summaryrefslogtreecommitdiffstats
path: root/third_party/rust/regex-automata/src/util/alphabet.rs
blob: 22b5a764460704fb518ef3b80601d1a4bbbb9c37 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
/*!
This module provides APIs for dealing with the alphabets of finite state
machines.

There are two principal types in this module, [`ByteClasses`] and [`Unit`].
The former defines the alphabet of a finite state machine while the latter
represents an element of that alphabet.

To a first approximation, the alphabet of all automata in this crate is just
a `u8`. Namely, every distinct byte value. All 256 of them. In practice, this
can be quite wasteful when building a transition table for a DFA, since it
requires storing a state identifier for each element in the alphabet. Instead,
we collapse the alphabet of an automaton down into equivalence classes, where
every byte in the same equivalence class never discriminates between a match or
a non-match from any other byte in the same class. For example, in the regex
`[a-z]+`, then you could consider it having an alphabet consisting of two
equivalence classes: `a-z` and everything else. In terms of the transitions on
an automaton, it doesn't actually require representing every distinct byte.
Just the equivalence classes.

The downside of equivalence classes is that, of course, searching a haystack
deals with individual byte values. Those byte values need to be mapped to
their corresponding equivalence class. This is what `ByteClasses` does. In
practice, doing this for every state transition has negligible impact on modern
CPUs. Moreover, it helps make more efficient use of the CPU cache by (possibly
considerably) shrinking the size of the transition table.

One last hiccup concerns `Unit`. Namely, because of look-around and how the
DFAs in this crate work, we need to add a sentinel value to our alphabet
of equivalence classes that represents the "end" of a search. We call that
sentinel [`Unit::eoi`] or "end of input." Thus, a `Unit` is either an
equivalence class corresponding to a set of bytes, or it is a special "end of
input" sentinel.

In general, you should not expect to need either of these types unless you're
doing lower level shenanigans with DFAs, or even building your own DFAs.
(Although, you don't have to use these types to build your own DFAs of course.)
For example, if you're walking a DFA's state graph, it's probably useful to
make use of [`ByteClasses`] to visit each element in the DFA's alphabet instead
of just visiting every distinct `u8` value. The latter isn't necessarily wrong,
but it could be potentially very wasteful.
*/
use crate::util::{
    escape::DebugByte,
    wire::{self, DeserializeError, SerializeError},
};

/// Unit represents a single unit of haystack for DFA based regex engines.
///
/// It is not expected for consumers of this crate to need to use this type
/// unless they are implementing their own DFA. And even then, it's not
/// required: implementors may use other techniques to handle haystack units.
///
/// Typically, a single unit of haystack for a DFA would be a single byte.
/// However, for the DFAs in this crate, matches are delayed by a single byte
/// in order to handle look-ahead assertions (`\b`, `$` and `\z`). Thus, once
/// we have consumed the haystack, we must run the DFA through one additional
/// transition using a unit that indicates the haystack has ended.
///
/// There is no way to represent a sentinel with a `u8` since all possible
/// values *may* be valid haystack units to a DFA, therefore this type
/// explicitly adds room for a sentinel value.
///
/// The sentinel EOI value is always its own equivalence class and is
/// ultimately represented by adding 1 to the maximum equivalence class value.
/// So for example, the regex `^[a-z]+$` might be split into the following
/// equivalence classes:
///
/// ```text
/// 0 => [\x00-`]
/// 1 => [a-z]
/// 2 => [{-\xFF]
/// 3 => [EOI]
/// ```
///
/// Where EOI is the special sentinel value that is always in its own
/// singleton equivalence class.
#[derive(Clone, Copy, Eq, PartialEq, PartialOrd, Ord)]
pub struct Unit(UnitKind);

#[derive(Clone, Copy, Eq, PartialEq, PartialOrd, Ord)]
enum UnitKind {
    /// Represents a byte value, or more typically, an equivalence class
    /// represented as a byte value.
    U8(u8),
    /// Represents the "end of input" sentinel. We regretably use a `u16`
    /// here since the maximum sentinel value is `256`. Thankfully, we don't
    /// actually store a `Unit` anywhere, so this extra space shouldn't be too
    /// bad.
    EOI(u16),
}

impl Unit {
    /// Create a new haystack unit from a byte value.
    ///
    /// All possible byte values are legal. However, when creating a haystack
    /// unit for a specific DFA, one should be careful to only construct units
    /// that are in that DFA's alphabet. Namely, one way to compact a DFA's
    /// in-memory representation is to collapse its transitions to a set of
    /// equivalence classes into a set of all possible byte values. If a DFA
    /// uses equivalence classes instead of byte values, then the byte given
    /// here should be the equivalence class.
    pub fn u8(byte: u8) -> Unit {
        Unit(UnitKind::U8(byte))
    }

