1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
|
// -*- mode: C++ -*-
// Copyright (c) 2010, Google Inc.
// All rights reserved.
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
// * Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
// * Redistributions in binary form must reproduce the above
// copyright notice, this list of conditions and the following disclaimer
// in the documentation and/or other materials provided with the
// distribution.
// * Neither the name of Google Inc. nor the names of its
// contributors may be used to endorse or promote products derived from
// this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
// Original author: Jim Blandy <jimb@mozilla.com> <jimb@red-bean.com>
// Derived from:
// cfi_assembler.h: Define CFISection, a class for creating properly
// (and improperly) formatted DWARF CFI data for unit tests.
// Derived from:
// test-assembler.h: interface to class for building complex binary streams.
// To test the Breakpad symbol dumper and processor thoroughly, for
// all combinations of host system and minidump processor
// architecture, we need to be able to easily generate complex test
// data like debugging information and minidump files.
//
// For example, if we want our unit tests to provide full code
// coverage for stack walking, it may be difficult to persuade the
// compiler to generate every possible sort of stack walking
// information that we want to support; there are probably DWARF CFI
// opcodes that GCC never emits. Similarly, if we want to test our
// error handling, we will need to generate damaged minidumps or
// debugging information that (we hope) the client or compiler will
// never produce on its own.
//
// google_breakpad::TestAssembler provides a predictable and
// (relatively) simple way to generate complex formatted data streams
// like minidumps and CFI. Furthermore, because TestAssembler is
// portable, developers without access to (say) Visual Studio or a
// SPARC assembler can still work on test data for those targets.
#ifndef LUL_TEST_INFRASTRUCTURE_H
#define LUL_TEST_INFRASTRUCTURE_H
#include "LulDwarfExt.h"
#include <string>
#include <vector>
using std::string;
using std::vector;
namespace lul_test {
namespace test_assembler {
// A Label represents a value not yet known that we need to store in a
// section. As long as all the labels a section refers to are defined
// by the time we retrieve its contents as bytes, we can use undefined
// labels freely in that section's construction.
//
// A label can be in one of three states:
// - undefined,
// - defined as the sum of some other label and a constant, or
// - a constant.
//
// A label's value never changes, but it can accumulate constraints.
// Adding labels and integers is permitted, and yields a label.
// Subtracting a constant from a label is permitted, and also yields a
// label. Subtracting two labels that have some relationship to each
// other is permitted, and yields a constant.
//
// For example:
//
// Label a; // a's value is undefined
// Label b; // b's value is undefined
// {
// Label c = a + 4; // okay, even though a's value is unknown
// b = c + 4; // also okay; b is now a+8
// }
// Label d = b - 2; // okay; d == a+6, even though c is gone
// d.Value(); // error: d's value is not yet known
// d - a; // is 6, even though their values are not known
// a = 12; // now b == 20, and d == 18
// d.Value(); // 18: no longer an error
// b.Value(); // 20
// d = 10; // error: d is already defined.
//
// Label objects' lifetimes are unconstrained: notice that, in the
// above example, even though a and b are only related through c, and
// c goes out of scope, the assignment to a sets b's value as well. In
// particular, it's not necessary to ensure that a Label lives beyond
// Sections that refer to it.
class Label {
public:
Label(); // An undefined label.
explicit Label(uint64_t value); // A label with a fixed value
Label(const Label& value); // A label equal to another.
~Label();
Label& operator=(uint64_t value);
Label& operator=(const Label& value);
Label operator+(uint64_t addend) const;
Label operator-(uint64_t subtrahend) const;
uint64_t operator-(const Label& subtrahend) const;
// We could also provide == and != that work on undefined, but
// related, labels.
// Return true if this label's value is known. If VALUE_P is given,
// set *VALUE_P to the known value if returning true.
bool IsKnownConstant(uint64_t* value_p = NULL) const;
// Return true if the offset from LABEL to this label is known. If
// OFFSET_P is given, set *OFFSET_P to the offset when returning true.
