1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
|
RCSID("$Id$")
#include <freeradius-devel/libradius.h>
#include <freeradius-devel/heap.h>
/*
* A heap entry is made of a pointer to the object, which
* contains the key. The heap itself is an array of pointers.
*
* Heaps normally support only ordered insert, and extraction
* of the minimum element. The heap entry can contain an "int"
* field that holds the entries position in the heap. The offset
* of the field is held inside of the heap structure.
*/
struct fr_heap_t {
int size;
int num_elements;
size_t offset;
fr_heap_cmp_t cmp;
void **p;
};
/*
* First node in a heap is element 0. Children of i are 2i+1 and
* 2i+2. These macros wrap the logic, so the code is more
* descriptive.
*/
#define HEAP_PARENT(x) ( ( (x) - 1 ) / 2 )
#define HEAP_LEFT(x) ( 2*(x) + 1 )
/* #define HEAP_RIGHT(x) ( 2*(x) + 2 ) */
#define HEAP_SWAP(a, b) { void *_tmp = a; a = b; b = _tmp; }
static int fr_heap_bubble(fr_heap_t *hp, int child);
void fr_heap_delete(fr_heap_t *hp)
{
if (!hp) return;
free(hp->p);
free(hp);
}
fr_heap_t *fr_heap_create(fr_heap_cmp_t cmp, size_t offset)
{
fr_heap_t *fh;
if (!cmp) return NULL;
fh = malloc(sizeof(*fh));
if (!fh) return NULL;
memset(fh, 0, sizeof(*fh));
fh->size = 2048;
fh->p = malloc(sizeof(*(fh->p)) * fh->size);
if (!fh->p) {
free(fh);
return NULL;
}
fh->cmp = cmp;
fh->offset = offset;
return fh;
}
/*
* Insert element in heap. Normally, p != NULL, we insert p in a
* new position and bubble up. If p == NULL, then the element is
* already in place, and key is the position where to start the
* bubble-up.
*
* Returns 1 on failure (cannot allocate new heap entry)
*
* If offset > 0 the position (index, int) of the element in the
* heap is also stored in the element itself at the given offset
* in bytes.
*/
#define SET_OFFSET(heap, node) \
if (heap->offset) \
*((int *)(((uint8_t *)heap->p[node]) + heap->offset)) = node
/*
* RESET_OFFSET is used for sanity checks. It sets offset to an
* invalid value.
*/
#define RESET_OFFSET(heap, node) \
if (heap->offset) \
*((int *)(((uint8_t *)heap->p[node]) + heap->offset)) = -1
int fr_heap_insert(fr_heap_t *hp, void *data)
{
int child = hp->num_elements;
/*
* Heap is full. Double it's size.
*/
if (child == hp->size) {
void **p;
p = malloc(2 * hp->size * sizeof(*p));
if (!p) return 0;
memcpy(p, hp->p, sizeof(*p) * hp->size);
free(hp->p);
hp->p = p;
hp->size *= 2;
}
hp->p[child] = data;
hp->num_elements++;
return fr_heap_bubble(hp, child);
}
static int fr_heap_bubble(fr_heap_t *hp, int child)
{
/*
* Bubble up the element.
*/
while (child > 0) {
int parent = HEAP_PARENT(child);
/*
* Parent is smaller than the child. We're done.
*/
if (hp->cmp(hp->p[parent], hp->p[child]) < 0) break;
/*
* Child is smaller than the parent, repeat.
*/
HEAP_SWAP(hp->p[child], hp->p[parent]);
SET_OFFSET(hp, child);
child = parent;
}
SET_OFFSET(hp, child);
return 1;
}
/*
* Remove the top element, or object.
*/
int fr_heap_extract(fr_heap_t *hp, void *data)
{
int child, parent;
int max;
if (!hp || (hp->num_elements == 0)) return 0;
max = hp->num_elements - 1;
/*
* Extract element. Default is the first one.
*/
if (!data) {
parent = 0;
} else { /* extract from the middle */
if (!hp->offset) return 0;
parent = *((int *)(((uint8_t *)data) + hp->offset));
/*
* Out of bounds.
