summaryrefslogtreecommitdiffstats
path: root/third_party/libwebrtc/modules/audio_processing/agc2/rnn_vad/pitch_search_internal.cc
blob: e8c912518d9d6cff149184b068eac7e3123421d9 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
/*
 *  Copyright (c) 2018 The WebRTC project authors. All Rights Reserved.
 *
 *  Use of this source code is governed by a BSD-style license
 *  that can be found in the LICENSE file in the root of the source
 *  tree. An additional intellectual property rights grant can be found
 *  in the file PATENTS.  All contributing project authors may
 *  be found in the AUTHORS file in the root of the source tree.
 */

#include "modules/audio_processing/agc2/rnn_vad/pitch_search_internal.h"

#include <stdlib.h>

#include <algorithm>
#include <cmath>
#include <cstddef>
#include <numeric>

#include "modules/audio_processing/agc2/rnn_vad/common.h"
#include "modules/audio_processing/agc2/rnn_vad/vector_math.h"
#include "rtc_base/checks.h"
#include "rtc_base/numerics/safe_compare.h"
#include "rtc_base/numerics/safe_conversions.h"
#include "rtc_base/system/arch.h"

namespace webrtc {
namespace rnn_vad {
namespace {

float ComputeAutoCorrelation(
    int inverted_lag,
    rtc::ArrayView<const float, kBufSize24kHz> pitch_buffer,
    const VectorMath& vector_math) {
  RTC_DCHECK_LT(inverted_lag, kBufSize24kHz);
  RTC_DCHECK_LT(inverted_lag, kRefineNumLags24kHz);
  static_assert(kMaxPitch24kHz < kBufSize24kHz, "");
  return vector_math.DotProduct(
      pitch_buffer.subview(/*offset=*/kMaxPitch24kHz),
      pitch_buffer.subview(inverted_lag, kFrameSize20ms24kHz));
}

// Given an auto-correlation coefficient `curr_auto_correlation` and its
// neighboring values `prev_auto_correlation` and `next_auto_correlation`
// computes a pseudo-interpolation offset to be applied to the pitch period
// associated to `curr`. The output is a lag in {-1, 0, +1}.
// TODO(bugs.webrtc.org/9076): Consider removing this method.
// `GetPitchPseudoInterpolationOffset()` it is relevant only if the spectral
// analysis works at a sample rate that is twice as that of the pitch buffer;
// In particular, it is not relevant for the estimated pitch period feature fed
// into the RNN.
int GetPitchPseudoInterpolationOffset(float prev_auto_correlation,
                                      float curr_auto_correlation,
                                      float next_auto_correlation) {
  if ((next_auto_correlation - prev_auto_correlation) >
      0.7f * (curr_auto_correlation - prev_auto_correlation)) {
    return 1;  // `next_auto_correlation` is the largest auto-correlation
               // coefficient.
  } else if ((prev_auto_correlation - next_auto_correlation) >
             0.7f * (curr_auto_correlation - next_auto_correlation)) {
    return -1;  // `prev_auto_correlation` is the largest auto-correlation
                // coefficient.
  }
  return 0;
}

// Refines a pitch period `lag` encoded as lag with pseudo-interpolation. The
// output sample rate is twice as that of `lag`.
int PitchPseudoInterpolationLagPitchBuf(
    int lag,
    rtc::ArrayView<const float, kBufSize24kHz> pitch_buffer,
    const VectorMath& vector_math) {
  int offset = 0;
  // Cannot apply pseudo-interpolation at the boundaries.
  if (lag > 0 && lag < kMaxPitch24kHz) {
    const int inverted_lag = kMaxPitch24kHz - lag;
    offset = GetPitchPseudoInterpolationOffset(
        ComputeAutoCorrelation(inverted_lag + 1, pitch_buffer, vector_math),
        ComputeAutoCorrelation(inverted_lag, pitch_buffer, vector_math),
        ComputeAutoCorrelation(inverted_lag - 1, pitch_buffer, vector_math));
  }
  return 2 * lag + offset;
}

