summaryrefslogtreecommitdiffstats
path: root/third_party/libwebrtc/modules/audio_coding/neteq/nack_tracker.cc
blob: 71c6fc3048fa318b5e54555d9bbeb621caf5f93d (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
/*
 *  Copyright (c) 2013 The WebRTC project authors. All Rights Reserved.
 *
 *  Use of this source code is governed by a BSD-style license
 *  that can be found in the LICENSE file in the root of the source
 *  tree. An additional intellectual property rights grant can be found
 *  in the file PATENTS.  All contributing project authors may
 *  be found in the AUTHORS file in the root of the source tree.
 */

#include "modules/audio_coding/neteq/nack_tracker.h"

#include <cstdint>
#include <utility>

#include "rtc_base/checks.h"
#include "rtc_base/experiments/struct_parameters_parser.h"
#include "rtc_base/logging.h"
#include "system_wrappers/include/field_trial.h"

namespace webrtc {
namespace {

const int kDefaultSampleRateKhz = 48;
const int kMaxPacketSizeMs = 120;
constexpr char kNackTrackerConfigFieldTrial[] =
    "WebRTC-Audio-NetEqNackTrackerConfig";

}  // namespace

NackTracker::Config::Config() {
  auto parser = StructParametersParser::Create(
      "packet_loss_forget_factor", &packet_loss_forget_factor,
      "ms_per_loss_percent", &ms_per_loss_percent, "never_nack_multiple_times",
      &never_nack_multiple_times, "require_valid_rtt", &require_valid_rtt,
      "max_loss_rate", &max_loss_rate);
  parser->Parse(
      webrtc::field_trial::FindFullName(kNackTrackerConfigFieldTrial));
  RTC_LOG(LS_INFO) << "Nack tracker config:"
                      " packet_loss_forget_factor="
                   << packet_loss_forget_factor
                   << " ms_per_loss_percent=" << ms_per_loss_percent
                   << " never_nack_multiple_times=" << never_nack_multiple_times
                   << " require_valid_rtt=" << require_valid_rtt
                   << " max_loss_rate=" << max_loss_rate;
}

NackTracker::NackTracker()
    : sequence_num_last_received_rtp_(0),
      timestamp_last_received_rtp_(0),
      any_rtp_received_(false),
      sequence_num_last_decoded_rtp_(0),
      timestamp_last_decoded_rtp_(0),
      any_rtp_decoded_(false),
      sample_rate_khz_(kDefaultSampleRateKhz),
      max_nack_list_size_(kNackListSizeLimit) {}

NackTracker::~NackTracker() = default;

void NackTracker::UpdateSampleRate(int sample_rate_hz) {
  RTC_DCHECK_GT(sample_rate_hz, 0);
  sample_rate_khz_ = sample_rate_hz / 1000;
}

void NackTracker::UpdateLastReceivedPacket(uint16_t sequence_number,
                                           uint32_t timestamp) {
  // Just record the value of sequence number and timestamp if this is the
  // first packet.
  if (!any_rtp_received_) {
    sequence_num_last_received_rtp_ = sequence_number;
    timestamp_last_received_rtp_ = timestamp;
    any_rtp_received_ = true;
    // If no packet is decoded, to have a reasonable estimate of time-to-play
    // use the given values.
    if (!any_rtp_decoded_) {
      sequence_num_last_decoded_rtp_ = sequence_number;
      timestamp_last_decoded_rtp_ = timestamp;
    }
    return;
  }

  if (sequence_number == sequence_num_last_received_rtp_)
    return;

  // Received RTP should not be in the list.
  nack_list_.erase(sequence_number);

  // If this is an old sequence number, no more action is required, return.
  if (IsNewerSequenceNumber(sequence_num_last_received_rtp_, sequence_number))
    return;

  UpdatePacketLossRate(sequence_number - sequence_num_last_received_rtp_ - 1);

  UpdateList(sequence_number, timestamp);

  sequence_num_last_received_rtp_ = sequence_number;
  timestamp_last_received_rtp_ = timestamp;
  LimitNackListSize();
}

absl::optional<int> NackTracker::GetSamplesPerPacket(
    uint16_t sequence_number_current_received_rtp,
    uint32_t timestamp_current_received_rtp) const {
  uint32_t timestamp_increase =
      timestamp_current_received_rtp - timestamp_last_received_rtp_;
  uint16_t sequence_num_increase =
      sequence_number_current_received_rtp - sequence_num_last_received_rtp_;

  int samples_per_packet = timestamp_increase / sequence_num_increase;
  if (samples_per_packet == 0 ||
      samples_per_packet > kMaxPacketSizeMs * sample_rate_khz_) {
    // Not a valid samples per packet.
    return absl::nullopt;
  }
  return samples_per_packet;
}

void NackTracker::UpdateList(uint16_t sequence_number_current_received_rtp,
                             uint32_t timestamp_current_received_rtp) {
  if (!IsNewerSequenceNumber(sequence_number_current_received_rtp,
                             sequence_num_last_received_rtp_ + 1)) {
    return;
  }
  RTC_DCHECK(!any_rtp_decoded_ ||
             IsNewerSequenceNumber(sequence_number_current_received_rtp,
                                   sequence_num_last_decoded_rtp_));