*/
if (parent < 0 || parent >= hp->num_elements) return 0;
}
RESET_OFFSET(hp, parent);
child = HEAP_LEFT(parent);
while (child <= max) {
/*
* Maybe take the right child.
*/
if ((child != max) &&
(hp->cmp(hp->p[child + 1], hp->p[child]) < 0)) {
child = child + 1;
}
hp->p[parent] = hp->p[child];
SET_OFFSET(hp, parent);
parent = child;
child = HEAP_LEFT(child);
}
hp->num_elements--;
/*
* We didn't end up at the last element in the heap.
* This element has to be re-inserted.
*/
if (parent != max) {
/*
* Fill hole with last entry and bubble up,
* reusing the insert code
*/
hp->p[parent] = hp->p[max];
return fr_heap_bubble(hp, parent);
}
return 1;
}
void *fr_heap_peek(fr_heap_t *hp)
{
if (!hp || (hp->num_elements == 0)) return NULL;
/*
* If this is NULL, we have a problem.
*/
return hp->p[0];
}
int fr_heap_num_elements(fr_heap_t *hp)
{
if (!hp) return 0;
return hp->num_elements;
}
#ifdef TESTING
static bool fr_heap_check(fr_heap_t *hp, void *data)
{
int i;
if (!hp || (hp->num_elements == 0)) return false;
for (i = 0; i < hp->num_elements; i++) {
if (hp->p[i] == data) {
return true;
}
}
return false;
}
typedef struct heap_thing {
int data;
int heap; /* for the heap */
} heap_thing;
/*
* cc -g -DTESTING -I .. heap.c -o heap
*
* ./heap
*/
static int heap_cmp(void const *one, void const *two)
{
heap_thing const *a;
heap_thing const *b;
a = (heap_thing const *) one;
b = (heap_thing const *) two;
return a->data - b->data;
}
#define ARRAY_SIZE (1024)
int main(int argc, char **argv)
{
fr_heap_t *hp;
int i;
heap_thing array[ARRAY_SIZE];
int skip = 0;
int left;
if (argc > 1) {
skip = atoi(argv[1]);
}
hp = fr_heap_create(heap_cmp, offsetof(heap_thing, heap));
if (!hp) {
fprintf(stderr, "Failed creating heap!\n");
fr_exit(1);
}
for (i = 0; i < ARRAY_SIZE; i++) {
array[i].data = rand() % 65537;
if (!fr_heap_insert(hp, &array[i])) {
fprintf(stderr, "Failed inserting %d\n", i);
fr_exit(1);
}
if (!fr_heap_check(hp, &array[i])) {
fprintf(stderr, "Inserted but not in heap %d\n", i);
fr_exit(1);
}
}
#if 0
for (i = 0; i < ARRAY_SIZE; i++) {
printf("Array %d has value %d at offset %d\n",
i, array[i].data, array[i].heap);
}
#endif
if (skip) {
int entry;
printf("%d elements to remove\n", ARRAY_SIZE / skip);
for (i = 0; i < ARRAY_SIZE / skip; i++) {
entry = i * skip;
if (!fr_heap_extract(hp, &array[entry])) {
fprintf(stderr, "Failed removing %d\n", entry);
}
if (fr_heap_check(hp, &array[entry])) {
fprintf(stderr, "Deleted but still in heap %d\n", entry);
fr_exit(1);
}
if (array[entry].heap != -1) {
fprintf(stderr, "heap offset is wrong %d\n", entry);
fr_exit(1);
}
}
}
left = fr_heap_num_elements(hp);
printf("%d elements left in the heap\n", left);
for (i = 0; i < left; i++) {
heap_thing *t = fr_heap_peek(hp);
if (!t) {
fprintf(stderr, "Failed peeking %d\n", i);
fr_exit(1);
}
printf("%d\t%d\n", i, t->data);
if (!fr_heap_extract(hp, NULL)) {
fprintf(stderr, "Failed extracting %d\n", i);
fr_exit(1);
}
}
if (fr_heap_num_elements(hp) > 0) {
fprintf(stderr, "%d elements left at the end", fr_heap_num_elements(hp));
fr_exit(1);
}
fr_heap_delete(hp);
return 0;
}
#endif
|