    /// Create a new "end of input" haystack unit.
    ///
    /// The value given is the sentinel value used by this unit to represent
    /// the "end of input." The value should be the total number of equivalence
    /// classes in the corresponding alphabet. Its maximum value is `256`,
    /// which occurs when every byte is its own equivalence class.
    ///
    /// # Panics
    ///
    /// This panics when `num_byte_equiv_classes` is greater than `256`.
    pub fn eoi(num_byte_equiv_classes: usize) -> Unit {
        assert!(
            num_byte_equiv_classes <= 256,
            "max number of byte-based equivalent classes is 256, but got {}",
            num_byte_equiv_classes,
        );
        Unit(UnitKind::EOI(u16::try_from(num_byte_equiv_classes).unwrap()))
    }

    /// If this unit is not an "end of input" sentinel, then returns its
    /// underlying byte value. Otherwise return `None`.
    pub fn as_u8(self) -> Option<u8> {
        match self.0 {
            UnitKind::U8(b) => Some(b),
            UnitKind::EOI(_) => None,
        }
    }

    /// If this unit is an "end of input" sentinel, then return the underlying
    /// sentinel value that was given to [`Unit::eoi`]. Otherwise return
    /// `None`.
    pub fn as_eoi(self) -> Option<u16> {
        match self.0 {
            UnitKind::U8(_) => None,
            UnitKind::EOI(sentinel) => Some(sentinel),
        }
    }

    /// Return this unit as a `usize`, regardless of whether it is a byte value
    /// or an "end of input" sentinel. In the latter case, the underlying
    /// sentinel value given to [`Unit::eoi`] is returned.
    pub fn as_usize(self) -> usize {
        match self.0 {
            UnitKind::U8(b) => usize::from(b),
            UnitKind::EOI(eoi) => usize::from(eoi),
        }
    }

    /// Returns true if and only of this unit is a byte value equivalent to the
    /// byte given. This always returns false when this is an "end of input"
    /// sentinel.
    pub fn is_byte(self, byte: u8) -> bool {
        self.as_u8().map_or(false, |b| b == byte)
    }

    /// Returns true when this unit represents an "end of input" sentinel.
    pub fn is_eoi(self) -> bool {
        self.as_eoi().is_some()
    }

    /// Returns true when this unit corresponds to an ASCII word byte.
    ///
    /// This always returns false when this unit represents an "end of input"
    /// sentinel.
    pub fn is_word_byte(self) -> bool {
        self.as_u8().map_or(false, crate::util::utf8::is_word_byte)
    }
}

impl core::fmt::Debug for Unit {
    fn fmt(&self, f: &mut core::fmt::Formatter) -> core::fmt::Result {
        match self.0 {
            UnitKind::U8(b) => write!(f, "{:?}", DebugByte(b)),
            UnitKind::EOI(_) => write!(f, "EOI"),
        }
    }
}

/// A representation of byte oriented equivalence classes.
///
/// This is used in a DFA to reduce the size of the transition table. This can
/// have a particularly large impact not only on the total size of a dense DFA,
/// but also on compile times.
///
/// The essential idea here is that the alphabet of a DFA is shrunk from the
/// usual 256 distinct byte values down to a set of equivalence classes. The
/// guarantee you get is that any byte belonging to the same equivalence class
/// can be treated as if it were any other byte in the same class, and the
/// result of a search wouldn't change.
///
/// # Example
///
/// This example shows how to get byte classes from an
/// [`NFA`](crate::nfa::thompson::NFA) and ask for the class of various bytes.
///
/// ```
/// use regex_automata::nfa::thompson::NFA;
///
/// let nfa = NFA::new("[a-z]+")?;
/// let classes = nfa.byte_classes();
/// // 'a' and 'z' are in the same class for this regex.
/// assert_eq!(classes.get(b'a'), classes.get(b'z'));
/// // But 'a' and 'A' are not.
/// assert_ne!(classes.get(b'a'), classes.get(b'A'));
///
/// # Ok::<(), Box<dyn std::error::Error>>(())
/// ```
#[derive(Clone, Copy)]
pub struct ByteClasses([u8; 256]);

impl ByteClasses {
    /// Creates a new set of equivalence classes where all bytes are mapped to
    /// the same class.
    #[inline]
    pub fn empty() -> ByteClasses {
        ByteClasses([0; 256])
    }

    /// Creates a new set of equivalence classes where each byte belongs to
    /// its own equivalence class.
    #[inline]
    pub fn singletons() -> ByteClasses {
        let mut classes = ByteClasses::empty();
        for b in 0..=255 {
            classes.set(b, b);
        }
        classes
    }

    /// Deserializes a byte class map from the given slice. If the slice is of
    /// insufficient length or otherwise contains an impossible mapping, then
    /// an error is returned. Upon success, the number of bytes read along with
    /// the map are returned. The number of bytes read is always a multiple of
    /// 8.
    pub(crate) fn from_bytes(
        slice: &[u8],
    ) -> Result<(ByteClasses, usize), DeserializeError> {
        wire::check_slice_len(slice, 256, "byte class map")?;
        let mut classes = ByteClasses::empty();
        for (b, &class) in slice[..256].iter().enumerate() {
            classes.set(u8::try_from(b).unwrap(), class);
        }
        // We specifically don't use 'classes.iter()' here because that
        // iterator depends on 'classes.alphabet_len()' being correct. But that
        // is precisely the thing we're trying to verify below!
        for &b in classes.0.iter() {
            if usize::from(b) >= classes.alphabet_len() {
                return Err(DeserializeError::generic(
                    "found equivalence class greater than alphabet len",
                ));
            }
        }
        Ok((classes, 256))
    }