// Integer multipliers used in ComputeExtendedPitchPeriod48kHz() when
// looking for sub-harmonics.
// The values have been chosen to serve the following algorithm. Given the
// initial pitch period T, we examine whether one of its harmonics is the true
// fundamental frequency. We consider T/k with k in {2, ..., 15}. For each of
// these harmonics, in addition to the pitch strength of itself, we choose one
// multiple of its pitch period, n*T/k, to validate it (by averaging their pitch
// strengths). The multiplier n is chosen so that n*T/k is used only one time
// over all k. When for example k = 4, we should also expect a peak at 3*T/4.
// When k = 8 instead we don't want to look at 2*T/8, since we have already
// checked T/4 before. Instead, we look at T*3/8.
// The array can be generate in Python as follows:
//   from fractions import Fraction
//   # Smallest positive integer not in X.
//   def mex(X):
//     for i in range(1, int(max(X)+2)):
//       if i not in X:
//         return i
//   # Visited multiples of the period.
//   S = {1}
//   for n in range(2, 16):
//     sn = mex({n * i for i in S} | {1})
//     S = S | {Fraction(1, n), Fraction(sn, n)}
//     print(sn, end=', ')
constexpr std::array<int, 14> kSubHarmonicMultipliers = {
    {3, 2, 3, 2, 5, 2, 3, 2, 3, 2, 5, 2, 3, 2}};

struct Range {
  int min;
  int max;
};

// Number of analyzed pitches to the left(right) of a pitch candidate.
constexpr int kPitchNeighborhoodRadius = 2;

// Creates a pitch period interval centered in `inverted_lag` with hard-coded
// radius. Clipping is applied so that the interval is always valid for a 24 kHz
// pitch buffer.
Range CreateInvertedLagRange(int inverted_lag) {
  return {std::max(inverted_lag - kPitchNeighborhoodRadius, 0),
          std::min(inverted_lag + kPitchNeighborhoodRadius,
                   kInitialNumLags24kHz - 1)};
}

constexpr int kNumPitchCandidates = 2;  // Best and second best.
// Maximum number of analyzed pitch periods.
constexpr int kMaxPitchPeriods24kHz =
    kNumPitchCandidates * (2 * kPitchNeighborhoodRadius + 1);

// Collection of inverted lags.
class InvertedLagsIndex {
 public:
  InvertedLagsIndex() : num_entries_(0) {}
  // Adds an inverted lag to the index. Cannot add more than
  // `kMaxPitchPeriods24kHz` values.
  void Append(int inverted_lag) {
    RTC_DCHECK_LT(num_entries_, kMaxPitchPeriods24kHz);
    inverted_lags_[num_entries_++] = inverted_lag;
  }
  const int* data() const { return inverted_lags_.data(); }
  int size() const { return num_entries_; }

 private:
  std::array<int, kMaxPitchPeriods24kHz> inverted_lags_;
  int num_entries_;
};

// Computes the auto correlation coefficients for the inverted lags in the
// closed interval `inverted_lags`. Updates `inverted_lags_index` by appending
// the inverted lags for the computed auto correlation values.
void ComputeAutoCorrelation(
    Range inverted_lags,
    rtc::ArrayView<const float, kBufSize24kHz> pitch_buffer,
    rtc::ArrayView<float, kInitialNumLags24kHz> auto_correlation,
    InvertedLagsIndex& inverted_lags_index,
    const VectorMath& vector_math) {
  // Check valid range.
  RTC_DCHECK_LE(inverted_lags.min, inverted_lags.max);
  // Trick to avoid zero initialization of `auto_correlation`.
  // Needed by the pseudo-interpolation.
  if (inverted_lags.min > 0) {
    auto_correlation[inverted_lags.min - 1] = 0.f;
  }
  if (inverted_lags.max < kInitialNumLags24kHz - 1) {
    auto_correlation[inverted_lags.max + 1] = 0.f;
  }
  // Check valid `inverted_lag` indexes.
  RTC_DCHECK_GE(inverted_lags.min, 0);
  RTC_DCHECK_LT(inverted_lags.max, kInitialNumLags24kHz);
  for (int inverted_lag = inverted_lags.min; inverted_lag <= inverted_lags.max;
       ++inverted_lag) {
    auto_correlation[inverted_lag] =
        ComputeAutoCorrelation(inverted_lag, pitch_buffer, vector_math);
    inverted_lags_index.Append(inverted_lag);
  }
}

