1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
|
/*
* Copyright 2004 The WebRTC Project Authors. All rights reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
#include <string.h>
#include <algorithm>
#include <memory>
#include <string>
#include <vector>
#include "absl/memory/memory.h"
#include "rtc_base/async_packet_socket.h"
#include "rtc_base/async_tcp_socket.h"
#include "rtc_base/async_udp_socket.h"
#include "rtc_base/gunit.h"
#include "rtc_base/ip_address.h"
#include "rtc_base/logging.h"
#include "rtc_base/nat_server.h"
#include "rtc_base/nat_socket_factory.h"
#include "rtc_base/nat_types.h"
#include "rtc_base/net_helpers.h"
#include "rtc_base/net_test_helpers.h"
#include "rtc_base/network.h"
#include "rtc_base/physical_socket_server.h"
#include "rtc_base/socket.h"
#include "rtc_base/socket_address.h"
#include "rtc_base/socket_factory.h"
#include "rtc_base/socket_server.h"
#include "rtc_base/test_client.h"
#include "rtc_base/third_party/sigslot/sigslot.h"
#include "rtc_base/thread.h"
#include "rtc_base/virtual_socket_server.h"
#include "test/gtest.h"
#include "test/scoped_key_value_config.h"
namespace rtc {
namespace {
bool CheckReceive(TestClient* client,
bool should_receive,
const char* buf,
size_t size) {
return (should_receive) ? client->CheckNextPacket(buf, size, 0)
: client->CheckNoPacket();
}
TestClient* CreateTestClient(SocketFactory* factory,
const SocketAddress& local_addr) {
return new TestClient(
absl::WrapUnique(AsyncUDPSocket::Create(factory, local_addr)));
}
TestClient* CreateTCPTestClient(Socket* socket) {
return new TestClient(std::make_unique<AsyncTCPSocket>(socket));
}
// Tests that when sending from internal_addr to external_addrs through the
// NAT type specified by nat_type, all external addrs receive the sent packet
// and, if exp_same is true, all use the same mapped-address on the NAT.
void TestSend(SocketServer* internal,
const SocketAddress& internal_addr,
SocketServer* external,
const SocketAddress external_addrs[4],
NATType nat_type,
bool exp_same) {
Thread th_int(internal);
Thread th_ext(external);
SocketAddress server_addr = internal_addr;
server_addr.SetPort(0); // Auto-select a port
NATServer* nat = new NATServer(nat_type, internal, server_addr, server_addr,
external, external_addrs[0]);
NATSocketFactory* natsf = new NATSocketFactory(
internal, nat->internal_udp_address(), nat->internal_tcp_address());
TestClient* in = CreateTestClient(natsf, internal_addr);
TestClient* out[4];
for (int i = 0; i < 4; i++)
out[i] = CreateTestClient(external, external_addrs[i]);
th_int.Start();
th_ext.Start();
const char* buf = "filter_test";
size_t len = strlen(buf);
in->SendTo(buf, len, out[0]->address());
SocketAddress trans_addr;
EXPECT_TRUE(out[0]->CheckNextPacket(buf, len, &trans_addr));
for (int i = 1; i < 4; i++) {
in->SendTo(buf, len, out[i]->address());
SocketAddress trans_addr2;
EXPECT_TRUE(out[i]->CheckNextPacket(buf, len, &trans_addr2));
bool are_same = (trans_addr == trans_addr2);
ASSERT_EQ(are_same, exp_same) << "same translated address";
ASSERT_NE(AF_UNSPEC, trans_addr.family());
ASSERT_NE(AF_UNSPEC, trans_addr2.family());
}
th_int.Stop();
th_ext.Stop();
delete nat;
delete natsf;
delete in;
for (int i = 0; i < 4; i++)
delete out[i];
}
// Tests that when sending from external_addrs to internal_addr, the packet
// is delivered according to the specified filter_ip and filter_port rules.
void TestRecv(SocketServer* internal,
const SocketAddress& internal_addr,
SocketServer* external,
const SocketAddress external_addrs[4],
NATType nat_type,
bool filter_ip,
bool filter_port) {
Thread th_int(internal);
Thread th_ext(external);
SocketAddress server_addr = internal_addr;
server_addr.SetPort(0); // Auto-select a port
NATServer* nat = new NATServer(nat_type, internal, server_addr, server_addr,
external, external_addrs[0]);
NATSocketFactory* natsf = new NATSocketFactory(
internal, nat->internal_udp_address(), nat->internal_tcp_address());
TestClient* in = CreateTestClient(natsf, internal_addr);
TestClient* out[4];
for (int i = 0; i < 4; i++)
out[i] = CreateTestClient(external, external_addrs[i]);
th_int.Start();
th_ext.Start();
const char* buf = "filter_test";
size_t len = strlen(buf);
in->SendTo(buf, len, out[0]->address());
SocketAddress trans_addr;
EXPECT_TRUE(out[0]->CheckNextPacket(buf, len, &trans_addr));
out[1]->SendTo(buf, len, trans_addr);
EXPECT_TRUE(CheckReceive(in, !filter_ip, buf, len));
out[2]->SendTo(buf, len, trans_addr);
EXPECT_TRUE(CheckReceive(in, !filter_port, buf, len));
out[3]->SendTo(buf, len, trans_addr);
EXPECT_TRUE(CheckReceive(in, !filter_ip && !filter_port, buf, len));
th_int.Stop();
th_ext.Stop();
delete nat;
delete natsf;
delete in;
for (int i = 0; i < 4; i++)
delete out[i];
}
// Tests that NATServer allocates bindings properly.