    /// Writes this byte class map to the given byte buffer. if the given
    /// buffer is too small, then an error is returned. Upon success, the total
    /// number of bytes written is returned. The number of bytes written is
    /// guaranteed to be a multiple of 8.
    pub(crate) fn write_to(
        &self,
        mut dst: &mut [u8],
    ) -> Result<usize, SerializeError> {
        let nwrite = self.write_to_len();
        if dst.len() < nwrite {
            return Err(SerializeError::buffer_too_small("byte class map"));
        }
        for b in 0..=255 {
            dst[0] = self.get(b);
            dst = &mut dst[1..];
        }
        Ok(nwrite)
    }

    /// Returns the total number of bytes written by `write_to`.
    pub(crate) fn write_to_len(&self) -> usize {
        256
    }

    /// Set the equivalence class for the given byte.
    #[inline]
    pub fn set(&mut self, byte: u8, class: u8) {
        self.0[usize::from(byte)] = class;
    }

    /// Get the equivalence class for the given byte.
    #[inline]
    pub fn get(&self, byte: u8) -> u8 {
        self.0[usize::from(byte)]
    }

    /// Get the equivalence class for the given haystack unit and return the
    /// class as a `usize`.
    #[inline]
    pub fn get_by_unit(&self, unit: Unit) -> usize {
        match unit.0 {
            UnitKind::U8(b) => usize::from(self.get(b)),
            UnitKind::EOI(b) => usize::from(b),
        }
    }

    /// Create a unit that represents the "end of input" sentinel based on the
    /// number of equivalence classes.
    #[inline]
    pub fn eoi(&self) -> Unit {
        // The alphabet length already includes the EOI sentinel, hence why
        // we subtract 1.
        Unit::eoi(self.alphabet_len().checked_sub(1).unwrap())
    }

    /// Return the total number of elements in the alphabet represented by
    /// these equivalence classes. Equivalently, this returns the total number
    /// of equivalence classes.
    #[inline]
    pub fn alphabet_len(&self) -> usize {
        // Add one since the number of equivalence classes is one bigger than
        // the last one. But add another to account for the final EOI class
        // that isn't explicitly represented.
        usize::from(self.0[255]) + 1 + 1
    }

    /// Returns the stride, as a base-2 exponent, required for these
    /// equivalence classes.
    ///
    /// The stride is always the smallest power of 2 that is greater than or
    /// equal to the alphabet length, and the `stride2` returned here is the
    /// exponent applied to `2` to get the smallest power. This is done so that
    /// converting between premultiplied state IDs and indices can be done with
    /// shifts alone, which is much faster than integer division.
    #[inline]
    pub fn stride2(&self) -> usize {
        let zeros = self.alphabet_len().next_power_of_two().trailing_zeros();
        usize::try_from(zeros).unwrap()
    }

    /// Returns true if and only if every byte in this class maps to its own
    /// equivalence class. Equivalently, there are 257 equivalence classes
    /// and each class contains either exactly one byte or corresponds to the
    /// singleton class containing the "end of input" sentinel.
    #[inline]
    pub fn is_singleton(&self) -> bool {
        self.alphabet_len() == 257
    }

    /// Returns an iterator over all equivalence classes in this set.
    #[inline]
    pub fn iter(&self) -> ByteClassIter<'_> {
        ByteClassIter { classes: self, i: 0 }
    }

    /// Returns an iterator over a sequence of representative bytes from each
    /// equivalence class within the range of bytes given.
    ///
    /// When the given range is unbounded on both sides, the iterator yields
    /// exactly N items, where N is equivalent to the number of equivalence
    /// classes. Each item is an arbitrary byte drawn from each equivalence
    /// class.
    ///
    /// This is useful when one is determinizing an NFA and the NFA's alphabet
    /// hasn't been converted to equivalence classes. Picking an arbitrary byte
    /// from each equivalence class then permits a full exploration of the NFA
    /// instead of using every possible byte value and thus potentially saves
    /// quite a lot of redundant work.
    ///
    /// # Example
    ///
    /// This shows an example of what a complete sequence of representatives
    /// might look like from a real example.
    ///
    /// ```
    /// use regex_automata::{nfa::thompson::NFA, util::alphabet::Unit};
    ///
    /// let nfa = NFA::new("[a-z]+")?;
    /// let classes = nfa.byte_classes();
    /// let reps: Vec<Unit> = classes.representatives(..).collect();
    /// // Note that the specific byte values yielded are not guaranteed!
    /// let expected = vec![
    ///     Unit::u8(b'\x00'),
    ///     Unit::u8(b'a'),
    ///     Unit::u8(b'{'),
    ///     Unit::eoi(3),
    /// ];
    /// assert_eq!(expected, reps);
    ///
    /// # Ok::<(), Box<dyn std::error::Error>>(())
    /// ```
    ///
    /// Note though, that you can ask for an arbitrary range of bytes, and only
    /// representatives for that range will be returned:
    ///
    /// ```
    /// use regex_automata::{nfa::thompson::NFA, util::alphabet::Unit};
    ///
    /// let nfa = NFA::new("[a-z]+")?;
    /// let classes = nfa.byte_classes();
    /// let reps: Vec<Unit> = classes.representatives(b'A'..=b'z').collect();
    /// // Note that the specific byte values yielded are not guaranteed!
    /// let expected = vec![
    ///     Unit::u8(b'A'),
    ///     Unit::u8(b'a'),
    /// ];
    /// assert_eq!(expected, reps);
    ///
    /// # Ok::<(), Box<dyn std::error::Error>>(())
    /// ```
    pub fn representatives<R: core::ops::RangeBounds<u8>>(
        &self,
        range: R,
    ) -> ByteClassRepresentatives<'_> {
        use core::ops::Bound;