// Searches the strongest pitch period at 24 kHz and returns its inverted lag at
// 48 kHz.
int ComputePitchPeriod48kHz(
    rtc::ArrayView<const float, kBufSize24kHz> pitch_buffer,
    rtc::ArrayView<const int> inverted_lags,
    rtc::ArrayView<const float, kInitialNumLags24kHz> auto_correlation,
    rtc::ArrayView<const float, kRefineNumLags24kHz> y_energy,
    const VectorMath& vector_math) {
  static_assert(kMaxPitch24kHz > kInitialNumLags24kHz, "");
  static_assert(kMaxPitch24kHz < kBufSize24kHz, "");
  int best_inverted_lag = 0;     // Pitch period.
  float best_numerator = -1.f;   // Pitch strength numerator.
  float best_denominator = 0.f;  // Pitch strength denominator.
  for (int inverted_lag : inverted_lags) {
    // A pitch candidate must have positive correlation.
    if (auto_correlation[inverted_lag] > 0.f) {
      // Auto-correlation energy normalized by frame energy.
      const float numerator =
          auto_correlation[inverted_lag] * auto_correlation[inverted_lag];
      const float denominator = y_energy[inverted_lag];
      // Compare numerator/denominator ratios without using divisions.
      if (numerator * best_denominator > best_numerator * denominator) {
        best_inverted_lag = inverted_lag;
        best_numerator = numerator;
        best_denominator = denominator;
      }
    }
  }
  // Pseudo-interpolation to transform `best_inverted_lag` (24 kHz pitch) to a
  // 48 kHz pitch period.
  if (best_inverted_lag == 0 || best_inverted_lag >= kInitialNumLags24kHz - 1) {
    // Cannot apply pseudo-interpolation at the boundaries.
    return best_inverted_lag * 2;
  }
  int offset = GetPitchPseudoInterpolationOffset(
      auto_correlation[best_inverted_lag + 1],
      auto_correlation[best_inverted_lag],
      auto_correlation[best_inverted_lag - 1]);
  // TODO(bugs.webrtc.org/9076): When retraining, check if `offset` below should
  // be subtracted since `inverted_lag` is an inverted lag but offset is a lag.
  return 2 * best_inverted_lag + offset;
}

// Returns an alternative pitch period for `pitch_period` given a `multiplier`
// and a `divisor` of the period.
constexpr int GetAlternativePitchPeriod(int pitch_period,
                                        int multiplier,
                                        int divisor) {
  RTC_DCHECK_GT(divisor, 0);
  // Same as `round(multiplier * pitch_period / divisor)`.
  return (2 * multiplier * pitch_period + divisor) / (2 * divisor);
}

// Returns true if the alternative pitch period is stronger than the initial one
// given the last estimated pitch and the value of `period_divisor` used to
// compute the alternative pitch period via `GetAlternativePitchPeriod()`.
bool IsAlternativePitchStrongerThanInitial(PitchInfo last,
                                           PitchInfo initial,
                                           PitchInfo alternative,
                                           int period_divisor) {
  // Initial pitch period candidate thresholds for a sample rate of 24 kHz.
  // Computed as [5*k*k for k in range(16)].
  constexpr std::array<int, 14> kInitialPitchPeriodThresholds = {
      {20, 45, 80, 125, 180, 245, 320, 405, 500, 605, 720, 845, 980, 1125}};
  static_assert(
      kInitialPitchPeriodThresholds.size() == kSubHarmonicMultipliers.size(),
      "");
  RTC_DCHECK_GE(last.period, 0);
  RTC_DCHECK_GE(initial.period, 0);
  RTC_DCHECK_GE(alternative.period, 0);
  RTC_DCHECK_GE(period_divisor, 2);
  // Compute a term that lowers the threshold when `alternative.period` is close
  // to the last estimated period `last.period` - i.e., pitch tracking.
  float lower_threshold_term = 0.f;
  if (std::abs(alternative.period - last.period) <= 1) {
    // The candidate pitch period is within 1 sample from the last one.
    // Make the candidate at `alternative.period` very easy to be accepted.
    lower_threshold_term = last.strength;
  } else if (std::abs(alternative.period - last.period) == 2 &&
             initial.period >
                 kInitialPitchPeriodThresholds[period_divisor - 2]) {
    // The candidate pitch period is 2 samples far from the last one and the
    // period `initial.period` (from which `alternative.period` has been
    // derived) is greater than a threshold. Make `alternative.period` easy to
    // be accepted.
    lower_threshold_term = 0.5f * last.strength;
  }
  // Set the threshold based on the strength of the initial estimate
  // `initial.period`. Also reduce the chance of false positives caused by a
  // bias towards high frequencies (originating from short-term correlations).
  float threshold =
      std::max(0.3f, 0.7f * initial.strength - lower_threshold_term);
  if (alternative.period < 3 * kMinPitch24kHz) {
    // High frequency.
    threshold = std::max(0.4f, 0.85f * initial.strength - lower_threshold_term);
  } else if (alternative.period < 2 * kMinPitch24kHz) {
    // Even higher frequency.
    threshold = std::max(0.5f, 0.9f * initial.strength - lower_threshold_term);
  }
  return alternative.strength > threshold;
}