  absl::optional<int> samples_per_packet = GetSamplesPerPacket(
      sequence_number_current_received_rtp, timestamp_current_received_rtp);
  if (!samples_per_packet) {
    return;
  }

  for (uint16_t n = sequence_num_last_received_rtp_ + 1;
       IsNewerSequenceNumber(sequence_number_current_received_rtp, n); ++n) {
    uint32_t timestamp = EstimateTimestamp(n, *samples_per_packet);
    NackElement nack_element(TimeToPlay(timestamp), timestamp);
    nack_list_.insert(nack_list_.end(), std::make_pair(n, nack_element));
  }
}

uint32_t NackTracker::EstimateTimestamp(uint16_t sequence_num,
                                        int samples_per_packet) {
  uint16_t sequence_num_diff = sequence_num - sequence_num_last_received_rtp_;
  return sequence_num_diff * samples_per_packet + timestamp_last_received_rtp_;
}

void NackTracker::UpdateLastDecodedPacket(uint16_t sequence_number,
                                          uint32_t timestamp) {
  any_rtp_decoded_ = true;
  sequence_num_last_decoded_rtp_ = sequence_number;
  timestamp_last_decoded_rtp_ = timestamp;
  // Packets in the list with sequence numbers less than the
  // sequence number of the decoded RTP should be removed from the lists.
  // They will be discarded by the jitter buffer if they arrive.
  nack_list_.erase(nack_list_.begin(),
                   nack_list_.upper_bound(sequence_num_last_decoded_rtp_));

  // Update estimated time-to-play.
  for (NackList::iterator it = nack_list_.begin(); it != nack_list_.end();
       ++it) {
    it->second.time_to_play_ms = TimeToPlay(it->second.estimated_timestamp);
  }
}

NackTracker::NackList NackTracker::GetNackList() const {
  return nack_list_;
}

void NackTracker::Reset() {
  nack_list_.clear();

  sequence_num_last_received_rtp_ = 0;
  timestamp_last_received_rtp_ = 0;
  any_rtp_received_ = false;
  sequence_num_last_decoded_rtp_ = 0;
  timestamp_last_decoded_rtp_ = 0;
  any_rtp_decoded_ = false;
  sample_rate_khz_ = kDefaultSampleRateKhz;
}

void NackTracker::SetMaxNackListSize(size_t max_nack_list_size) {
  RTC_CHECK_GT(max_nack_list_size, 0);
  // Ugly hack to get around the problem of passing static consts by reference.
  const size_t kNackListSizeLimitLocal = NackTracker::kNackListSizeLimit;
  RTC_CHECK_LE(max_nack_list_size, kNackListSizeLimitLocal);

  max_nack_list_size_ = max_nack_list_size;
  LimitNackListSize();
}

void NackTracker::LimitNackListSize() {
  uint16_t limit = sequence_num_last_received_rtp_ -
                   static_cast<uint16_t>(max_nack_list_size_) - 1;
  nack_list_.erase(nack_list_.begin(), nack_list_.upper_bound(limit));
}

int64_t NackTracker::TimeToPlay(uint32_t timestamp) const {
  uint32_t timestamp_increase = timestamp - timestamp_last_decoded_rtp_;
  return timestamp_increase / sample_rate_khz_;
}

// We don't erase elements with time-to-play shorter than round-trip-time.
std::vector<uint16_t> NackTracker::GetNackList(int64_t round_trip_time_ms) {
  RTC_DCHECK_GE(round_trip_time_ms, 0);
  std::vector<uint16_t> sequence_numbers;
  if (round_trip_time_ms == 0) {
    if (config_.require_valid_rtt) {
      return sequence_numbers;
    } else {
      round_trip_time_ms = config_.default_rtt_ms;
    }
  }
  if (packet_loss_rate_ >
      static_cast<uint32_t>(config_.max_loss_rate * (1 << 30))) {
    return sequence_numbers;
  }
  // The estimated packet loss is between 0 and 1, so we need to multiply by 100
  // here.
  int max_wait_ms =
      100.0 * config_.ms_per_loss_percent * packet_loss_rate_ / (1 << 30);
  for (NackList::const_iterator it = nack_list_.begin(); it != nack_list_.end();
       ++it) {
    int64_t time_since_packet_ms =
        (timestamp_last_received_rtp_ - it->second.estimated_timestamp) /
        sample_rate_khz_;
    if (it->second.time_to_play_ms > round_trip_time_ms ||
        time_since_packet_ms + round_trip_time_ms < max_wait_ms)
      sequence_numbers.push_back(it->first);
  }
  if (config_.never_nack_multiple_times) {
    nack_list_.clear();
  }
  return sequence_numbers;
}

void NackTracker::UpdatePacketLossRate(int packets_lost) {
  const uint64_t alpha_q30 = (1 << 30) * config_.packet_loss_forget_factor;
  // Exponential filter.
  packet_loss_rate_ = (alpha_q30 * packet_loss_rate_) >> 30;
  for (int i = 0; i < packets_lost; ++i) {
    packet_loss_rate_ =
        ((alpha_q30 * packet_loss_rate_) >> 30) + ((1 << 30) - alpha_q30);
  }
}
}  // namespace webrtc