void TestBindings(SocketServer* internal,
const SocketAddress& internal_addr,
SocketServer* external,
const SocketAddress external_addrs[4]) {
TestSend(internal, internal_addr, external, external_addrs, NAT_OPEN_CONE,
true);
TestSend(internal, internal_addr, external, external_addrs,
NAT_ADDR_RESTRICTED, true);
TestSend(internal, internal_addr, external, external_addrs,
NAT_PORT_RESTRICTED, true);
TestSend(internal, internal_addr, external, external_addrs, NAT_SYMMETRIC,
false);
}
// Tests that NATServer filters packets properly.
void TestFilters(SocketServer* internal,
const SocketAddress& internal_addr,
SocketServer* external,
const SocketAddress external_addrs[4]) {
TestRecv(internal, internal_addr, external, external_addrs, NAT_OPEN_CONE,
false, false);
TestRecv(internal, internal_addr, external, external_addrs,
NAT_ADDR_RESTRICTED, true, false);
TestRecv(internal, internal_addr, external, external_addrs,
NAT_PORT_RESTRICTED, true, true);
TestRecv(internal, internal_addr, external, external_addrs, NAT_SYMMETRIC,
true, true);
}
bool TestConnectivity(const SocketAddress& src, const IPAddress& dst) {
// The physical NAT tests require connectivity to the selected ip from the
// internal address used for the NAT. Things like firewalls can break that, so
// check to see if it's worth even trying with this ip.
std::unique_ptr<PhysicalSocketServer> pss(new PhysicalSocketServer());
std::unique_ptr<Socket> client(pss->CreateSocket(src.family(), SOCK_DGRAM));
std::unique_ptr<Socket> server(pss->CreateSocket(src.family(), SOCK_DGRAM));
if (client->Bind(SocketAddress(src.ipaddr(), 0)) != 0 ||
server->Bind(SocketAddress(dst, 0)) != 0) {
return false;
}
const char* buf = "hello other socket";
size_t len = strlen(buf);
int sent = client->SendTo(buf, len, server->GetLocalAddress());
SocketAddress addr;
const size_t kRecvBufSize = 64;
char recvbuf[kRecvBufSize];
Thread::Current()->SleepMs(100);
int received = server->RecvFrom(recvbuf, kRecvBufSize, &addr, nullptr);
return received == sent && ::memcmp(buf, recvbuf, len) == 0;
}
void TestPhysicalInternal(const SocketAddress& int_addr) {
webrtc::test::ScopedKeyValueConfig field_trials;
rtc::AutoThread main_thread;
PhysicalSocketServer socket_server;
BasicNetworkManager network_manager(nullptr, &socket_server, &field_trials);
network_manager.StartUpdating();
// Process pending messages so the network list is updated.
Thread::Current()->ProcessMessages(0);
std::vector<const Network*> networks = network_manager.GetNetworks();
networks.erase(std::remove_if(networks.begin(), networks.end(),
[](const rtc::Network* network) {
return rtc::kDefaultNetworkIgnoreMask &
network->type();
}),
networks.end());
if (networks.empty()) {
RTC_LOG(LS_WARNING) << "Not enough network adapters for test.";
return;
}
SocketAddress ext_addr1(int_addr);
SocketAddress ext_addr2;
// Find an available IP with matching family. The test breaks if int_addr
// can't talk to ip, so check for connectivity as well.