}  // namespace

void Decimate2x(rtc::ArrayView<const float, kBufSize24kHz> src,
                rtc::ArrayView<float, kBufSize12kHz> dst) {
  // TODO(bugs.webrtc.org/9076): Consider adding anti-aliasing filter.
  static_assert(2 * kBufSize12kHz == kBufSize24kHz, "");
  for (int i = 0; i < kBufSize12kHz; ++i) {
    dst[i] = src[2 * i];
  }
}

void ComputeSlidingFrameSquareEnergies24kHz(
    rtc::ArrayView<const float, kBufSize24kHz> pitch_buffer,
    rtc::ArrayView<float, kRefineNumLags24kHz> y_energy,
    AvailableCpuFeatures cpu_features) {
  VectorMath vector_math(cpu_features);
  static_assert(kFrameSize20ms24kHz < kBufSize24kHz, "");
  const auto frame_20ms_view = pitch_buffer.subview(0, kFrameSize20ms24kHz);
  float yy = vector_math.DotProduct(frame_20ms_view, frame_20ms_view);
  y_energy[0] = yy;
  static_assert(kMaxPitch24kHz - 1 + kFrameSize20ms24kHz < kBufSize24kHz, "");
  static_assert(kMaxPitch24kHz < kRefineNumLags24kHz, "");
  for (int inverted_lag = 0; inverted_lag < kMaxPitch24kHz; ++inverted_lag) {
    yy -= pitch_buffer[inverted_lag] * pitch_buffer[inverted_lag];
    yy += pitch_buffer[inverted_lag + kFrameSize20ms24kHz] *
          pitch_buffer[inverted_lag + kFrameSize20ms24kHz];
    yy = std::max(1.f, yy);
    y_energy[inverted_lag + 1] = yy;
  }
}

CandidatePitchPeriods ComputePitchPeriod12kHz(
    rtc::ArrayView<const float, kBufSize12kHz> pitch_buffer,
    rtc::ArrayView<const float, kNumLags12kHz> auto_correlation,
    AvailableCpuFeatures cpu_features) {
  static_assert(kMaxPitch12kHz > kNumLags12kHz, "");
  static_assert(kMaxPitch12kHz < kBufSize12kHz, "");

  // Stores a pitch candidate period and strength information.
  struct PitchCandidate {
    // Pitch period encoded as inverted lag.
    int period_inverted_lag = 0;
    // Pitch strength encoded as a ratio.
    float strength_numerator = -1.f;
    float strength_denominator = 0.f;
    // Compare the strength of two pitch candidates.
    bool HasStrongerPitchThan(const PitchCandidate& b) const {
      // Comparing the numerator/denominator ratios without using divisions.
      return strength_numerator * b.strength_denominator >
             b.strength_numerator * strength_denominator;
    }
  };