//
// You can think of l.KnownOffsetFrom(m, &d) as being like 'd = l-m',
// except that it also returns a value indicating whether the
// subtraction is possible given what we currently know of l and m.
// It can be possible even if we don't know l and m's values. For
// example:
//
// Label l, m;
// m = l + 10;
// l.IsKnownConstant(); // false
// m.IsKnownConstant(); // false
// uint64_t d;
// l.IsKnownOffsetFrom(m, &d); // true, and sets d to -10.
// l-m // -10
// m-l // 10
// m.Value() // error: m's value is not known
bool IsKnownOffsetFrom(const Label& label, uint64_t* offset_p = NULL) const;
private:
// A label's value, or if that is not yet known, how the value is
// related to other labels' values. A binding may be:
// - a known constant,
// - constrained to be equal to some other binding plus a constant, or
// - unconstrained, and free to take on any value.
//
// Many labels may point to a single binding, and each binding may
// refer to another, so bindings and labels form trees whose leaves
// are labels, whose interior nodes (and roots) are bindings, and
// where links point from children to parents. Bindings are
// reference counted, allowing labels to be lightweight, copyable,
// assignable, placed in containers, and so on.
class Binding {
public:
Binding();
explicit Binding(uint64_t addend);
~Binding();
// Increment our reference count.
void Acquire() { reference_count_++; };
// Decrement our reference count, and return true if it is zero.
bool Release() { return --reference_count_ == 0; }
// Set this binding to be equal to BINDING + ADDEND. If BINDING is
// NULL, then set this binding to the known constant ADDEND.
// Update every binding on this binding's chain to point directly
// to BINDING, or to be a constant, with addends adjusted
// appropriately.
void Set(Binding* binding, uint64_t value);
// Return what we know about the value of this binding.
// - If this binding's value is a known constant, set BASE to
// NULL, and set ADDEND to its value.
// - If this binding is not a known constant but related to other
// bindings, set BASE to the binding at the end of the relation
// chain (which will always be unconstrained), and set ADDEND to the
// value to add to that binding's value to get this binding's
// value.
// - If this binding is unconstrained, set BASE to this, and leave
// ADDEND unchanged.
void Get(Binding** base, uint64_t* addend);
private:
// There are three cases:
//
// - A binding representing a known constant value has base_ NULL,
// and addend_ equal to the value.
//
// - A binding representing a completely unconstrained value has
// base_ pointing to this; addend_ is unused.
//
// - A binding whose value is related to some other binding's
// value has base_ pointing to that other binding, and addend_
// set to the amount to add to that binding's value to get this
// binding's value. We only represent relationships of the form
// x = y+c.
//
// Thus, the bind_ links form a chain terminating in either a
// known constant value or a completely unconstrained value. Most
// operations on bindings do path compression: they change every
// binding on the chain to point directly to the final value,
// adjusting addends as appropriate.
Binding* base_;
uint64_t addend_;
// The number of Labels and Bindings pointing to this binding.
// (When a binding points to itself, indicating a completely
// unconstrained binding, that doesn't count as a reference.)
int reference_count_;
};
// This label's value.
Binding* value_;
};
// Conventions for representing larger numbers as sequences of bytes.
enum Endianness {
kBigEndian, // Big-endian: the most significant byte comes first.
kLittleEndian, // Little-endian: the least significant byte comes first.
kUnsetEndian, // used internally
};
// A section is a sequence of bytes, constructed by appending bytes
// to the end. Sections have a convenient and flexible set of member
// functions for appending data in various formats: big-endian and
// little-endian signed and unsigned values of different sizes;
// LEB128 and ULEB128 values (see below), and raw blocks of bytes.
//
// If you need to append a value to a section that is not convenient
// to compute immediately, you can create a label, append the
// label's value to the section, and then set the label's value
// later, when it's convenient to do so. Once a label's value is
// known, the section class takes care of updating all previously
// appended references to it.
//
// Once all the labels to which a section refers have had their
// values determined, you can get a copy of the section's contents
// as a string.