        let cur_byte = match range.start_bound() {
            Bound::Included(&i) => usize::from(i),
            Bound::Excluded(&i) => usize::from(i).checked_add(1).unwrap(),
            Bound::Unbounded => 0,
        };
        let end_byte = match range.end_bound() {
            Bound::Included(&i) => {
                Some(usize::from(i).checked_add(1).unwrap())
            }
            Bound::Excluded(&i) => Some(usize::from(i)),
            Bound::Unbounded => None,
        };
        assert_ne!(
            cur_byte,
            usize::MAX,
            "start range must be less than usize::MAX",
        );
        ByteClassRepresentatives {
            classes: self,
            cur_byte,
            end_byte,
            last_class: None,
        }
    }

    /// Returns an iterator of the bytes in the given equivalence class.
    ///
    /// This is useful when one needs to know the actual bytes that belong to
    /// an equivalence class. For example, conceptually speaking, accelerating
    /// a DFA state occurs when a state only has a few outgoing transitions.
    /// But in reality, what is required is that there are only a small
    /// number of distinct bytes that can lead to an outgoing transition. The
    /// difference is that any one transition can correspond to an equivalence
    /// class which may contains many bytes. Therefore, DFA state acceleration
    /// considers the actual elements in each equivalence class of each
    /// outgoing transition.
    ///
    /// # Example
    ///
    /// This shows an example of how to get all of the elements in an
    /// equivalence class.
    ///
    /// ```
    /// use regex_automata::{nfa::thompson::NFA, util::alphabet::Unit};
    ///
    /// let nfa = NFA::new("[a-z]+")?;
    /// let classes = nfa.byte_classes();
    /// let elements: Vec<Unit> = classes.elements(Unit::u8(1)).collect();
    /// let expected: Vec<Unit> = (b'a'..=b'z').map(Unit::u8).collect();
    /// assert_eq!(expected, elements);
    ///
    /// # Ok::<(), Box<dyn std::error::Error>>(())
    /// ```
    #[inline]
    pub fn elements(&self, class: Unit) -> ByteClassElements {
        ByteClassElements { classes: self, class, byte: 0 }
    }

    /// Returns an iterator of byte ranges in the given equivalence class.
    ///
    /// That is, a sequence of contiguous ranges are returned. Typically, every
    /// class maps to a single contiguous range.
    fn element_ranges(&self, class: Unit) -> ByteClassElementRanges {
        ByteClassElementRanges { elements: self.elements(class), range: None }
    }
}

impl Default for ByteClasses {
    fn default() -> ByteClasses {
        ByteClasses::singletons()
    }
}

impl core::fmt::Debug for ByteClasses {
    fn fmt(&self, f: &mut core::fmt::Formatter<'_>) -> core::fmt::Result {
        if self.is_singleton() {
            write!(f, "ByteClasses({{singletons}})")
        } else {
            write!(f, "ByteClasses(")?;
            for (i, class) in self.iter().enumerate() {
                if i > 0 {
                    write!(f, ", ")?;
                }
                write!(f, "{:?} => [", class.as_usize())?;
                for (start, end) in self.element_ranges(class) {
                    if start == end {
                        write!(f, "{:?}", start)?;
                    } else {
                        write!(f, "{:?}-{:?}", start, end)?;
                    }
                }
                write!(f, "]")?;
            }
            write!(f, ")")
        }
    }
}

/// An iterator over each equivalence class.
///
/// The last element in this iterator always corresponds to [`Unit::eoi`].
///
/// This is created by the [`ByteClasses::iter`] method.
///
/// The lifetime `'a` refers to the lifetime of the byte classes that this
/// iterator was created from.
#[derive(Debug)]
pub struct ByteClassIter<'a> {
    classes: &'a ByteClasses,
    i: usize,
}

impl<'a> Iterator for ByteClassIter<'a> {
    type Item = Unit;

    fn next(&mut self) -> Option<Unit> {
        if self.i + 1 == self.classes.alphabet_len() {
            self.i += 1;
            Some(self.classes.eoi())
        } else if self.i < self.classes.alphabet_len() {
            let class = u8::try_from(self.i).unwrap();
            self.i += 1;
            Some(Unit::u8(class))
        } else {
            None
        }
    }
}