  VectorMath vector_math(cpu_features);
  static_assert(kFrameSize20ms12kHz + 1 < kBufSize12kHz, "");
  const auto frame_view = pitch_buffer.subview(0, kFrameSize20ms12kHz + 1);
  float denominator = 1.f + vector_math.DotProduct(frame_view, frame_view);
  // Search best and second best pitches by looking at the scaled
  // auto-correlation.
  PitchCandidate best;
  PitchCandidate second_best;
  second_best.period_inverted_lag = 1;
  for (int inverted_lag = 0; inverted_lag < kNumLags12kHz; ++inverted_lag) {
    // A pitch candidate must have positive correlation.
    if (auto_correlation[inverted_lag] > 0.f) {
      PitchCandidate candidate{
          inverted_lag,
          auto_correlation[inverted_lag] * auto_correlation[inverted_lag],
          denominator};
      if (candidate.HasStrongerPitchThan(second_best)) {
        if (candidate.HasStrongerPitchThan(best)) {
          second_best = best;
          best = candidate;
        } else {
          second_best = candidate;
        }
      }
    }
    // Update `squared_energy_y` for the next inverted lag.
    const float y_old = pitch_buffer[inverted_lag];
    const float y_new = pitch_buffer[inverted_lag + kFrameSize20ms12kHz];
    denominator -= y_old * y_old;
    denominator += y_new * y_new;
    denominator = std::max(0.f, denominator);
  }
  return {best.period_inverted_lag, second_best.period_inverted_lag};
}

int ComputePitchPeriod48kHz(
    rtc::ArrayView<const float, kBufSize24kHz> pitch_buffer,
    rtc::ArrayView<const float, kRefineNumLags24kHz> y_energy,
    CandidatePitchPeriods pitch_candidates,
    AvailableCpuFeatures cpu_features) {
  // Compute the auto-correlation terms only for neighbors of the two pitch
  // candidates (best and second best).
  std::array<float, kInitialNumLags24kHz> auto_correlation;
  InvertedLagsIndex inverted_lags_index;
  // Create two inverted lag ranges so that `r1` precedes `r2`.
  const bool swap_candidates =
      pitch_candidates.best > pitch_candidates.second_best;
  const Range r1 = CreateInvertedLagRange(
      swap_candidates ? pitch_candidates.second_best : pitch_candidates.best);
  const Range r2 = CreateInvertedLagRange(
      swap_candidates ? pitch_candidates.best : pitch_candidates.second_best);
  // Check valid ranges.
  RTC_DCHECK_LE(r1.min, r1.max);
  RTC_DCHECK_LE(r2.min, r2.max);
  // Check `r1` precedes `r2`.
  RTC_DCHECK_LE(r1.min, r2.min);
  RTC_DCHECK_LE(r1.max, r2.max);
  VectorMath vector_math(cpu_features);
  if (r1.max + 1 >= r2.min) {
    // Overlapping or adjacent ranges.
    ComputeAutoCorrelation({r1.min, r2.max}, pitch_buffer, auto_correlation,
                           inverted_lags_index, vector_math);
  } else {
    // Disjoint ranges.
    ComputeAutoCorrelation(r1, pitch_buffer, auto_correlation,
                           inverted_lags_index, vector_math);
    ComputeAutoCorrelation(r2, pitch_buffer, auto_correlation,
                           inverted_lags_index, vector_math);
  }
  return ComputePitchPeriod48kHz(pitch_buffer, inverted_lags_index,
                                 auto_correlation, y_energy, vector_math);
}

PitchInfo ComputeExtendedPitchPeriod48kHz(
    rtc::ArrayView<const float, kBufSize24kHz> pitch_buffer,
    rtc::ArrayView<const float, kRefineNumLags24kHz> y_energy,
    int initial_pitch_period_48kHz,
    PitchInfo last_pitch_48kHz,
    AvailableCpuFeatures cpu_features) {
  RTC_DCHECK_LE(kMinPitch48kHz, initial_pitch_period_48kHz);
  RTC_DCHECK_LE(initial_pitch_period_48kHz, kMaxPitch48kHz);

  // Stores information for a refined pitch candidate.
  struct RefinedPitchCandidate {
    int period;
    float strength;
    // Additional strength data used for the final pitch estimation.
    float xy;        // Auto-correlation.
    float y_energy;  // Energy of the sliding frame `y`.
  };

  const float x_energy = y_energy[kMaxPitch24kHz];
  const auto pitch_strength = [x_energy](float xy, float y_energy) {
    RTC_DCHECK_GE(x_energy * y_energy, 0.f);
    return xy / std::sqrt(1.f + x_energy * y_energy);
  };
  VectorMath vector_math(cpu_features);

