1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
|
//! Intermediate representation of variables.
use super::super::codegen::MacroTypeVariation;
use super::context::{BindgenContext, TypeId};
use super::dot::DotAttributes;
use super::function::cursor_mangling;
use super::int::IntKind;
use super::item::Item;
use super::ty::{FloatKind, TypeKind};
use crate::callbacks::{ItemInfo, ItemKind, MacroParsingBehavior};
use crate::clang;
use crate::clang::ClangToken;
use crate::parse::{ClangSubItemParser, ParseError, ParseResult};
use std::io;
use std::num::Wrapping;
/// The type for a constant variable.
#[derive(Debug)]
pub(crate) enum VarType {
/// A boolean.
Bool(bool),
/// An integer.
Int(i64),
/// A floating point number.
Float(f64),
/// A character.
Char(u8),
/// A string, not necessarily well-formed utf-8.
String(Vec<u8>),
}
/// A `Var` is our intermediate representation of a variable.
#[derive(Debug)]
pub(crate) struct Var {
/// The name of the variable.
name: String,
/// The mangled name of the variable.
mangled_name: Option<String>,
/// The link name of the variable.
link_name: Option<String>,
/// The type of the variable.
ty: TypeId,
/// The value of the variable, that needs to be suitable for `ty`.
val: Option<VarType>,
/// Whether this variable is const.
is_const: bool,
}
impl Var {
/// Construct a new `Var`.
pub(crate) fn new(
name: String,
mangled_name: Option<String>,
link_name: Option<String>,
ty: TypeId,
val: Option<VarType>,
is_const: bool,
) -> Var {
assert!(!name.is_empty());
Var {
name,
mangled_name,
link_name,
ty,
val,
is_const,
}
}
/// Is this variable `const` qualified?
pub(crate) fn is_const(&self) -> bool {
self.is_const
}
/// The value of this constant variable, if any.
pub(crate) fn val(&self) -> Option<&VarType> {
self.val.as_ref()
}
/// Get this variable's type.
pub(crate) fn ty(&self) -> TypeId {
self.ty
}
/// Get this variable's name.
pub(crate) fn name(&self) -> &str {
&self.name
}
/// Get this variable's mangled name.
pub(crate) fn mangled_name(&self) -> Option<&str> {
self.mangled_name.as_deref()
}
/// Get this variable's link name.
pub fn link_name(&self) -> Option<&str> {
self.link_name.as_deref()
}
}
impl DotAttributes for Var {
fn dot_attributes<W>(
&self,
_ctx: &BindgenContext,
out: &mut W,
) -> io::Result<()>
where
W: io::Write,
{
if self.is_const {
writeln!(out, "<tr><td>const</td><td>true</td></tr>")?;
}
if let Some(ref mangled) = self.mangled_name {
writeln!(
out,
"<tr><td>mangled name</td><td>{}</td></tr>",
mangled
)?;
}
Ok(())
}
}
fn default_macro_constant_type(ctx: &BindgenContext, value: i64) -> IntKind {
if value < 0 ||
ctx.options().default_macro_constant_type ==
MacroTypeVariation::Signed
{
if value < i32::min_value() as i64 || value > i32::max_value() as i64 {
IntKind::I64
} else if !ctx.options().fit_macro_constants ||
value < i16::min_value() as i64 ||
value > i16::max_value() as i64
{
IntKind::I32
} else if value < i8::min_value() as i64 ||
value > i8::max_value() as i64
{
IntKind::I16
} else {
IntKind::I8
}
} else if value > u32::max_value() as i64 {
IntKind::U64
} else if !ctx.options().fit_macro_constants ||
value > u16::max_value() as i64
{
IntKind::U32
} else if value > u8::max_value() as i64 {
IntKind::U16
} else {
IntKind::U8
}
}
/// Parses tokens from a CXCursor_MacroDefinition pointing into a function-like
/// macro, and calls the func_macro callback.
fn handle_function_macro(
cursor: &clang::Cursor,
callbacks: &dyn crate::callbacks::ParseCallbacks,
) {
let is_closing_paren = |t: &ClangToken| {
// Test cheap token kind before comparing exact spellings.
t.kind == clang_sys::CXToken_Punctuation && t.spelling() == b")"
};
let tokens: Vec<_> = cursor.tokens().iter().collect();
if let Some(boundary) = tokens.iter().position(is_closing_paren) {
let mut spelled = tokens.iter().map(ClangToken::spelling);
// Add 1, to convert index to length.
