold * sum / num_chunks) {
      thresholds.push_back(i);
      while (cumsum > threshold * sum / num_chunks) threshold++;
    }
  }
  return thresholds;
}

std::vector<int32_t> QuantizeSamples(const std::vector<int32_t> &samples,
                                     size_t num_chunks) {
  if (samples.empty()) return {};
  int min = *std::min_element(samples.begin(), samples.end());
  constexpr int kRange = 512;
  min = std::min(std::max(min, -kRange), kRange);
  std::vector<uint32_t> counts(2 * kRange + 1);
  for (int s : samples) {
    uint32_t sample_offset = std::min(std::max(s, -kRange), kRange) - min;
    counts[sample_offset]++;
  }
  std::vector<int32_t> thresholds = QuantizeHistogram(counts, num_chunks);
  for (auto &v : thresholds) v += min;
  return thresholds;
}
}  // namespace

void TreeSamples::PreQuantizeProperties(
    const StaticPropRange &range,
    const std::vector<ModularMultiplierInfo> &multiplier_info,
    const std::vector<uint32_t> &group_pixel_count,
    const std::vector<uint32_t> &channel_pixel_count,
    std::vector<pixel_type> &pixel_samples,
    std::vector<pixel_type> &diff_samples, size_t max_property_values) {
  // If we have forced splits because of multipliers, choose channel and group
  // thresholds accordingly.
  std::vector<int32_t> group_multiplier_thresholds;
  std::vector<int32_t> channel_multiplier_thresholds;
  for (const auto &v : multiplier_info) {
    if (v.range[0][0] != range[0][0]) {
      channel_multiplier_thresholds.push_back(v.range[0][0] - 1);
    }
    if (v.range[0][1] != range[0][1]) {
      channel_multiplier_thresholds.push_back(v.range[0][1] - 1);
    }
    if (v.range[1][0] != range[1][0]) {
      group_multiplier_thresholds.push_back(v.range[1][0] - 1);
    }
    if (v.range[1][1] != range[1][1]) {
      group_multiplier_thresholds.push_back(v.range[1][1] - 1);
    }
  }
  std::sort(channel_multiplier_thresholds.begin(),
            channel_multiplier_thresholds.end());
  channel_multiplier_thresholds.resize(
      std::unique(channel_multiplier_thresholds.begin(),
                  channel_multiplier_thresholds.end()) -
      channel_multiplier_thresholds.begin());
  std::sort(group_multiplier_thresholds.begin(),
            group_multiplier_thresholds.end());
  group_multiplier_thresholds.resize(
      std::unique(group_multiplier_thresholds.begin(),
                  group_multiplier_thresholds.end()) -
      group_multiplier_thresholds.begin());

