/** * $Id$ * * @note license is LGPL, but largely derived from a public domain source. * * @file md5.c * @brief md5 digest functions. */ RCSID("$Id$") #include /* * FORCE MD5 TO USE OUR MD5 HEADER FILE! * If we don't do this, it might pick up the systems broken MD5. */ #include /** Calculate the MD5 hash of the contents of a buffer * * @param[out] out Where to write the MD5 digest. Must be a minimum of MD5_DIGEST_LENGTH. * @param[in] in Data to hash. * @param[in] inlen Length of the data. */ void fr_md5_calc(uint8_t *out, uint8_t const *in, size_t inlen) { FR_MD5_CTX ctx; fr_md5_init(&ctx); fr_md5_update(&ctx, in, inlen); fr_md5_final(out, &ctx); fr_md5_destroy(&ctx); } #ifndef HAVE_OPENSSL_MD5_H /* * This code implements the MD5 message-digest algorithm. * The algorithm is due to Ron Rivest. This code was * written by Colin Plumb in 1993, no copyright is claimed. * This code is in the public domain; do with it what you wish. * * Equivalent code is available from RSA Data Security, Inc. * This code has been tested against that, and is equivalent, * except that you don't need to include two pages of legalese * with every copy. * * To compute the message digest of a chunk of bytes, declare an * MD5Context structure, pass it to fr_md5_init, call fr_md5_update as * needed on buffers full of bytes, and then call fr_md5_final, which * will fill a supplied 16-byte array with the digest. */ #define PUT_64BIT_LE(cp, value) do {\ (cp)[7] = (value)[1] >> 24;\ (cp)[6] = (value)[1] >> 16;\ (cp)[5] = (value)[1] >> 8;\ (cp)[4] = (value)[1];\ (cp)[3] = (value)[0] >> 24;\ (cp)[2] = (value)[0] >> 16;\ (cp)[1] = (value)[0] >> 8;\ (cp)[0] = (value)[0];\ } while (0) #define PUT_32BIT_LE(cp, value) do {\ (cp)[3] = (value) >> 24;\ (cp)[2] = (value) >> 16;\ (cp)[1] = (value) >> 8;\ (cp)[0] = (value);\ } while (0) static const uint8_t PADDING[MD5_BLOCK_LENGTH] = { 0x80, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 }; /** Initialise a new MD5 context * * Set bit count to 0 and buffer to mysterious initialization constants. * * @param[out] ctx to initialise. */ void fr_md5_init(FR_MD5_CTX *ctx) { ctx->count[0] = 0; ctx->count[1] = 0; ctx->state[0] = 0x67452301; ctx->state[1] = 0xefcdab89; ctx->state[2] = 0x98badcfe; ctx->state[3] = 0x10325476; } /** Feed additional data into the MD5 hashing function * * @param[in,out] ctx to update. * @param[in] in Data to hash. * @param[in] inlen Length of the data. */ void fr_md5_update(FR_MD5_CTX *ctx, uint8_t const *in, size_t inlen) { size_t have, need; /* Check how many bytes we already have and how many more we need. */ have = (size_t)((ctx->count[0] >> 3) & (MD5_BLOCK_LENGTH - 1)); need = MD5_BLOCK_LENGTH - have; /* Update bitcount */ /* ctx->count += (uint64_t)inlen << 3;*/ if ((ctx->count[0] += ((uint32_t)inlen << 3)) < (uint32_t)inlen) { /* Overflowed ctx->count[0] */ ctx->count[1]++; } ctx->count[1] += ((uint32_t)inlen >> 29); if (inlen >= need) { if (have != 0) { memcpy(ctx->buffer + have, in, need); fr_md5_transform(ctx->state, ctx->buffer); in += need; inlen -= need; have = 0; } /* Process data in MD5_BLOCK_LENGTH-byte chunks. */ while (inlen >= MD5_BLOCK_LENGTH) { fr_md5_transform(ctx->state, in); in += MD5_BLOCK_LENGTH; inlen -= MD5_BLOCK_LENGTH; } } /* Handle any remaining bytes of data. */ if (inlen != 0) memcpy(ctx->buffer + have, in, inlen); } /** Finalise the MD5 context and write out the hash * * Final wrapup - pad to 64-byte boundary with the bit pattern 1 0* * (64-bit count of bits processed, MSB-first). * * @param[out] out Where to write the MD5 digest. Minimum length of MD5_DIGEST_LENGTH. * @param[in,out] ctx to finalise. */ void fr_md5_final(uint8_t out[MD5_DIGEST_LENGTH], FR_MD5_CTX *ctx) { uint8_t count[8]; size_t padlen; int i; /* Convert count to 8 bytes in little endian order. */ PUT_64BIT_LE(count, ctx->count); /* Pad out to 56 mod 64. */ padlen = MD5_BLOCK_LENGTH - ((ctx->count[0] >> 3) & (MD5_BLOCK_LENGTH - 1)); if (padlen < 1 + 8) padlen += MD5_BLOCK_LENGTH; fr_md5_update(ctx, PADDING, padlen - 8); /* padlen - 8 <= 64 */ fr_md5_update(ctx, count, 8); if (out != NULL) { for (i = 0; i < 4; i++) PUT_32BIT_LE(out + i * 4, ctx->state[i]); } memset(ctx, 0, sizeof(*ctx)); /* in case it's sensitive */ } /* The four core functions - F1 is optimized somewhat */ #define F1(x, y, z) (z ^ (x & (y ^ z))) #define F2(x, y, z) F1(z, x, y) #define F3(x, y, z) (x ^ y ^ z) #define F4(x, y, z) (y ^ (x | ~z)) /* This is the central step in the MD5 algorithm. */ #define MD5STEP(f, w, x, y, z, data, s) (w += f(x, y, z) + data, w = w << s | w >> (32 - s), w += x) /** The core of the MD5 algorithm * * This alters an existing MD5 hash to reflect the addition of 16 * longwords of new data. fr_md5_update blocks the data and converts bytes * into longwords for this routine. * * @param[in] state 16 bytes of data to feed into the hashing function. * @param[in,out] block MD5 digest block to update. */ void fr_md5_transform(uint32_t state[4], uint8_t const block[MD5_BLOCK_LENGTH]) { uint32_t a, b, c, d, in[MD5_BLOCK_LENGTH / 4]; for (a = 0; a < MD5_BLOCK_LENGTH / 4; a++) { in[a] = (uint32_t)( (uint32_t)(block[a * 4 + 0]) | (uint32_t)(block[a * 4 + 1]) << 8 | (uint32_t)(block[a * 4 + 2]) << 16 | (uint32_t)(block[a * 4 + 3]) << 24); } a = state[0]; b = state[1]; c = state[2]; d = state[3]; MD5STEP(F1, a, b, c, d, in[ 0] + 0xd76aa478, 7); MD5STEP(F1, d, a, b, c, in[ 1] + 0xe8c7b756, 12); MD5STEP(F1, c, d, a, b, in[ 2] + 0x242070db, 17); MD5STEP(F1, b, c, d, a, in[ 3] + 0xc1bdceee, 22); MD5STEP(F1, a, b, c, d, in[ 4] + 0xf57c0faf, 7); MD5STEP(F1, d, a, b, c, in[ 5] + 0x4787c62a, 12); MD5STEP(F1, c, d, a, b, in[ 6] + 0xa8304613, 17); MD5STEP(F1, b, c, d, a, in[ 7] + 0xfd469501, 