for (const Network* const network : networks) {
const IPAddress& ip = network->GetBestIP();
if (ip.family() == int_addr.family() && TestConnectivity(int_addr, ip)) {
ext_addr2.SetIP(ip);
break;
}
}
if (ext_addr2.IsNil()) {
RTC_LOG(LS_WARNING) << "No available IP of same family as "
<< int_addr.ToString();
return;
}
RTC_LOG(LS_INFO) << "selected ip " << ext_addr2.ipaddr().ToString();
SocketAddress ext_addrs[4] = {
SocketAddress(ext_addr1), SocketAddress(ext_addr2),
SocketAddress(ext_addr1), SocketAddress(ext_addr2)};
std::unique_ptr<PhysicalSocketServer> int_pss(new PhysicalSocketServer());
std::unique_ptr<PhysicalSocketServer> ext_pss(new PhysicalSocketServer());
TestBindings(int_pss.get(), int_addr, ext_pss.get(), ext_addrs);
TestFilters(int_pss.get(), int_addr, ext_pss.get(), ext_addrs);
}
TEST(NatTest, TestPhysicalIPv4) {
TestPhysicalInternal(SocketAddress("127.0.0.1", 0));
}
TEST(NatTest, TestPhysicalIPv6) {
if (HasIPv6Enabled()) {
TestPhysicalInternal(SocketAddress("::1", 0));
} else {
RTC_LOG(LS_WARNING) << "No IPv6, skipping";
}
}
namespace {
class TestVirtualSocketServer : public VirtualSocketServer {
public:
// Expose this publicly
IPAddress GetNextIP(int af) { return VirtualSocketServer::GetNextIP(af); }
};
} // namespace
void TestVirtualInternal(int family) {
rtc::AutoThread main_thread;
std::unique_ptr<TestVirtualSocketServer> int_vss(
new TestVirtualSocketServer());
std::unique_ptr<TestVirtualSocketServer> ext_vss(
new TestVirtualSocketServer());
SocketAddress int_addr;
SocketAddress ext_addrs[4];
int_addr.SetIP(int_vss->GetNextIP(family));
ext_addrs[0].SetIP(ext_vss->GetNextIP(int_addr.family()));
ext_addrs[1].SetIP(ext_vss->GetNextIP(int_addr.family()));
ext_addrs[2].SetIP(ext_addrs[0].ipaddr());
ext_addrs[3].SetIP(ext_addrs[1].ipaddr());
TestBindings(int_vss.get(), int_addr, ext_vss.get(), ext_addrs);
TestFilters(int_vss.get(), int_addr, ext_vss.get(), ext_addrs);
}
TEST(NatTest, TestVirtualIPv4) {
TestVirtualInternal(AF_INET);
}
TEST(NatTest, TestVirtualIPv6) {
if (HasIPv6Enabled()) {
TestVirtualInternal(AF_INET6);
} else {
RTC_LOG(LS_WARNING) << "No IPv6, skipping";
}
}
class NatTcpTest : public ::testing::Test, public sigslot::has_slots<> {
public:
NatTcpTest()
: int_addr_("192.168.0.1", 0),
ext_addr_("10.0.0.1", 0),
connected_(false),
int_vss_(new TestVirtualSocketServer()),
ext_vss_(new TestVirtualSocketServer()),
int_thread_(new Thread(int_vss_.get())),
ext_thread_(new Thread(ext_vss_.get())),
nat_(new NATServer(NAT_OPEN_CONE,
int_vss_.get(),
int_addr_,
int_addr_,
ext_vss_.get(),
ext_addr_)),
natsf_(new NATSocketFactory(int_vss_.get(),
nat_->internal_udp_address(),
nat_->internal_tcp_address())) {
int_thread_->Start();
ext_thread_->Start();
}
void OnConnectEvent(Socket* socket) { connected_ = true; }
void OnAcceptEvent(Socket* socket) {
accepted_.reset(server_->Accept(nullptr));
}
void OnCloseEvent(Socket* socket, int error) {}
void ConnectEvents() {
server_->SignalReadEvent.connect(this, &NatTcpTest::OnAcceptEvent);
client_->SignalConnectEvent.connect(this, &NatTcpTest::OnConnectEvent);
}
SocketAddress int_addr_;
SocketAddress ext_addr_;
bool connected_;
std::unique_ptr<TestVirtualSocketServer> int_vss_;
std::unique_ptr<TestVirtualSocketServer> ext_vss_;
std::unique_ptr<Thread> int_thread_;
std::unique_ptr<Thread> ext_thread_;
std::unique_ptr<NATServer> nat_;
std::unique_ptr<NATSocketFactory> natsf_;
std::unique_ptr<Socket> client_;
std::unique_ptr<Socket> server_;
std::unique_ptr<Socket> accepted_;
};
TEST_F(NatTcpTest, DISABLED_TestConnectOut) {
server_.reset(ext_vss_->CreateSocket(AF_INET, SOCK_STREAM));
server_->Bind(ext_addr_);
server_->Listen(5);
client_.reset(natsf_->CreateSocket(AF_INET, SOCK_STREAM));
EXPECT_GE(0, client_->Bind(int_addr_));
EXPECT_GE(0, client_->Connect(server_->GetLocalAddress()));
ConnectEvents();
EXPECT_TRUE_WAIT(connected_, 1000);
EXPECT_EQ(client_->GetRemoteAddress(), server_->GetLocalAddress());
EXPECT_EQ(accepted_->GetRemoteAddress().ipaddr(), ext_addr_.ipaddr());
std::unique_ptr<rtc::TestClient> in(CreateTCPTestClient(client_.release()));
std::unique_ptr<rtc::TestClient> out(
CreateTCPTestClient(accepted_.release()));
const char* buf = "test_packet";
size_t len = strlen(buf);
in->Send(buf, len);
SocketAddress trans_addr;
EXPECT_TRUE(out->CheckNextPacket(buf, len, &trans_addr));
out->Send(buf, len);
EXPECT_TRUE(in->CheckNextPacket(buf, len, &trans_addr));
}
} // namespace
} // namespace rtc
|