//
// Note that there is no specified "start of section" label. This is
// because there are typically several different meanings for "the
// start of a section": the offset of the section within an object
// file, the address in memory at which the section's content appear,
// and so on. It's up to the code that uses the Section class to
// keep track of these explicitly, as they depend on the application.
class Section {
public:
explicit Section(Endianness endianness = kUnsetEndian)
: endianness_(endianness){};
// A base class destructor should be either public and virtual,
// or protected and nonvirtual.
virtual ~Section() = default;
// Return the default endianness of this section.
Endianness endianness() const { return endianness_; }
// Append the SIZE bytes at DATA to the end of this section. Return
// a reference to this section.
Section& Append(const string& data) {
contents_.append(data);
return *this;
};
// Append data from SLICE to the end of this section. Return
// a reference to this section.
Section& Append(const lul::ImageSlice& slice) {
for (size_t i = 0; i < slice.length_; i++) {
contents_.append(1, slice.start_[i]);
}
return *this;
}
// Append data from CSTRING to the end of this section. The terminating
// zero is not included. Return a reference to this section.
Section& Append(const char* cstring) {
for (size_t i = 0; cstring[i] != '\0'; i++) {
contents_.append(1, cstring[i]);
}
return *this;
}
// Append SIZE copies of BYTE to the end of this section. Return a
// reference to this section.
Section& Append(size_t size, uint8_t byte) {
contents_.append(size, (char)byte);
return *this;
}
// Append NUMBER to this section. ENDIANNESS is the endianness to
// use to write the number. SIZE is the length of the number in
// bytes. Return a reference to this section.
Section& Append(Endianness endianness, size_t size, uint64_t number);
Section& Append(Endianness endianness, size_t size, const Label& label);
// Append SECTION to the end of this section. The labels SECTION
// refers to need not be defined yet.
//
// Note that this has no effect on any Labels' values, or on
// SECTION. If placing SECTION within 'this' provides new
// constraints on existing labels' values, then it's up to the
// caller to fiddle with those labels as needed.
Section& Append(const Section& section);
// Append the contents of DATA as a series of bytes terminated by
// a NULL character.
Section& AppendCString(const string& data) {
Append(data);
contents_ += '\0';
return *this;
}
// Append VALUE or LABEL to this section, with the given bit width and
// endianness. Return a reference to this section.
//
// The names of these functions have the form <ENDIANNESS><BITWIDTH>:
// <ENDIANNESS> is either 'L' (little-endian, least significant byte first),
// 'B' (big-endian, most significant byte first), or
// 'D' (default, the section's default endianness)
// <BITWIDTH> is 8, 16, 32, or 64.
//
// Since endianness doesn't matter for a single byte, all the
// <BITWIDTH>=8 functions are equivalent.
//
// These can be used to write both signed and unsigned values, as
// the compiler will properly sign-extend a signed value before
// passing it to the function, at which point the function's
// behavior is the same either way.
Section& L8(uint8_t value) {
contents_ += value;
return *this;
}
Section& B8(uint8_t value) {
contents_ += value;
return *this;
}
Section& D8(uint8_t value) {
contents_ += value;
return *this;
}
Section &L16(uint16_t), &L32(uint32_t), &L64(uint64_t), &B16(uint16_t),
&B32(uint32_t), &B64(uint64_t), &D16(uint16_t), &D32(uint32_t),
&D64(uint64_t);
Section &L8(const Label& label), &L16(const Label& label),
&L32(const Label& label), &L64(const Label& label),
&B8(const Label& label), &B16(const Label& label),
&B32(const Label& label), &B64(const Label& label),
&D8(const Label& label), &D16(const Label& label),
&D32(const Label& label), &D64(const Label& label);
// Append VALUE in a signed LEB128 (Little-Endian Base 128) form.
//
// The signed LEB128 representation of an integer N is a variable
// number of bytes:
//
// - If N is between -0x40 and 0x3f, then its signed LEB128
// representation is a single byte whose value is N.
//
// - Otherwise, its signed LEB128 representation is (N & 0x7f) |
// 0x80, followed by the signed LEB128 representation of N / 128,
// rounded towards negative infinity.