/// An iterator over representative bytes from each equivalence class.
///
/// This is created by the [`ByteClasses::representatives`] method.
///
/// The lifetime `'a` refers to the lifetime of the byte classes that this
/// iterator was created from.
#[derive(Debug)]
pub struct ByteClassRepresentatives<'a> {
    classes: &'a ByteClasses,
    cur_byte: usize,
    end_byte: Option<usize>,
    last_class: Option<u8>,
}

impl<'a> Iterator for ByteClassRepresentatives<'a> {
    type Item = Unit;

    fn next(&mut self) -> Option<Unit> {
        while self.cur_byte < self.end_byte.unwrap_or(256) {
            let byte = u8::try_from(self.cur_byte).unwrap();
            let class = self.classes.get(byte);
            self.cur_byte += 1;

            if self.last_class != Some(class) {
                self.last_class = Some(class);
                return Some(Unit::u8(byte));
            }
        }
        if self.cur_byte != usize::MAX && self.end_byte.is_none() {
            // Using usize::MAX as a sentinel is OK because we ban usize::MAX
            // from appearing as a start bound in iterator construction. But
            // why do it this way? Well, we want to return the EOI class
            // whenever the end of the given range is unbounded because EOI
            // isn't really a "byte" per se, so the only way it should be
            // excluded is if there is a bounded end to the range. Therefore,
            // when the end is unbounded, we just need to know whether we've
            // reported EOI or not. When we do, we set cur_byte to a value it
            // can never otherwise be.
            self.cur_byte = usize::MAX;
            return Some(self.classes.eoi());
        }
        None
    }
}

/// An iterator over all elements in an equivalence class.
///
/// This is created by the [`ByteClasses::elements`] method.
///
/// The lifetime `'a` refers to the lifetime of the byte classes that this
/// iterator was created from.
#[derive(Debug)]
pub struct ByteClassElements<'a> {
    classes: &'a ByteClasses,
    class: Unit,
    byte: usize,
}

impl<'a> Iterator for ByteClassElements<'a> {
    type Item = Unit;

    fn next(&mut self) -> Option<Unit> {
        while self.byte < 256 {
            let byte = u8::try_from(self.byte).unwrap();
            self.byte += 1;
            if self.class.is_byte(self.classes.get(byte)) {
                return Some(Unit::u8(byte));
            }
        }
        if self.byte < 257 {
            self.byte += 1;
            if self.class.is_eoi() {
                return Some(Unit::eoi(256));
            }
        }
        None
    }
}

/// An iterator over all elements in an equivalence class expressed as a
/// sequence of contiguous ranges.
#[derive(Debug)]
struct ByteClassElementRanges<'a> {
    elements: ByteClassElements<'a>,
    range: Option<(Unit, Unit)>,
}

impl<'a> Iterator for ByteClassElementRanges<'a> {
    type Item = (Unit, Unit);

    fn next(&mut self) -> Option<(Unit, Unit)> {
        loop {
            let element = match self.elements.next() {
                None => return self.range.take(),
                Some(element) => element,
            };
            match self.range.take() {
                None => {
                    self.range = Some((element, element));
                }
                Some((start, end)) => {
                    if end.as_usize() + 1 != element.as_usize()
                        || element.is_eoi()
                    {
                        self.range = Some((element, element));
                        return Some((start, end));
                    }
                    self.range = Some((start, element));
                }
            }
        }
    }
}

/// A partitioning of bytes into equivalence classes.
///
/// A byte class set keeps track of an *approximation* of equivalence classes
/// of bytes during NFA construction. That is, every byte in an equivalence
/// class cannot discriminate between a match and a non-match.
///
/// For example, in the regex `[ab]+`, the bytes `a` and `b` would be in the
/// same equivalence class because it never matters whether an `a` or a `b` is
/// seen, and no combination of `a`s and `b`s in the text can discriminate a
/// match.
///
/// Note though that this does not compute the minimal set of equivalence
/// classes. For example, in the regex `[ac]+`, both `a` and `c` are in the
/// same equivalence class for the same reason that `a` and `b` are in the
/// same equivalence class in the aforementioned regex. However, in this
/// implementation, `a` and `c` are put into distinct equivalence classes. The
/// reason for this is implementation complexity. In the future, we should
/// endeavor to compute the minimal equivalence classes since they can have a
/// rather large impact on the size of the DFA. (Doing this will likely require
/// rethinking how equivalence classes are computed, including changing the
/// representation here, which is only able to group contiguous bytes into the
/// same equivalence class.)
#[cfg(feature = "alloc")]
#[derive(Clone, Debug)]
pub(crate) struct ByteClassSet(ByteSet);

#[cfg(feature = "alloc")]
impl Default for ByteClassSet {
    fn default() -> ByteClassSet {
        ByteClassSet::empty()
    }
}

#[cfg(feature = "alloc")]
impl ByteClassSet {
    /// Create a new set of byte classes where all bytes are part of the same
    /// equivalence class.
    pub(crate) fn empty() -> Self {
        ByteClassSet(ByteSet::empty())
    }

