diff options
Diffstat (limited to 'src/libFLAC/md5.c')
-rw-r--r-- | src/libFLAC/md5.c | 517 |
1 files changed, 517 insertions, 0 deletions
diff --git a/src/libFLAC/md5.c b/src/libFLAC/md5.c new file mode 100644 index 0000000..09933d7 --- /dev/null +++ b/src/libFLAC/md5.c @@ -0,0 +1,517 @@ +#ifdef HAVE_CONFIG_H +# include <config.h> +#endif + +#include <stdlib.h> /* for malloc() */ +#include <string.h> /* for memcpy() */ + +#include "private/md5.h" +#include "share/alloc.h" +#include "share/compat.h" +#include "share/endswap.h" + +/* + * This code implements the MD5 message-digest algorithm. + * The algorithm is due to Ron Rivest. This code was + * written by Colin Plumb in 1993, no copyright is claimed. + * This code is in the public domain; do with it what you wish. + * + * Equivalent code is available from RSA Data Security, Inc. + * This code has been tested against that, and is equivalent, + * except that you don't need to include two pages of legalese + * with every copy. + * + * To compute the message digest of a chunk of bytes, declare an + * MD5Context structure, pass it to MD5Init, call MD5Update as + * needed on buffers full of bytes, and then call MD5Final, which + * will fill a supplied 16-byte array with the digest. + * + * Changed so as no longer to depend on Colin Plumb's `usual.h' header + * definitions; now uses stuff from dpkg's config.h. + * - Ian Jackson <ijackson@nyx.cs.du.edu>. + * Still in the public domain. + * + * Josh Coalson: made some changes to integrate with libFLAC. + * Still in the public domain. + */ + +/* The four core functions - F1 is optimized somewhat */ + +/* #define F1(x, y, z) (x & y | ~x & z) */ +#define F1(x, y, z) (z ^ (x & (y ^ z))) +#define F2(x, y, z) F1(z, x, y) +#define F3(x, y, z) (x ^ y ^ z) +#define F4(x, y, z) (y ^ (x | ~z)) + +/* This is the central step in the MD5 algorithm. */ +#define MD5STEP(f,w,x,y,z,in,s) \ + (w += f(x,y,z) + in, w = (w<<s | w>>(32-s)) + x) + +/* + * The core of the MD5 algorithm, this alters an existing MD5 hash to + * reflect the addition of 16 longwords of new data. MD5Update blocks + * the data and converts bytes into longwords for this routine. + */ +static void FLAC__MD5Transform(FLAC__uint32 buf[4], FLAC__uint32 const in[16]) +{ + register FLAC__uint32 a, b, c, d; + + a = buf[0]; + b = buf[1]; + c = buf[2]; + d = buf[3]; + + MD5STEP(F1, a, b, c, d, in[0] + 0xd76aa478, 7); + MD5STEP(F1, d, a, b, c, in[1] + 0xe8c7b756, 12); + MD5STEP(F1, c, d, a, b, in[2] + 0x242070db, 17); + MD5STEP(F1, b, c, d, a, in[3] + 0xc1bdceee, 22); + MD5STEP(F1, a, b, c, d, in[4] + 0xf57c0faf, 7); + MD5STEP(F1, d, a, b, c, in[5] + 0x4787c62a, 12); + MD5STEP(F1, c, d, a, b, in[6] + 0xa8304613, 17); + MD5STEP(F1, b, c, d, a, in[7] + 0xfd469501, 22); + MD5STEP(F1, a, b, c, d, in[8] + 0x698098d8, 7); + MD5STEP(F1, d, a, b, c, in[9] + 0x8b44f7af, 12); + MD5STEP(F1, c, d, a, b, in[10] + 0xffff5bb1, 