//
// In other words, we break VALUE into groups of seven bits, put
// them in little-endian order, and then write them as eight-bit
// bytes with the high bit on all but the last.
//
// Note that VALUE cannot be a Label (we would have to implement
// relaxation).
Section& LEB128(long long value);
// Append VALUE in unsigned LEB128 (Little-Endian Base 128) form.
//
// The unsigned LEB128 representation of an integer N is a variable
// number of bytes:
//
// - If N is between 0 and 0x7f, then its unsigned LEB128
// representation is a single byte whose value is N.
//
// - Otherwise, its unsigned LEB128 representation is (N & 0x7f) |
// 0x80, followed by the unsigned LEB128 representation of N /
// 128, rounded towards negative infinity.
//
// Note that VALUE cannot be a Label (we would have to implement
// relaxation).
Section& ULEB128(uint64_t value);
// Jump to the next location aligned on an ALIGNMENT-byte boundary,
// relative to the start of the section. Fill the gap with PAD_BYTE.
// ALIGNMENT must be a power of two. Return a reference to this
// section.
Section& Align(size_t alignment, uint8_t pad_byte = 0);
// Return the current size of the section.
size_t Size() const { return contents_.size(); }
// Return a label representing the start of the section.
//
// It is up to the user whether this label represents the section's
// position in an object file, the section's address in memory, or
// what have you; some applications may need both, in which case
// this simple-minded interface won't be enough. This class only
// provides a single start label, for use with the Here and Mark
// member functions.
//
// Ideally, we'd provide this in a subclass that actually knows more
// about the application at hand and can provide an appropriate
// collection of start labels. But then the appending member
// functions like Append and D32 would return a reference to the
// base class, not the derived class, and the chaining won't work.
// Since the only value here is in pretty notation, that's a fatal
// flaw.
Label start() const { return start_; }
// Return a label representing the point at which the next Appended
// item will appear in the section, relative to start().
Label Here() const { return start_ + Size(); }
// Set *LABEL to Here, and return a reference to this section.
Section& Mark(Label* label) {
*label = Here();
return *this;
}
// If there are no undefined label references left in this
// section, set CONTENTS to the contents of this section, as a
// string, and clear this section. Return true on success, or false
// if there were still undefined labels.
bool GetContents(string* contents);
private:
// Used internally. A reference to a label's value.
struct Reference {
Reference(size_t set_offset, Endianness set_endianness, size_t set_size,
const Label& set_label)
: offset(set_offset),
endianness(set_endianness),
size(set_size),
label(set_label) {}
// The offset of the reference within the section.
size_t offset;
// The endianness of the reference.
Endianness endianness;
// The size of the reference.
size_t size;
// The label to which this is a reference.
Label label;
};
// The default endianness of this section.
Endianness endianness_;
// The contents of the section.
string contents_;
// References to labels within those contents.
vector<Reference> references_;
// A label referring to the beginning of the section.
Label start_;
};
} // namespace test_assembler
} // namespace lul_test
namespace lul_test {
using lul::DwarfPointerEncoding;
using lul_test::test_assembler::Endianness;
using lul_test::test_assembler::Label;
using lul_test::test_assembler::Section;
class CFISection : public Section {
public:
// CFI augmentation strings beginning with 'z', defined by the
// Linux/IA-64 C++ ABI, can specify interesting encodings for
// addresses appearing in FDE headers and call frame instructions (and
// for additional fields whose presence the augmentation string
// specifies). In particular, pointers can be specified to be relative
// to various base address: the start of the .text section, the
// location holding the address itself, and so on. These allow the
// frame data to be position-independent even when they live in
// write-protected pages. These variants are specified at the
// following two URLs:
//
// http://refspecs.linux-foundation.org/LSB_4.0.0/LSB-Core-generic/LSB-Core-generic/dwarfext.html
// http://refspecs.linux-foundation.org/LSB_4.0.0/LSB-Core-generic/LSB-Core-generic/ehframechpt.html
//
// CFISection leaves the production of well-formed 'z'-augmented CIEs and
// FDEs to the user, but does provide EncodedPointer, to emit
// properly-encoded addresses for a given pointer encoding.