    /// Indicate the the range of byte given (inclusive) can discriminate a
    /// match between it and all other bytes outside of the range.
    pub(crate) fn set_range(&mut self, start: u8, end: u8) {
        debug_assert!(start <= end);
        if start > 0 {
            self.0.add(start - 1);
        }
        self.0.add(end);
    }

    /// Add the contiguous ranges in the set given to this byte class set.
    pub(crate) fn add_set(&mut self, set: &ByteSet) {
        for (start, end) in set.iter_ranges() {
            self.set_range(start, end);
        }
    }

    /// Convert this boolean set to a map that maps all byte values to their
    /// corresponding equivalence class. The last mapping indicates the largest
    /// equivalence class identifier (which is never bigger than 255).
    pub(crate) fn byte_classes(&self) -> ByteClasses {
        let mut classes = ByteClasses::empty();
        let mut class = 0u8;
        let mut b = 0u8;
        loop {
            classes.set(b, class);
            if b == 255 {
                break;
            }
            if self.0.contains(b) {
                class = class.checked_add(1).unwrap();
            }
            b = b.checked_add(1).unwrap();
        }
        classes
    }
}

/// A simple set of bytes that is reasonably cheap to copy and allocation free.
#[derive(Clone, Copy, Debug, Default, Eq, PartialEq)]
pub(crate) struct ByteSet {
    bits: BitSet,
}

/// The representation of a byte set. Split out so that we can define a
/// convenient Debug impl for it while keeping "ByteSet" in the output.
#[derive(Clone, Copy, Default, Eq, PartialEq)]
struct BitSet([u128; 2]);

impl ByteSet {
    /// Create an empty set of bytes.
    pub(crate) fn empty() -> ByteSet {
        ByteSet { bits: BitSet([0; 2]) }
    }

    /// Add a byte to this set.
    ///
    /// If the given byte already belongs to this set, then this is a no-op.
    pub(crate) fn add(&mut self, byte: u8) {
        let bucket = byte / 128;
        let bit = byte % 128;
        self.bits.0[usize::from(bucket)] |= 1 << bit;
    }

    /// Remove a byte from this set.
    ///
    /// If the given byte is not in this set, then this is a no-op.
    pub(crate) fn remove(&mut self, byte: u8) {
        let bucket = byte / 128;
        let bit = byte % 128;
        self.bits.0[usize::from(bucket)] &= !(1 << bit);
    }

    /// Return true if and only if the given byte is in this set.
    pub(crate) fn contains(&self, byte: u8) -> bool {
        let bucket = byte / 128;
        let bit = byte % 128;
        self.bits.0[usize::from(bucket)] & (1 << bit) > 0
    }

    /// Return true if and only if the given inclusive range of bytes is in
    /// this set.
    pub(crate) fn contains_range(&self, start: u8, end: u8) -> bool {
        (start..=end).all(|b| self.contains(b))
    }

    /// Returns an iterator over all bytes in this set.
    pub(crate) fn iter(&self) -> ByteSetIter {
        ByteSetIter { set: self, b: 0 }
    }

    /// Returns an iterator over all contiguous ranges of bytes in this set.
    pub(crate) fn iter_ranges(&self) -> ByteSetRangeIter {
        ByteSetRangeIter { set: self, b: 0 }
    }

    /// Return true if and only if this set is empty.
    #[cfg_attr(feature = "perf-inline", inline(always))]
    pub(crate) fn is_empty(&self) -> bool {
        self.bits.0 == [0, 0]
    }

    /// Deserializes a byte set from the given slice. If the slice is of
    /// incorrect length or is otherwise malformed, then an error is returned.
    /// Upon success, the number of bytes read along with the set are returned.
    /// The number of bytes read is always a multiple of 8.
    pub(crate) fn from_bytes(
        slice: &[u8],
    ) -> Result<(ByteSet, usize), DeserializeError> {
        use core::mem::size_of;

        wire::check_slice_len(slice, 2 * size_of::<u128>(), "byte set")?;
        let mut nread = 0;
        let (low, nr) = wire::try_read_u128(slice, "byte set low bucket")?;
        nread += nr;
        let (high, nr) = wire::try_read_u128(slice, "byte set high bucket")?;
        nread += nr;
        Ok((ByteSet { bits: BitSet([low, high]) }, nread))
    }

    /// Writes this byte set to the given byte buffer. If the given buffer is
    /// too small, then an error is returned. Upon success, the total number of
    /// bytes written is returned. The number of bytes written is guaranteed to
    /// be a multiple of 8.
    pub(crate) fn write_to<E: crate::util::wire::Endian>(
        &self,
        dst: &mut [u8],
    ) -> Result<usize, SerializeError> {
        use core::mem::size_of;

        let nwrite = self.write_to_len();
        if dst.len() < nwrite {
            return Err(SerializeError::buffer_too_small("byte set"));
        }
        let mut nw = 0;
        E::write_u128(self.bits.0[0], &mut dst[nw..]);
        nw += size_of::<u128>();
        E::write_u128(self.bits.0[1], &mut dst[nw..]);
        nw += size_of::<u128>();
        assert_eq!(nwrite, nw, "expected to write certain number of bytes",);
        assert_eq!(
            nw % 8,
            0,
            "expected to write multiple of 8 bytes for byte set",
        );
        Ok(nw)
    }