  // Initialize the best pitch candidate with `initial_pitch_period_48kHz`.
  RefinedPitchCandidate best_pitch;
  best_pitch.period =
      std::min(initial_pitch_period_48kHz / 2, kMaxPitch24kHz - 1);
  best_pitch.xy = ComputeAutoCorrelation(kMaxPitch24kHz - best_pitch.period,
                                         pitch_buffer, vector_math);
  best_pitch.y_energy = y_energy[kMaxPitch24kHz - best_pitch.period];
  best_pitch.strength = pitch_strength(best_pitch.xy, best_pitch.y_energy);
  // Keep a copy of the initial pitch candidate.
  const PitchInfo initial_pitch{best_pitch.period, best_pitch.strength};
  // 24 kHz version of the last estimated pitch.
  const PitchInfo last_pitch{last_pitch_48kHz.period / 2,
                             last_pitch_48kHz.strength};

  // Find `max_period_divisor` such that the result of
  // `GetAlternativePitchPeriod(initial_pitch_period, 1, max_period_divisor)`
  // equals `kMinPitch24kHz`.
  const int max_period_divisor =
      (2 * initial_pitch.period) / (2 * kMinPitch24kHz - 1);
  for (int period_divisor = 2; period_divisor <= max_period_divisor;
       ++period_divisor) {
    PitchInfo alternative_pitch;
    alternative_pitch.period = GetAlternativePitchPeriod(
        initial_pitch.period, /*multiplier=*/1, period_divisor);
    RTC_DCHECK_GE(alternative_pitch.period, kMinPitch24kHz);
    // When looking at `alternative_pitch.period`, we also look at one of its
    // sub-harmonics. `kSubHarmonicMultipliers` is used to know where to look.
    // `period_divisor` == 2 is a special case since `dual_alternative_period`
    // might be greater than the maximum pitch period.
    int dual_alternative_period = GetAlternativePitchPeriod(
        initial_pitch.period, kSubHarmonicMultipliers[period_divisor - 2],
        period_divisor);
    RTC_DCHECK_GT(dual_alternative_period, 0);
    if (period_divisor == 2 && dual_alternative_period > kMaxPitch24kHz) {
      dual_alternative_period = initial_pitch.period;
    }
    RTC_DCHECK_NE(alternative_pitch.period, dual_alternative_period)
        << "The lower pitch period and the additional sub-harmonic must not "
           "coincide.";
    // Compute an auto-correlation score for the primary pitch candidate
    // `alternative_pitch.period` by also looking at its possible sub-harmonic
    // `dual_alternative_period`.
    const float xy_primary_period = ComputeAutoCorrelation(
        kMaxPitch24kHz - alternative_pitch.period, pitch_buffer, vector_math);
    // TODO(webrtc:10480): Copy `xy_primary_period` if the secondary period is
    // equal to the primary one.
    const float xy_secondary_period = ComputeAutoCorrelation(
        kMaxPitch24kHz - dual_alternative_period, pitch_buffer, vector_math);
    const float xy = 0.5f * (xy_primary_period + xy_secondary_period);
    const float yy =
        0.5f * (y_energy[kMaxPitch24kHz - alternative_pitch.period] +
                y_energy[kMaxPitch24kHz - dual_alternative_period]);
    alternative_pitch.strength = pitch_strength(xy, yy);

    // Maybe update best period.
    if (IsAlternativePitchStrongerThanInitial(
            last_pitch, initial_pitch, alternative_pitch, period_divisor)) {
      best_pitch = {alternative_pitch.period, alternative_pitch.strength, xy,
                    yy};
    }
  }

  // Final pitch strength and period.
  best_pitch.xy = std::max(0.f, best_pitch.xy);
  RTC_DCHECK_LE(0.f, best_pitch.y_energy);
  float final_pitch_strength =
      (best_pitch.y_energy <= best_pitch.xy)
          ? 1.f
          : best_pitch.xy / (best_pitch.y_energy + 1.f);
  final_pitch_strength = std::min(best_pitch.strength, final_pitch_strength);
  int final_pitch_period_48kHz = std::max(
      kMinPitch48kHz, PitchPseudoInterpolationLagPitchBuf(
                          best_pitch.period, pitch_buffer, vector_math));

  return {final_pitch_period_48kHz, final_pitch_strength};
}

}  // namespace rnn_vad
}  // namespace webrtc