let left = spelled.by_ref().take(boundary + 1);
let left = left.collect::<Vec<_>>().concat();
if let Ok(left) = String::from_utf8(left) {
let right: Vec<_> = spelled.collect();
callbacks.func_macro(&left, &right);
}
}
}
impl ClangSubItemParser for Var {
fn parse(
cursor: clang::Cursor,
ctx: &mut BindgenContext,
) -> Result<ParseResult<Self>, ParseError> {
use cexpr::expr::EvalResult;
use cexpr::literal::CChar;
use clang_sys::*;
match cursor.kind() {
CXCursor_MacroDefinition => {
for callbacks in &ctx.options().parse_callbacks {
match callbacks.will_parse_macro(&cursor.spelling()) {
MacroParsingBehavior::Ignore => {
return Err(ParseError::Continue);
}
MacroParsingBehavior::Default => {}
}
if cursor.is_macro_function_like() {
handle_function_macro(&cursor, callbacks.as_ref());
// We handled the macro, skip macro processing below.
return Err(ParseError::Continue);
}
}
let value = parse_macro(ctx, &cursor);
let (id, value) = match value {
Some(v) => v,
None => return Err(ParseError::Continue),
};
assert!(!id.is_empty(), "Empty macro name?");
let previously_defined = ctx.parsed_macro(&id);
// NB: It's important to "note" the macro even if the result is
// not an integer, otherwise we might loose other kind of
// derived macros.
ctx.note_parsed_macro(id.clone(), value.clone());
if previously_defined {
let name = String::from_utf8(id).unwrap();
duplicated_macro_diagnostic(&name, cursor.location(), ctx);
return Err(ParseError::Continue);
}
// NOTE: Unwrapping, here and above, is safe, because the
// identifier of a token comes straight from clang, and we
// enforce utf8 there, so we should have already panicked at
// this point.
let name = String::from_utf8(id).unwrap();
let (type_kind, val) = match value {
EvalResult::Invalid => return Err(ParseError::Continue),
EvalResult::Float(f) => {
(TypeKind::Float(FloatKind::Double), VarType::Float(f))
}
EvalResult::Char(c) => {
let c = match c {
CChar::Char(c) => {
assert_eq!(c.len_utf8(), 1);
c as u8
}
CChar::Raw(c) => {
assert!(c <= ::std::u8::MAX as u64);
c as u8
}
};
(TypeKind::Int(IntKind::U8), VarType::Char(c))
}
EvalResult::Str(val) => {
let char_ty = Item::builtin_type(
TypeKind::Int(IntKind::U8),
true,
ctx,
);
for callbacks in &ctx.options().parse_callbacks {
callbacks.str_macro(&name, &val);
}
(TypeKind::Pointer(char_ty), VarType::String(val))
}
EvalResult::Int(Wrapping(value)) => {
let kind = ctx
.options()
.last_callback(|c| c.int_macro(&name, value))
.unwrap_or_else(|| {
default_macro_constant_type(ctx, value)
});
(TypeKind::Int(kind), VarType::Int(value))
}
};
let ty = Item::builtin_type(type_kind, true, ctx);
Ok(ParseResult::New(
Var::new(name, None, None, ty, Some(val), true),
Some(cursor),
))
}
CXCursor_VarDecl => {
let mut name = cursor.spelling();
if cursor.linkage() == CXLinkage_External {
if let Some(nm) = ctx.options().last_callback(|callbacks| {
callbacks.generated_name_override(ItemInfo {
name: name.as_str(),
kind: ItemKind::Var,
})
}) {
name = nm;
}
}
// No more changes to name
let name = name;
if name.is_empty() {
warn!("Empty constant name?");
return Err(ParseError::Continue);
}
let link_name = ctx.options().last_callback(|callbacks| {
callbacks.generated_link_name_override(ItemInfo {
name: name.as_str(),
kind: ItemKind::Var,
})
});
let ty = cursor.cur_type();
// TODO(emilio): do we have to special-case constant arrays in
// some other places?
let is_const = ty.is_const() ||
([CXType_ConstantArray, CXType_IncompleteArray]
.contains(&ty.kind()) &&
ty.elem_type()
.map_or(false, |element| element.is_const()));
let ty = match Item::from_ty(&ty, cursor, None, ctx) {
Ok(ty) => ty,
Err(e) => {
assert!(
matches!(ty.kind(), CXType_Auto | CXType_Unexposed),
"Couldn't resolve constant type, and it \
wasn't an nondeductible auto type or unexposed \
type!"