    /// Returns the total number of bytes written by `write_to`.
    pub(crate) fn write_to_len(&self) -> usize {
        2 * core::mem::size_of::<u128>()
    }
}

impl core::fmt::Debug for BitSet {
    fn fmt(&self, f: &mut core::fmt::Formatter) -> core::fmt::Result {
        let mut fmtd = f.debug_set();
        for b in 0u8..=255 {
            if (ByteSet { bits: *self }).contains(b) {
                fmtd.entry(&b);
            }
        }
        fmtd.finish()
    }
}

#[derive(Debug)]
pub(crate) struct ByteSetIter<'a> {
    set: &'a ByteSet,
    b: usize,
}

impl<'a> Iterator for ByteSetIter<'a> {
    type Item = u8;

    fn next(&mut self) -> Option<u8> {
        while self.b <= 255 {
            let b = u8::try_from(self.b).unwrap();
            self.b += 1;
            if self.set.contains(b) {
                return Some(b);
            }
        }
        None
    }
}

#[derive(Debug)]
pub(crate) struct ByteSetRangeIter<'a> {
    set: &'a ByteSet,
    b: usize,
}

impl<'a> Iterator for ByteSetRangeIter<'a> {
    type Item = (u8, u8);

    fn next(&mut self) -> Option<(u8, u8)> {
        let asu8 = |n: usize| u8::try_from(n).unwrap();
        while self.b <= 255 {
            let start = asu8(self.b);
            self.b += 1;
            if !self.set.contains(start) {
                continue;
            }

            let mut end = start;
            while self.b <= 255 && self.set.contains(asu8(self.b)) {
                end = asu8(self.b);
                self.b += 1;
            }
            return Some((start, end));
        }
        None
    }
}

#[cfg(all(test, feature = "alloc"))]
mod tests {
    use alloc::{vec, vec::Vec};

    use super::*;

    #[test]
    fn byte_classes() {
        let mut set = ByteClassSet::empty();
        set.set_range(b'a', b'z');

        let classes = set.byte_classes();
        assert_eq!(classes.get(0), 0);
        assert_eq!(classes.get(1), 0);
        assert_eq!(classes.get(2), 0);
        assert_eq!(classes.get(b'a' - 1), 0);
        assert_eq!(classes.get(b'a'), 1);
        assert_eq!(classes.get(b'm'), 1);
        assert_eq!(classes.get(b'z'), 1);
        assert_eq!(classes.get(b'z' + 1), 2);
        assert_eq!(classes.get(254), 2);
        assert_eq!(classes.get(255), 2);

        let mut set = ByteClassSet::empty();
        set.set_range(0, 2);
        set.set_range(4, 6);
        let classes = set.byte_classes();
        assert_eq!(classes.get(0), 0);
        assert_eq!(classes.get(1), 0);
        assert_eq!(classes.get(2), 0);
        assert_eq!(classes.get(3), 1);
        assert_eq!(classes.get(4), 2);
        assert_eq!(classes.get(5), 2);
        assert_eq!(classes.get(6), 2);
        assert_eq!(classes.get(7), 3);
        assert_eq!(classes.get(255), 3);
    }

    #[test]
    fn full_byte_classes() {
        let mut set = ByteClassSet::empty();
        for b in 0u8..=255 {
            set.set_range(b, b);
        }
        assert_eq!(set.byte_classes().alphabet_len(), 257);
    }

    #[test]
    fn elements_typical() {
        let mut set = ByteClassSet::empty();
        set.set_range(b'b', b'd');
        set.set_range(b'g', b'm');
        set.set_range(b'z', b'z');
        let classes = set.byte_classes();
        // class 0: \x00-a
        // class 1: b-d
        // class 2: e-f
        // class 3: g-m
        // class 4: n-y
        // class 5: z-z
        // class 6: \x7B-\xFF
        // class 7: EOI
        assert_eq!(classes.alphabet_len(), 8);

        let elements = classes.elements(Unit::u8(0)).collect::<Vec<_>>();
        assert_eq!(elements.len(), 98);
        assert_eq!(elements[0], Unit::u8(b'\x00'));
        assert_eq!(elements[97], Unit::u8(b'a'));

        let elements = classes.elements(Unit::u8(1)).collect::<Vec<_>>();
        assert_eq!(
            elements,
            vec![Unit::u8(b'b'), Unit::u8(b'c'), Unit::u8(b'd')],
        );

        let elements = classes.elements(Unit::u8(2)).collect::<Vec<_>>();
        assert_eq!(elements, vec![Unit::u8(b'e'), Unit::u8(b'f')],);

        let elements = classes.elements(Unit::u8(3)).collect::<Vec<_>>();
        assert_eq!(
            elements,
            vec![
                Unit::u8(b'g'),
                Unit::u8(b'h'),
                Unit::u8(b'i'),
                Unit::u8(b'j'),
                Unit::u8(b'k'),
                Unit::u8(b'l'),
                Unit::u8(b'm'),
            ],
        );