17); + MD5STEP(F1, b, c, d, a, in[11] + 0x895cd7be, 22); + MD5STEP(F1, a, b, c, d, in[12] + 0x6b901122, 7); + MD5STEP(F1, d, a, b, c, in[13] + 0xfd987193, 12); + MD5STEP(F1, c, d, a, b, in[14] + 0xa679438e, 17); + MD5STEP(F1, b, c, d, a, in[15] + 0x49b40821, 22); + + MD5STEP(F2, a, b, c, d, in[1] + 0xf61e2562, 5); + MD5STEP(F2, d, a, b, c, in[6] + 0xc040b340, 9); + MD5STEP(F2, c, d, a, b, in[11] + 0x265e5a51, 14); + MD5STEP(F2, b, c, d, a, in[0] + 0xe9b6c7aa, 20); + MD5STEP(F2, a, b, c, d, in[5] + 0xd62f105d, 5); + MD5STEP(F2, d, a, b, c, in[10] + 0x02441453, 9); + MD5STEP(F2, c, d, a, b, in[15] + 0xd8a1e681, 14); + MD5STEP(F2, b, c, d, a, in[4] + 0xe7d3fbc8, 20); + MD5STEP(F2, a, b, c, d, in[9] + 0x21e1cde6, 5); + MD5STEP(F2, d, a, b, c, in[14] + 0xc33707d6, 9); + MD5STEP(F2, c, d, a, b, in[3] + 0xf4d50d87, 14); + MD5STEP(F2, b, c, d, a, in[8] + 0x455a14ed, 20); + MD5STEP(F2, a, b, c, d, in[13] + 0xa9e3e905, 5); + MD5STEP(F2, d, a, b, c, in[2] + 0xfcefa3f8, 9); + MD5STEP(F2, c, d, a, b, in[7] + 0x676f02d9, 14); + MD5STEP(F2, b, c, d, a, in[12] + 0x8d2a4c8a, 20); + + MD5STEP(F3, a, b, c, d, in[5] + 0xfffa3942, 4); + MD5STEP(F3, d, a, b, c, in[8] + 0x8771f681, 11); + MD5STEP(F3, c, d, a, b, in[11] + 0x6d9d6122, 16); + MD5STEP(F3, b, c, d, a, in[14] + 0xfde5380c, 23); + MD5STEP(F3, a, b, c, d, in[1] + 0xa4beea44, 4); + MD5STEP(F3, d, a, b, c, in[4] + 0x4bdecfa9, 11); + MD5STEP(F3, c, d, a, b, in[7] + 0xf6bb4b60, 16); + MD5STEP(F3, b, c, d, a, in[10] + 0xbebfbc70, 23); + MD5STEP(F3, a, b, c, d, in[13] + 0x289b7ec6, 4); + MD5STEP(F3, d, a, b, c, in[0] + 0xeaa127fa, 11); + MD5STEP(F3, c, d, a, b, in[3] + 0xd4ef3085, 16); + MD5STEP(F3, b, c, d, a, in[6] + 0x04881d05, 23); + MD5STEP(F3, a, b, c, d, in[9] + 0xd9d4d039, 4); + MD5STEP(F3, d, a, b, c, in[12] + 0xe6db99e5, 11); + MD5STEP(F3, c, d, a, b, in[15] + 0x1fa27cf8, 16); + MD5STEP(F3, b, c, d, a, in[2] + 0xc4ac5665, 23); + + MD5STEP(F4, a, b, c, d, in[0] + 0xf4292244, 6); + MD5STEP(F4, d, a, b, c, in[7] + 0x432aff97, 10); + MD5STEP(F4, c, d, a, b, in[14] + 0xab9423a7, 15); + MD5STEP(F4, b, c, d, a, in[5] + 0xfc93a039, 21); + MD5STEP(F4, a, b, c, d, in[12] + 0x655b59c3, 6); + MD5STEP(F4, d, a, b, c, in[3] + 0x8f0ccc92, 10); + MD5STEP(F4, c, d, a, b, in[10] + 0xffeff47d, 15); + MD5STEP(F4, b, c, d, a, in[1] + 0x85845dd1, 21); + MD5STEP(F4, a, b, c, d, in[8] + 0x6fa87e4f, 6); + MD5STEP(F4, d, a, b, c, in[15] + 0xfe2ce6e0, 10); + MD5STEP(F4, c, d, a, b, in[6] + 0xa3014314, 15); + MD5STEP(F4, b, c, d, a, in[13] + 0x4e0811a1, 21); + MD5STEP(F4, a, b, c, d, in[4] + 0xf7537e82, 6); + MD5STEP(F4, d, a, b, c, in[11] + 0xbd3af235, 10); + MD5STEP(F4, c, d, a, b, in[2] + 0x2ad7d2bb, 15); + MD5STEP(F4, b, c, d, a, in[9] + 0xeb86d391, 21); + + buf[0] += a; + buf[1] += b; + buf[2] += c; + buf[3] += d; +} + +#if WORDS_BIGENDIAN +//@@@@@@ OPT: use bswap/intrinsics +static void byteSwap(FLAC__uint32 *buf, uint32_t