// EncodedPointer uses an instance of this structure to find the base
// addresses it should use; you can establish a default for all encoded
// pointers appended to this section with SetEncodedPointerBases.
struct EncodedPointerBases {
EncodedPointerBases() : cfi(), text(), data() {}
// The starting address of this CFI section in memory, for
// DW_EH_PE_pcrel. DW_EH_PE_pcrel pointers may only be used in data
// that has is loaded into the program's address space.
uint64_t cfi;
// The starting address of this file's .text section, for DW_EH_PE_textrel.
uint64_t text;
// The starting address of this file's .got or .eh_frame_hdr section,
// for DW_EH_PE_datarel.
uint64_t data;
};
// Create a CFISection whose endianness is ENDIANNESS, and where
// machine addresses are ADDRESS_SIZE bytes long. If EH_FRAME is
// true, use the .eh_frame format, as described by the Linux
// Standards Base Core Specification, instead of the DWARF CFI
// format.
CFISection(Endianness endianness, size_t address_size, bool eh_frame = false)
: Section(endianness),
address_size_(address_size),
eh_frame_(eh_frame),
pointer_encoding_(lul::DW_EH_PE_absptr),
entry_length_(NULL),
in_fde_(false) {
// The 'start', 'Here', and 'Mark' members of a CFISection all refer
// to section offsets.
start() = 0;
}
// Return this CFISection's address size.
size_t AddressSize() const { return address_size_; }
// Return true if this CFISection uses the .eh_frame format, or
// false if it contains ordinary DWARF CFI data.
bool ContainsEHFrame() const { return eh_frame_; }
// Use ENCODING for pointers in calls to FDEHeader and EncodedPointer.
void SetPointerEncoding(DwarfPointerEncoding encoding) {
pointer_encoding_ = encoding;
}
// Use the addresses in BASES as the base addresses for encoded
// pointers in subsequent calls to FDEHeader or EncodedPointer.
// This function makes a copy of BASES.
void SetEncodedPointerBases(const EncodedPointerBases& bases) {
encoded_pointer_bases_ = bases;
}
// Append a Common Information Entry header to this section with the
// given values. If dwarf64 is true, use the 64-bit DWARF initial
// length format for the CIE's initial length. Return a reference to
// this section. You should call FinishEntry after writing the last
// instruction for the CIE.
//
// Before calling this function, you will typically want to use Mark
// or Here to make a label to pass to FDEHeader that refers to this
// CIE's position in the section.
CFISection& CIEHeader(uint64_t code_alignment_factor,
int data_alignment_factor,
unsigned return_address_register, uint8_t version = 3,
const string& augmentation = "", bool dwarf64 = false);
// Append a Frame Description Entry header to this section with the
// given values. If dwarf64 is true, use the 64-bit DWARF initial
// length format for the CIE's initial length. Return a reference to
// this section. You should call FinishEntry after writing the last
// instruction for the CIE.
//
// This function doesn't support entries that are longer than
// 0xffffff00 bytes. (The "initial length" is always a 32-bit
// value.) Nor does it support .debug_frame sections longer than
// 0xffffff00 bytes.
CFISection& FDEHeader(Label cie_pointer, uint64_t initial_location,
uint64_t address_range, bool dwarf64 = false);
// Note the current position as the end of the last CIE or FDE we
// started, after padding with DW_CFA_nops for alignment. This
// defines the label representing the entry's length, cited in the
// entry's header. Return a reference to this section.
CFISection& FinishEntry();
// Append the contents of BLOCK as a DW_FORM_block value: an
// unsigned LEB128 length, followed by that many bytes of data.
CFISection& Block(const lul::ImageSlice& block) {
ULEB128(block.length_);
Append(block);
return *this;
}
// Append data from CSTRING as a DW_FORM_block value: an unsigned LEB128
// length, followed by that many bytes of data. The terminating zero is not
// included.