        let elements = classes.elements(Unit::u8(4)).collect::<Vec<_>>();
        assert_eq!(elements.len(), 12);
        assert_eq!(elements[0], Unit::u8(b'n'));
        assert_eq!(elements[11], Unit::u8(b'y'));

        let elements = classes.elements(Unit::u8(5)).collect::<Vec<_>>();
        assert_eq!(elements, vec![Unit::u8(b'z')]);

        let elements = classes.elements(Unit::u8(6)).collect::<Vec<_>>();
        assert_eq!(elements.len(), 133);
        assert_eq!(elements[0], Unit::u8(b'\x7B'));
        assert_eq!(elements[132], Unit::u8(b'\xFF'));

        let elements = classes.elements(Unit::eoi(7)).collect::<Vec<_>>();
        assert_eq!(elements, vec![Unit::eoi(256)]);
    }

    #[test]
    fn elements_singletons() {
        let classes = ByteClasses::singletons();
        assert_eq!(classes.alphabet_len(), 257);

        let elements = classes.elements(Unit::u8(b'a')).collect::<Vec<_>>();
        assert_eq!(elements, vec![Unit::u8(b'a')]);

        let elements = classes.elements(Unit::eoi(5)).collect::<Vec<_>>();
        assert_eq!(elements, vec![Unit::eoi(256)]);
    }

    #[test]
    fn elements_empty() {
        let classes = ByteClasses::empty();
        assert_eq!(classes.alphabet_len(), 2);

        let elements = classes.elements(Unit::u8(0)).collect::<Vec<_>>();
        assert_eq!(elements.len(), 256);
        assert_eq!(elements[0], Unit::u8(b'\x00'));
        assert_eq!(elements[255], Unit::u8(b'\xFF'));

        let elements = classes.elements(Unit::eoi(1)).collect::<Vec<_>>();
        assert_eq!(elements, vec![Unit::eoi(256)]);
    }

    #[test]
    fn representatives() {
        let mut set = ByteClassSet::empty();
        set.set_range(b'b', b'd');
        set.set_range(b'g', b'm');
        set.set_range(b'z', b'z');
        let classes = set.byte_classes();

        let got: Vec<Unit> = classes.representatives(..).collect();
        let expected = vec![
            Unit::u8(b'\x00'),
            Unit::u8(b'b'),
            Unit::u8(b'e'),
            Unit::u8(b'g'),
            Unit::u8(b'n'),
            Unit::u8(b'z'),
            Unit::u8(b'\x7B'),
            Unit::eoi(7),
        ];
        assert_eq!(expected, got);

        let got: Vec<Unit> = classes.representatives(..0).collect();
        assert!(got.is_empty());
        let got: Vec<Unit> = classes.representatives(1..1).collect();
        assert!(got.is_empty());
        let got: Vec<Unit> = classes.representatives(255..255).collect();
        assert!(got.is_empty());

        // A weird case that is the only guaranteed to way to get an iterator
        // of just the EOI class by excluding all possible byte values.
        let got: Vec<Unit> = classes
            .representatives((
                core::ops::Bound::Excluded(255),
                core::ops::Bound::Unbounded,
            ))
            .collect();
        let expected = vec![Unit::eoi(7)];
        assert_eq!(expected, got);

        let got: Vec<Unit> = classes.representatives(..=255).collect();
        let expected = vec![
            Unit::u8(b'\x00'),
            Unit::u8(b'b'),
            Unit::u8(b'e'),
            Unit::u8(b'g'),
            Unit::u8(b'n'),
            Unit::u8(b'z'),
            Unit::u8(b'\x7B'),
        ];
        assert_eq!(expected, got);

        let got: Vec<Unit> = classes.representatives(b'b'..=b'd').collect();
        let expected = vec![Unit::u8(b'b')];
        assert_eq!(expected, got);

        let got: Vec<Unit> = classes.representatives(b'a'..=b'd').collect();
        let expected = vec![Unit::u8(b'a'), Unit::u8(b'b')];
        assert_eq!(expected, got);

        let got: Vec<Unit> = classes.representatives(b'b'..=b'e').collect();
        let expected = vec![Unit::u8(b'b'), Unit::u8(b'e')];
        assert_eq!(expected, got);

        let got: Vec<Unit> = classes.representatives(b'A'..=b'Z').collect();
        let expected = vec![Unit::u8(b'A')];
        assert_eq!(expected, got);

        let got: Vec<Unit> = classes.representatives(b'A'..=b'z').collect();
        let expected = vec![
            Unit::u8(b'A'),
            Unit::u8(b'b'),
            Unit::u8(b'e'),
            Unit::u8(b'g'),
            Unit::u8(b'n'),
            Unit::u8(b'z'),
        ];
        assert_eq!(expected, got);

        let got: Vec<Unit> = classes.representatives(b'z'..).collect();
        let expected = vec![Unit::u8(b'z'), Unit::u8(b'\x7B'), Unit::eoi(7)];
        assert_eq!(expected, got);

        let got: Vec<Unit> = classes.representatives(b'z'..=0xFF).collect();
        let expected = vec![Unit::u8(b'z'), Unit::u8(b'\x7B')];
        assert_eq!(expected, got);
    }
}