words) +{ + register FLAC__uint32 x; + do { + x = *buf; + x = ((x << 8) & 0xff00ff00) | ((x >> 8) & 0x00ff00ff); + *buf++ = (x >> 16) | (x << 16); + } while (--words); +} +static void byteSwapX16(FLAC__uint32 *buf) +{ + register FLAC__uint32 x; + + x = *buf; x = ((x << 8) & 0xff00ff00) | ((x >> 8) & 0x00ff00ff); *buf++ = (x >> 16) | (x << 16); + x = *buf; x = ((x << 8) & 0xff00ff00) | ((x >> 8) & 0x00ff00ff); *buf++ = (x >> 16) | (x << 16); + x = *buf; x = ((x << 8) & 0xff00ff00) | ((x >> 8) & 0x00ff00ff); *buf++ = (x >> 16) | (x << 16); + x = *buf; x = ((x << 8) & 0xff00ff00) | ((x >> 8) & 0x00ff00ff); *buf++ = (x >> 16) | (x << 16); + x = *buf; x = ((x << 8) & 0xff00ff00) | ((x >> 8) & 0x00ff00ff); *buf++ = (x >> 16) | (x << 16); + x = *buf; x = ((x << 8) & 0xff00ff00) | ((x >> 8) & 0x00ff00ff); *buf++ = (x >> 16) | (x << 16); + x = *buf; x = ((x << 8) & 0xff00ff00) | ((x >> 8) & 0x00ff00ff); *buf++ = (x >> 16) | (x << 16); + x = *buf; x = ((x << 8) & 0xff00ff00) | ((x >> 8) & 0x00ff00ff); *buf++ = (x >> 16) | (x << 16); + x = *buf; x = ((x << 8) & 0xff00ff00) | ((x >> 8) & 0x00ff00ff); *buf++ = (x >> 16) | (x << 16); + x = *buf; x = ((x << 8) & 0xff00ff00) | ((x >> 8) & 0x00ff00ff); *buf++ = (x >> 16) | (x << 16); + x = *buf; x = ((x << 8) & 0xff00ff00) | ((x >> 8) & 0x00ff00ff); *buf++ = (x >> 16) | (x << 16); + x = *buf; x = ((x << 8) & 0xff00ff00) | ((x >> 8) & 0x00ff00ff); *buf++ = (x >> 16) | (x << 16); + x = *buf; x = ((x << 8) & 0xff00ff00) | ((x >> 8) & 0x00ff00ff); *buf++ = (x >> 16) | (x << 16); + x = *buf; x = ((x << 8) & 0xff00ff00) | ((x >> 8) & 0x00ff00ff); *buf++ = (x >> 16) | (x << 16); + x = *buf; x = ((x << 8) & 0xff00ff00) | ((x >> 8) & 0x00ff00ff); *buf++ = (x >> 16) | (x << 16); + x = *buf; x = ((x << 8) & 0xff00ff00) | ((x >> 8) & 0x00ff00ff); *buf = (x >> 16) | (x << 16); +} +#else +#define byteSwap(buf, words) +#define byteSwapX16(buf) +#endif + +/* + * Update context to reflect the concatenation of another buffer full + * of bytes. + */ +static void FLAC__MD5Update(FLAC__MD5Context *ctx, FLAC__byte const *buf, uint32_t len) +{ + FLAC__uint32 t; + + /* Update byte count */ + + t = ctx->bytes[0]; + if ((ctx->bytes[0] = t + len) < t) + ctx->bytes[1]++; /* Carry from low to high */ + + t = 64 - (t & 0x3f); /* Space available in ctx->in (at least 1) */ + if (t > len) { + memcpy((FLAC__byte *)ctx->in + 64 - t, buf, len); + return; + } + /* First chunk is an odd size */ + memcpy((FLAC__byte *)ctx->in + 64 - t, buf, t); + byteSwapX16(ctx->in); + FLAC__MD5Transform(ctx->buf, ctx->in); + buf += t; + len -= t; + + /* Process data in 64-byte chunks */ + while (len >= 64) { + memcpy(ctx->in, buf, 64); + byteSwapX16(ctx->in); + FLAC__MD5Transform(ctx->buf, ctx->in); + buf += 64; + len -= 64; + } + + /* Handle any remaining bytes of data. */ + memcpy(ctx->in, buf, len); +} + +/* + * Start MD5 accumulation. Set bit count to 0 and