22); MD5STEP(F1, a, b, c, d, in[ 8] + 0x698098d8, 7); MD5STEP(F1, d, a, b, c, in[ 9] + 0x8b44f7af, 12); MD5STEP(F1, c, d, a, b, in[10] + 0xffff5bb1, 17); MD5STEP(F1, b, c, d, a, in[11] + 0x895cd7be, 22); MD5STEP(F1, a, b, c, d, in[12] + 0x6b901122, 7); MD5STEP(F1, d, a, b, c, in[13] + 0xfd987193, 12); MD5STEP(F1, c, d, a, b, in[14] + 0xa679438e, 17); MD5STEP(F1, b, c, d, a, in[15] + 0x49b40821, 22); MD5STEP(F2, a, b, c, d, in[ 1] + 0xf61e2562, 5); MD5STEP(F2, d, a, b, c, in[ 6] + 0xc040b340, 9); MD5STEP(F2, c, d, a, b, in[11] + 0x265e5a51, 14); MD5STEP(F2, b, c, d, a, in[ 0] + 0xe9b6c7aa, 20); MD5STEP(F2, a, b, c, d, in[ 5] + 0xd62f105d, 5); MD5STEP(F2, d, a, b, c, in[10] + 0x02441453, 9); MD5STEP(F2, c, d, a, b, in[15] + 0xd8a1e681, 14); MD5STEP(F2, b, c, d, a, in[ 4] + 0xe7d3fbc8, 20); MD5STEP(F2, a, b, c, d, in[ 9] + 0x21e1cde6, 5); MD5STEP(F2, d, a, b, c, in[14] + 0xc33707d6, 9); MD5STEP(F2, c, d, a, b, in[ 3] + 0xf4d50d87, 14); MD5STEP(F2, b, c, d, a, in[ 8] + 0x455a14ed, 20); MD5STEP(F2, a, b, c, d, in[13] + 0xa9e3e905, 5); MD5STEP(F2, d, a, b, c, in[ 2] + 0xfcefa3f8, 9); MD5STEP(F2, c, d, a, b, in[ 7] + 0x676f02d9, 14); MD5STEP(F2, b, c, d, a, in[12] + 0x8d2a4c8a, 20); MD5STEP(F3, a, b, c, d, in[ 5] + 0xfffa3942, 4); MD5STEP(F3, d, a, b, c, in[ 8] + 0x8771f681, 11); MD5STEP(F3, c, d, a, b, in[11] + 0x6d9d6122, 16); MD5STEP(F3, b, c, d, a, in[14] + 0xfde5380c, 23); MD5STEP(F3, a, b, c, d, in[ 1] + 0xa4beea44, 4); MD5STEP(F3, d, a, b, c, in[ 4] + 0x4bdecfa9, 11); MD5STEP(F3, c, d, a, b, in[ 7] + 0xf6bb4b60, 16); MD5STEP(F3, b, c, d, a, in[10] + 0xbebfbc70, 23); MD5STEP(F3, a, b, c, d, in[13] + 0x289b7ec6, 4); MD5STEP(F3, d, a, b, c, in[ 0] + 0xeaa127fa, 11); MD5STEP(F3, c, d, a, b, in[ 3] + 0xd4ef3085, 16); MD5STEP(F3, b, c, d, a, in[ 6] + 0x04881d05, 23); MD5STEP(F3, a, b, c, d, in[ 9] + 0xd9d4d039, 4); MD5STEP(F3, d, a, b, c, in[12] + 0xe6db99e5, 11); MD5STEP(F3, c, d, a, b, in[15] + 0x1fa27cf8, 16); MD5STEP(F3, b, c, d, a, in[2 ] + 0xc4ac5665, 23); MD5STEP(F4, a, b, c, d, in[ 0] + 0xf4292244, 6); MD5STEP(F4, d, a, b, c, in[7 ] + 0x432aff97, 10); MD5STEP(F4, c, d, a, b, in[14] + 0xab9423a7, 15); MD5STEP(F4, b, c, d, a, in[5 ] + 0xfc93a039, 21); MD5STEP(F4, a, b, c, d, in[12] + 0x655b59c3, 6); MD5STEP(F4, d, a, b, c, in[3 ] + 0x8f0ccc92, 10); MD5STEP(F4, c, d, a, b, in[10] + 0xffeff47d, 15); MD5STEP(F4, b, c, d, a, in[1 ] + 0x85845dd1, 21); MD5STEP(F4, a, b, c, d, in[8 ] + 0x6fa87e4f, 6); MD5STEP(F4, d, a, b, c, in[15] + 0xfe2ce6e0, 10); MD5STEP(F4, c, d, a, b, in[6 ] + 0xa3014314, 15); MD5STEP(F4, b, c, d, a, in[13] + 0x4e0811a1, 21); MD5STEP(F4, a, b, c, d, in[4 ] + 0xf7537e82, 6); MD5STEP(F4, d, a, b, c, in[11] + 0xbd3af235, 10); MD5STEP(F4, c, d, a, b, in[2 ] + 0x2ad7d2bb, 15); MD5STEP(F4, b, c, d, a, in[9 ] + 0xeb86d391, 21); state[0] += a; state[1] += b; state[2] += c; state[3] += d; } #endif