  compact_properties.resize(props_to_use.size());
  auto quantize_channel = [&]() {
    if (!channel_multiplier_thresholds.empty()) {
      return channel_multiplier_thresholds;
    }
    return QuantizeHistogram(channel_pixel_count, max_property_values);
  };
  auto quantize_group_id = [&]() {
    if (!group_multiplier_thresholds.empty()) {
      return group_multiplier_thresholds;
    }
    return QuantizeHistogram(group_pixel_count, max_property_values);
  };
  auto quantize_coordinate = [&]() {
    std::vector<int32_t> quantized;
    quantized.reserve(max_property_values - 1);
    for (size_t i = 0; i + 1 < max_property_values; i++) {
      quantized.push_back((i + 1) * 256 / max_property_values - 1);
    }
    return quantized;
  };
  std::vector<int32_t> abs_pixel_thr;
  std::vector<int32_t> pixel_thr;
  auto quantize_pixel_property = [&]() {
    if (pixel_thr.empty()) {
      pixel_thr = QuantizeSamples(pixel_samples, max_property_values);
    }
    return pixel_thr;
  };
  auto quantize_abs_pixel_property = [&]() {
    if (abs_pixel_thr.empty()) {
      quantize_pixel_property();  // Compute the non-abs thresholds.
      for (auto &v : pixel_samples) v = std::abs(v);
      abs_pixel_thr = QuantizeSamples(pixel_samples, max_property_values);
    }
    return abs_pixel_thr;
  };
  std::vector<int32_t> abs_diff_thr;
  std::vector<int32_t> diff_thr;
  auto quantize_diff_property = [&]() {
    if (diff_thr.empty()) {
      diff_thr = QuantizeSamples(diff_samples, max_property_values);
    }
    return diff_thr;
  };
  auto quantize_abs_diff_property = [&]() {
    if (abs_diff_thr.empty()) {
      quantize_diff_property();  // Compute the non-abs thresholds.
      for (auto &v : diff_samples) v = std::abs(v);
      abs_diff_thr = QuantizeSamples(diff_samples, max_property_values);
    }
    return abs_diff_thr;
  };
  auto quantize_wp = [&]() {
    if (max_property_values < 32) {
      return std::vector<int32_t>{-127, -63, -31, -15, -7, -3, -1, 0,
                                  1,    3,   7,   15,  31, 63, 127};
    }
    if (max_property_values < 64) {
      return std::vector<int32_t>{-255, -191, -127, -95, -63, -47, -31, -23,
                                  -15,  -11,  -7,   -5,  -3,  -1,  0,   1,
                                  3,    5,    7,    11,  15,  23,  31,  47,
                                  63,   95,   127,  191, 255};
    }
    return std::vector<int32_t>{
        -255, -223, -191, -159, -127, -111, -95, -79, -63, -55, -47,
        -39,  -31,  -27,  -23,  -19,  -15,  -13, -11, -9,  -7,  -6,
        -5,   -4,   -3,   -2,   -1,   0,    1,   2,   3,   4,   5,
        6,    7,    9,    11,   13,   15,   19,  23,  27,  31,  39,
        47,   55,   63,   79,   95,   111,  127, 159, 191, 223, 255};
  };

  property_mapping.resize(props_to_use.size());
  for (size_t i = 0; i < props_to_use.size(); i++) {
    if (props_to_use[i] == 0) {
      compact_properties[i] = quantize_channel();
    } else if (props_to_use[i] == 1) {
      compact_properties[i] = quantize_group_id();
    } else if (props_to_use[i] == 2 || props_to_use[i] == 3) {
      compact_properties[i] = quantize_coordinate();
    } else if (props_to_use[i] == 6 || props_to_use[i] == 7 ||
               props_to_use[i] == 8 ||
               (props_to_use[i] >= kNumNonrefProperties &&
                (props_to_use[i] - kNumNonrefProperties) % 4 == 1)) {
      compact_properties[i] = quantize_pixel_property();
    } else if (props_to_use[i] == 4 || props_to_use[i] == 5 ||
               (props_to_use[i] >= kNumNonrefProperties &&
                (props_to_use[i] - kNumNonrefProperties) % 4 == 0)) {
      compact_properties[i] = quantize_abs_pixel_property();
    } else if (props_to_use[i] >= kNumNonrefProperties &&
               (props_to_use[i] - kNumNonrefProperties) % 4 == 2) {
      compact_properties[i] = quantize_abs_diff_property();
    } else if (props_to_use[i] == kWPProp) {
      compact_properties[i] = quantize_wp();
    } else {
      compact_properties[i] = quantize_diff_property();
    }
    property_mapping[i].resize(kPropertyRange * 2 + 1);
    size_t mapped = 0;
    for (size_t j = 0; j < property_mapping[i].size(); j++) {
      while (mapped < compact_properties[i].size() &&
             static_cast<int>(j) - kPropertyRange >
                 compact_properties[i][mapped]) {
        mapped++;
      }
      // property_mapping[i] of a value V is `mapped` if
      // compact_properties[i][mapped] <= j and
      // compact_properties[i][mapped-1] > j
      // This is because the decision node in the tree splits on (property) > j,
      // hence everything that is not > of a threshold should be clustered
      // together.
      property_mapping[i][j] = mapped;
    }
  }
}