buffer to mysterious + * initialization constants. + */ +void FLAC__MD5Init(FLAC__MD5Context *ctx) +{ + ctx->buf[0] = 0x67452301; + ctx->buf[1] = 0xefcdab89; + ctx->buf[2] = 0x98badcfe; + ctx->buf[3] = 0x10325476; + + ctx->bytes[0] = 0; + ctx->bytes[1] = 0; + + ctx->internal_buf.p8 = 0; + ctx->capacity = 0; +} + +/* + * Final wrapup - pad to 64-byte boundary with the bit pattern + * 1 0* (64-bit count of bits processed, MSB-first) + */ +void FLAC__MD5Final(FLAC__byte digest[16], FLAC__MD5Context *ctx) +{ + int count = ctx->bytes[0] & 0x3f; /* Number of bytes in ctx->in */ + FLAC__byte *p = (FLAC__byte *)ctx->in + count; + + /* Set the first char of padding to 0x80. There is always room. */ + *p++ = 0x80; + + /* Bytes of padding needed to make 56 bytes (-8..55) */ + count = 56 - 1 - count; + + if (count < 0) { /* Padding forces an extra block */ + memset(p, 0, count + 8); + byteSwapX16(ctx->in); + FLAC__MD5Transform(ctx->buf, ctx->in); + p = (FLAC__byte *)ctx->in; + count = 56; + } + memset(p, 0, count); + byteSwap(ctx->in, 14); + + /* Append length in bits and transform */ + ctx->in[14] = ctx->bytes[0] << 3; + ctx->in[15] = ctx->bytes[1] << 3 | ctx->bytes[0] >> 29; + FLAC__MD5Transform(ctx->buf, ctx->in); + + byteSwap(ctx->buf, 4); + memcpy(digest, ctx->buf, 16); + if (0 != ctx->internal_buf.p8) { + free(ctx->internal_buf.p8); + ctx->internal_buf.p8 = 0; + ctx->capacity = 0; + } + memset(ctx, 0, sizeof(*ctx)); /* In case it's sensitive */ +} + +/* + * Convert the incoming audio signal to a byte stream + */ +static void format_input_(FLAC__multibyte *mbuf, const FLAC__int32 * const signal[], uint32_t channels, uint32_t samples, uint32_t bytes_per_sample) +{ + FLAC__byte *buf_ = mbuf->p8; + FLAC__int16 *buf16 = mbuf->p16; + FLAC__int32 *buf32 = mbuf->p32; + FLAC__int32 a_word; + uint32_t channel, sample; + + /* Storage in the output buffer, buf, is little endian. */ + +#define BYTES_CHANNEL_SELECTOR(bytes, channels) (bytes * 100 + channels) + + /* First do the most commonly used combinations. */ + switch (BYTES_CHANNEL_SELECTOR (bytes_per_sample, channels)) { + /* One byte per sample. */ + case (BYTES_CHANNEL_SELECTOR (1, 1)): + for (sample = 0; sample < samples; sample++) + *buf_++ = signal[0][sample]; + return; + + case (BYTES_CHANNEL_SELECTOR (1, 2)): + for (sample = 0; sample < samples; sample++) { + *buf_++ = signal[0][sample]; + *buf_++ = signal[1][sample]; + } + return; + + case (BYTES_CHANNEL_SELECTOR (1, 4)): + for (sample = 0; sample < samples; sample++) { + *buf_++ = signal[0][sample]; + *buf_++ = signal[1][sample]; + *buf_++ = signal[2][sample]; + *buf_++ = signal[3][sample]; + } + return; + + case (BYTES_CHANNEL_SELECTOR (1, 6)): + for (sample = 0; sample < samples; sample++) { + *buf_++ = signal[0][sample]; + *buf_++ = signal[1][sample]; + *buf_++ = signal[2][sample]; + *buf_++ = signal[3][sample]; + *buf_++ = signal[4][sample]; + *buf_++ = signal[5][sample]; + } + return; + + case (BYTES_CHANNEL_SELECTOR (1, 8)): + for (sample = 0; sample < samples; sample++) { + *buf_++ = signal[0][sample]; + *buf_++ = signal[1][sample]; + *buf_++ = signal[2][sample]; + *buf_++ = signal[3][sample]; + *buf_++ = signal[4][sample]; + *buf_++ = signal[5][sample]; + *buf_++ = signal[6][sample]; + *buf_++ = signal[7][sample]; + } + return; + + /* Two bytes per sample. */ + case (BYTES_CHANNEL_SELECTOR (2, 1)): + for (sample = 0; sample < samples; sample++) + *buf16++ = H2LE_16(signal[0][sample]); + return; + + case (BYTES_CHANNEL_SELECTOR (2, 2)): + for (sample = 0; sample < samples; sample++) { + *buf16++ = H2LE_16(signal[0][sample]); + *buf16++ = H2LE_16(signal[1][sample]); + } + return; + + case (BYTES_CHANNEL_SELECTOR (2, 4)): + for (sample = 0; sample < samples; sample++) { + *buf16++ = H2LE_16(signal[0][sample]); + *buf16++ = H2LE_16(signal[1][sample]); + *buf16++ = H2LE_16(signal[2][sample]); + *buf16++ = H2LE_16(signal[3][sample]); + } + return; + + case (BYTES_CHANNEL_SELECTOR (2, 6)): + for (sample = 0; sample < samples; sample++) { + *buf16++ = H2LE_16(signal[0][sample]); + *buf16++ = H2LE_16(signal[1][sample]); + *buf16++ = H2LE_16(signal[2][sample]); + *buf16++ = H2LE_16(signal[3][sample]); + *buf16++ = H2LE_16(signal[4][sample]); + *buf16++ = H2LE_16(signal[5][sample]); + } + return; + + case (BYTES_CHANNEL_SELECTOR (2, 8)): + for (sample = 0; sample < samples; sample++) { + *buf16++ = H2LE_16(signal[0][sample]); + *buf16++ = H2LE_16(signal[1][sample]); + *buf16++ = H2LE_16(signal[2][sample]); + *buf16++ = H2LE_16(signal[3][sample]); + *buf16++ = H2LE_16(signal[4][sample]); + *buf16++ = H2LE_16(signal[5][sample]); + *buf16++ = H2LE_16(signal[6][sample]); + *buf16++ = H2LE_16(signal[7][sample]); + } + return; + + /* Three bytes per sample. */ + case (BYTES_CHANNEL_SELECTOR (3, 1)): + for (sample = 0; sample < samples; sample++) { + a_word = signal[0][sample]; + *buf_++ = (FLAC__byte)a_word; a_word >>= 8; + *buf_++ = (FLAC__byte)a_word; a_word >>= 8; + *buf_++ = (FLAC__byte)a_word; + } + return; + + case (BYTES_CHANNEL_SELECTOR (3, 2)): + for (sample = 0; sample < samples; sample++) { + a_word = signal[0][sample]; + *buf_++ = (FLAC__byte)a_word; a_word >>= 8; + *buf_++ = (FLAC__byte)a_word; a_word >>= 8; + *buf_++ = (FLAC__byte)a_word; + a_word = signal[1][sample]; + *buf_++ = (FLAC__byte)a_word; a_word >>= 8; + *buf_++ = (FLAC__byte)a_word; a_word >>= 8; + *buf_++ = (FLAC__byte)a_word; + } + return; + + /* Four bytes per sample. */ + case (BYTES_CHANNEL_SELECTOR (4, 1)): + for (sample = 0; sample < samples; sample++) + *buf32++ = H2LE_32(signal[0][sample]); + return; + + case (BYTES_CHANNEL_SELECTOR (4, 2)): + for (sample = 0; sample < samples; sample++) { + *buf32++ = H2LE_32(signal[0][sample]); + *buf32++ = H2LE_32(signal[1][sample]); + } + return; + + case (BYTES_CHANNEL_SELECTOR (4, 4)): + for (sample = 0; sample < samples; sample++) { + *buf32++ = H2LE_32(signal[0][sample]); + *buf32++ = H2LE_32(signal[1][sample]); + *buf32++ = H2LE_32(signal[2][sample]); + *buf32++ = H2LE_32(signal[3][sample]); + } + return; + + case (BYTES_CHANNEL_SELECTOR (4, 6)): + for (sample = 0; sample < samples; sample++) { + *buf32++ = H2LE_32(signal[0][sample]); + *buf32++ = H2LE_32(signal[1][sample]); + *buf32++ = H2LE_32(signal[2][sample]); + *buf32++ = H2LE_32(signal[3][sample]); + *buf32++ = H2LE_32(signal[4][sample]); + *buf32++ = H2LE_32(signal[5][sample]); + } + return; + + case (BYTES_CHANNEL_SELECTOR (4, 8)): + for (sample = 0; sample < samples; sample++) { + *buf32++ = H2LE_32(signal[0][sample]); + *buf32++ = H2LE_32(signal[1][sample]); + *buf32++ = H2LE_32(signal[2][sample]); + *buf32++ = H2LE_32(signal[3][sample]); + *buf32++ = H2LE_32(signal[4][sample]); + *buf32++ = H2LE_32(signal[5][sample]); + *buf32++ = H2LE_32(signal[6][sample]); + *buf32++ = H2LE_32(signal[7][sample]); + } + return; + + default: + break; + } + + /* General version. */ + switch (bytes_per_sample) { + case 1: + for (sample = 0; sample < samples; sample++) + for (channel = 0; channel < channels; channel++) + *buf_++ = signal[channel][sample]; + return; + + case 2: + for (sample = 0; sample < samples; sample++) + for (channel = 0; channel < channels; channel++) + *buf16++ = H2LE_16(signal[channel][sample]); + return; + + case 3: + for (sample = 0; sample < samples; sample++) + for (channel = 0; channel < channels; channel++) { + a_word = signal[channel][sample]; + *buf_++ = (FLAC__byte)a_word; a_word >>= 8; + *buf_++ = (FLAC__byte)a_word; a_word >>= 8; + *buf_++ = (FLAC__byte)a_word; + } + return; + + case 4: + for (sample = 0; sample < samples; sample++) + for (channel = 0; channel < channels; channel++) + *buf32++ = H2LE_32(signal[channel][sample]); + return; + + default: + break; + } +} + +/* + * Convert the incoming audio signal to a byte stream and FLAC__MD5Update it. + */ +FLAC__bool FLAC__MD5Accumulate(FLAC__MD5Context *ctx, const FLAC__int32 * const signal[], uint32_t channels, uint32_t samples, uint32_t bytes_per_sample) +{ + const size_t bytes_needed = (size_t)channels * (size_t)samples * (size_t)bytes_per_sample; + + /* overflow check */ + if ((size_t)channels > SIZE_MAX / (size_t)bytes_per_sample) + return false; + if ((size_t)channels * (size_t)bytes_per_sample > SIZE_MAX / (size_t)samples) + return false; + + if (ctx->capacity < bytes_needed) { + if (0 == (ctx->internal_buf.p8 = safe_realloc_(ctx->internal_buf.p8, bytes_needed))) { + if (0 == (ctx->internal_buf.p8 = safe_malloc_(bytes_needed))) { + ctx->capacity = 0; + return false; + } + } + ctx->capacity = bytes_needed; + } + + format_input_(&ctx->internal_buf, signal, channels, samples, bytes_per_sample); + + FLAC__MD5Update(ctx, ctx->internal_buf.p8, bytes_needed); + + return true; +} |