);
return Err(e);
}
};
// Note: Ty might not be totally resolved yet, see
// tests/headers/inner_const.hpp
//
// That's fine because in that case we know it's not a literal.
let canonical_ty = ctx
.safe_resolve_type(ty)
.and_then(|t| t.safe_canonical_type(ctx));
let is_integer = canonical_ty.map_or(false, |t| t.is_integer());
let is_float = canonical_ty.map_or(false, |t| t.is_float());
// TODO: We could handle `char` more gracefully.
// TODO: Strings, though the lookup is a bit more hard (we need
// to look at the canonical type of the pointee too, and check
// is char, u8, or i8 I guess).
let value = if is_integer {
let kind = match *canonical_ty.unwrap().kind() {
TypeKind::Int(kind) => kind,
_ => unreachable!(),
};
let mut val = cursor.evaluate().and_then(|v| v.as_int());
if val.is_none() || !kind.signedness_matches(val.unwrap()) {
val = get_integer_literal_from_cursor(&cursor);
}
val.map(|val| {
if kind == IntKind::Bool {
VarType::Bool(val != 0)
} else {
VarType::Int(val)
}
})
} else if is_float {
cursor
.evaluate()
.and_then(|v| v.as_double())
.map(VarType::Float)
} else {
cursor
.evaluate()
.and_then(|v| v.as_literal_string())
.map(VarType::String)
};
let mangling = cursor_mangling(ctx, &cursor);
let var =
Var::new(name, mangling, link_name, ty, value, is_const);
Ok(ParseResult::New(var, Some(cursor)))
}
_ => {
/* TODO */
Err(ParseError::Continue)
}
}
}
}
/// Try and parse a macro using all the macros parsed until now.
fn parse_macro(
ctx: &BindgenContext,
cursor: &clang::Cursor,
) -> Option<(Vec<u8>, cexpr::expr::EvalResult)> {
use cexpr::expr;
let cexpr_tokens = cursor.cexpr_tokens();
let parser = expr::IdentifierParser::new(ctx.parsed_macros());
match parser.macro_definition(&cexpr_tokens) {
Ok((_, (id, val))) => Some((id.into(), val)),
_ => None,
}
}
fn parse_int_literal_tokens(cursor: &clang::Cursor) -> Option<i64> {
use cexpr::expr;
use cexpr::expr::EvalResult;
let cexpr_tokens = cursor.cexpr_tokens();
// TODO(emilio): We can try to parse other kinds of literals.
match expr::expr(&cexpr_tokens) {
Ok((_, EvalResult::Int(Wrapping(val)))) => Some(val),
_ => None,
}
}
fn get_integer_literal_from_cursor(cursor: &clang::Cursor) -> Option<i64> {
use clang_sys::*;
let mut value = None;
cursor.visit(|c| {
match c.kind() {
CXCursor_IntegerLiteral | CXCursor_UnaryOperator => {
value = parse_int_literal_tokens(&c);
}
CXCursor_UnexposedExpr => {
value = get_integer_literal_from_cursor(&c);
}
_ => (),
}
if value.is_some() {
CXChildVisit_Break
} else {
CXChildVisit_Continue
}
});
value
}
fn duplicated_macro_diagnostic(
macro_name: &str,
_location: crate::clang::SourceLocation,
_ctx: &BindgenContext,
) {
warn!("Duplicated macro definition: {}", macro_name);
#[cfg(feature = "experimental")]
// FIXME (pvdrz & amanjeev): This diagnostic message shows way too often to be actually
// useful. We have to change the logic where this function is called to be able to emit this
// message only when the duplication is an actuall issue.
//
// If I understood correctly, `bindgen` ignores all `#undef` directives. Meaning that this:
// ```c
// #define FOO 1
// #undef FOO
// #define FOO 2
// ```
//
// Will trigger this message even though there's nothing wrong with it.
#[allow(clippy::overly_complex_bool_expr)]
if false && _ctx.options().emit_diagnostics {
use crate::diagnostics::{get_line, Diagnostic, Level, Slice};
use std::borrow::Cow;
let mut slice = Slice::default();
let mut source = Cow::from(macro_name);
let (file, line, col, _) = _location.location();
if let Some(filename) = file.name() {
if let Ok(Some(code)) = get_line(&filename, line) {
source = code.into();
}
slice.with_location(filename, line, col);
}
slice.with_source(source);
Diagnostic::default()
.with_title("Duplicated macro definition.", Level::Warn)
.add_slice(slice)
.add_annotation("This macro had a duplicate.", Level::Note)
.display();
}
}
|