CFISection& Block(const char* cstring) {
ULEB128(strlen(cstring));
Append(cstring);
return *this;
}
// Append ADDRESS to this section, in the appropriate size and
// endianness. Return a reference to this section.
CFISection& Address(uint64_t address) {
Section::Append(endianness(), address_size_, address);
return *this;
}
// Append ADDRESS to this section, using ENCODING and BASES. ENCODING
// defaults to this section's default encoding, established by
// SetPointerEncoding. BASES defaults to this section's bases, set by
// SetEncodedPointerBases. If the DW_EH_PE_indirect bit is set in the
// encoding, assume that ADDRESS is where the true address is stored.
// Return a reference to this section.
//
// (C++ doesn't let me use default arguments here, because I want to
// refer to members of *this in the default argument expression.)
CFISection& EncodedPointer(uint64_t address) {
return EncodedPointer(address, pointer_encoding_, encoded_pointer_bases_);
}
CFISection& EncodedPointer(uint64_t address, DwarfPointerEncoding encoding) {
return EncodedPointer(address, encoding, encoded_pointer_bases_);
}
CFISection& EncodedPointer(uint64_t address, DwarfPointerEncoding encoding,
const EncodedPointerBases& bases);
// Restate some member functions, to keep chaining working nicely.
CFISection& Mark(Label* label) {
Section::Mark(label);
return *this;
}
CFISection& D8(uint8_t v) {
Section::D8(v);
return *this;
}
CFISection& D16(uint16_t v) {
Section::D16(v);
return *this;
}
CFISection& D16(Label v) {
Section::D16(v);
return *this;
}
CFISection& D32(uint32_t v) {
Section::D32(v);
return *this;
}
CFISection& D32(const Label& v) {
Section::D32(v);
return *this;
}
CFISection& D64(uint64_t v) {
Section::D64(v);
return *this;
}
CFISection& D64(const Label& v) {
Section::D64(v);
return *this;
}
CFISection& LEB128(long long v) {
Section::LEB128(v);
return *this;
}
CFISection& ULEB128(uint64_t v) {
Section::ULEB128(v);
return *this;
}
private:
// A length value that we've appended to the section, but is not yet
// known. LENGTH is the appended value; START is a label referring
// to the start of the data whose length was cited.
struct PendingLength {
Label length;
Label start;
};
// Constants used in CFI/.eh_frame data:
// If the first four bytes of an "initial length" are this constant, then
// the data uses the 64-bit DWARF format, and the length itself is the
// subsequent eight bytes.
static const uint32_t kDwarf64InitialLengthMarker = 0xffffffffU;
// The CIE identifier for 32- and 64-bit DWARF CFI and .eh_frame data.
static const uint32_t kDwarf32CIEIdentifier = ~(uint32_t)0;
static const uint64_t kDwarf64CIEIdentifier = ~(uint64_t)0;
static const uint32_t kEHFrame32CIEIdentifier = 0;
static const uint64_t kEHFrame64CIEIdentifier = 0;
// The size of a machine address for the data in this section.
size_t address_size_;
// If true, we are generating a Linux .eh_frame section, instead of
// a standard DWARF .debug_frame section.
bool eh_frame_;
// The encoding to use for FDE pointers.
DwarfPointerEncoding pointer_encoding_;
// The base addresses to use when emitting encoded pointers.
EncodedPointerBases encoded_pointer_bases_;
// The length value for the current entry.
//
// Oddly, this must be dynamically allocated. Labels never get new
// values; they only acquire constraints on the value they already
// have, or assert if you assign them something incompatible. So
// each header needs truly fresh Label objects to cite in their
// headers and track their positions. The alternative is explicit
// destructor invocation and a placement new. Ick.
PendingLength* entry_length_;
// True if we are currently emitting an FDE --- that is, we have
// called FDEHeader but have not yet called FinishEntry.
bool in_fde_;
// If in_fde_ is true, this is its starting address. We use this for
// emitting DW_EH_PE_funcrel pointers.
uint64_t fde_start_address_;
};
} // namespace lul_test
#endif // LUL_TEST_INFRASTRUCTURE_H
|