void CollectPixelSamples(const Image &image, const ModularOptions &options,
                         size_t group_id,
                         std::vector<uint32_t> &group_pixel_count,
                         std::vector<uint32_t> &channel_pixel_count,
                         std::vector<pixel_type> &pixel_samples,
                         std::vector<pixel_type> &diff_samples) {
  if (options.nb_repeats == 0) return;
  if (group_pixel_count.size() <= group_id) {
    group_pixel_count.resize(group_id + 1);
  }
  if (channel_pixel_count.size() < image.channel.size()) {
    channel_pixel_count.resize(image.channel.size());
  }
  Rng rng(group_id);
  // Sample 10% of the final number of samples for property quantization.
  float fraction = std::min(options.nb_repeats * 0.1, 0.99);
  Rng::GeometricDistribution dist = Rng::MakeGeometric(fraction);
  size_t total_pixels = 0;
  std::vector<size_t> channel_ids;
  for (size_t i = 0; i < image.channel.size(); i++) {
    if (image.channel[i].w <= 1 || image.channel[i].h == 0) {
      continue;  // skip empty or width-1 channels.
    }
    if (i >= image.nb_meta_channels &&
        (image.channel[i].w > options.max_chan_size ||
         image.channel[i].h > options.max_chan_size)) {
      break;
    }
    channel_ids.push_back(i);
    group_pixel_count[group_id] += image.channel[i].w * image.channel[i].h;
    channel_pixel_count[i] += image.channel[i].w * image.channel[i].h;
    total_pixels += image.channel[i].w * image.channel[i].h;
  }
  if (channel_ids.empty()) return;
  pixel_samples.reserve(pixel_samples.size() + fraction * total_pixels);
  diff_samples.reserve(diff_samples.size() + fraction * total_pixels);
  size_t i = 0;
  size_t y = 0;
  size_t x = 0;
  auto advance = [&](size_t amount) {
    x += amount;
    // Detect row overflow (rare).
    while (x >= image.channel[channel_ids[i]].w) {
      x -= image.channel[channel_ids[i]].w;
      y++;
      // Detect end-of-channel (even rarer).
      if (y == image.channel[channel_ids[i]].h) {
        i++;
        y = 0;
        if (i >= channel_ids.size()) {
          return;
        }
      }
    }
  };
  advance(rng.Geometric(dist));
  for (; i < channel_ids.size(); advance(rng.Geometric(dist) + 1)) {
    const pixel_type *row = image.channel[channel_ids[i]].Row(y);
    pixel_samples.push_back(row[x]);
    size_t xp = x == 0 ? 1 : x - 1;
    diff_samples.push_back(static_cast<int64_t>(row[x]) - row[xp]);
  }
}

// TODO(veluca): very simple encoding scheme. This should be improved.
void TokenizeTree(const Tree &tree, std::vector<Token> *tokens,
                  Tree *decoder_tree) {
  JXL_ASSERT(tree.size() <= kMaxTreeSize);
  std::queue<int> q;
  q.push(0);
  size_t leaf_id = 0;
  decoder_tree->clear();
  while (!q.empty()) {
    int cur = q.front();
    q.pop();
    JXL_ASSERT(tree[cur].property >= -1);
    tokens->emplace_back(kPropertyContext, tree[cur].property + 1);
    if (tree[cur].property == -1) {
      tokens->emplace_back(kPredictorContext,
                           static_cast<int>(tree[cur].predictor));
      tokens->emplace_back(kOffsetContext,
                           PackSigned(tree[cur].predictor_offset));
      uint32_t mul_log = Num0BitsBelowLS1Bit_Nonzero(tree[cur].multiplier);
      uint32_t mul_bits = (tree[cur].multiplier >> mul_log) - 1;
      tokens->emplace_back(kMultiplierLogContext, mul_log);
      tokens->emplace_back(kMultiplierBitsContext, mul_bits);
      JXL_ASSERT(tree[cur].predictor < Predictor::Best);
      decoder_tree->emplace_back(-1, 0, leaf_id++, 0, tree[cur].predictor,
                                 tree[cur].predictor_offset,
                                 tree[cur].multiplier);
      continue;
    }
    decoder_tree->emplace_back(tree[cur].property, tree[cur].splitval,
                               decoder_tree->size() + q.size() + 1,
                               decoder_tree->size() + q.size() + 2,
                               Predictor::Zero, 0, 1);
    q.push(tree[cur].lchild);
    q.push(tree[cur].rchild);
    tokens->emplace_back(kSplitValContext, PackSigned(tree[cur].splitval));
  }
}

}  // namespace jxl
#endif  // HWY_ONCE