1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
|
/**
* @file src/modules/rlm_wimax/milenage.c
* @brief 3GPP AKA - Milenage algorithm (3GPP TS 35.205, .206, .207, .208)
*
* This file implements an example authentication algorithm defined for 3GPP
* AKA. This can be used to implement a simple HLR/AuC into hlr_auc_gw to allow
* EAP-AKA to be tested properly with real USIM cards.
*
* This implementations assumes that the r1..r5 and c1..c5 constants defined in
* TS 35.206 are used, i.e., r1=64, r2=0, r3=32, r4=64, r5=96, c1=00..00,
* c2=00..01, c3=00..02, c4=00..04, c5=00..08. The block cipher is assumed to
* be AES (Rijndael).
*
* This software may be distributed under the terms of the BSD license.
* See README for more details.
*
* @copyright 2017 The FreeRADIUS server project
* @copyright 2006-2007 (j@w1.fi)
*/
#include <stddef.h>
#include <string.h>
#include <freeradius-devel/radiusd.h>
#include <freeradius-devel/modules.h>
#include <openssl/evp.h>
#include "milenage.h"
#define MILENAGE_MAC_A_SIZE 8
#define MILENAGE_MAC_S_SIZE 8
static inline int aes_128_encrypt_block(EVP_CIPHER_CTX *evp_ctx,
uint8_t const key[16], uint8_t const in[16], uint8_t out[16])
{
size_t len;
if (unlikely(EVP_EncryptInit_ex(evp_ctx, EVP_aes_128_ecb(), NULL, key, NULL) != 1)) {
fr_strerror_printf("Failed initialising AES-128-ECB context");
return -1;
}
/*
* By default OpenSSL will try and pad out a 16 byte
* plaintext to 32 bytes so that it's detectable that
* there was padding.
*
* In this case we know the length of the plaintext
* we're trying to recover, so we explicitly tell
* OpenSSL not to pad here, and not to expected padding
* when decrypting.
*/
EVP_CIPHER_CTX_set_padding(evp_ctx, 0);
if (unlikely(EVP_EncryptUpdate(evp_ctx, out, (int *)&len, in, 16) != 1) ||
unlikely(EVP_EncryptFinal_ex(evp_ctx, out + len, (int *)&len) != 1)) {
fr_strerror_printf("Failed encrypting data");
return -1;
}
return 0;
}
/** milenage_f1 - Milenage f1 and f1* algorithms
*
* @param[in] opc 128-bit value derived from OP and K.
* @param[in] k 128-bit subscriber key.
* @param[in] rand 128-bit random challenge.
* @param[in] sqn 48-bit sequence number.
* @param[in] amf 16-bit authentication management field.
* @param[out] mac_a Buffer for MAC-A = 64-bit network authentication code, or NULL
* @param[out] mac_s Buffer for MAC-S = 64-bit resync authentication code, or NULL
* @return
* - 0 on success.
* - -1 on failure.
*/
static int milenage_f1(uint8_t mac_a[MILENAGE_MAC_A_SIZE],
uint8_t mac_s[MILENAGE_MAC_S_SIZE],
uint8_t const opc[MILENAGE_OPC_SIZE],
uint8_t const k[MILENAGE_KI_SIZE],
uint8_t const rand[MILENAGE_RAND_SIZE],
uint8_t const sqn[MILENAGE_SQN_SIZE],
uint8_t const amf[MILENAGE_AMF_SIZE])
{
uint8_t tmp1[16], tmp2[16], tmp3[16];
int i;
EVP_CIPHER_CTX *evp_ctx;
/* tmp1 = TEMP = E_K(RAND XOR OP_C) */
for (i = 0; i < 16; i++) tmp1[i] = rand[i] ^ opc[i];
evp_ctx = EVP_CIPHER_CTX_new();
if (!evp_ctx) {
//tls_strerror_printf("Failed allocating EVP context");
return -1;
}
if (aes_128_encrypt_block(evp_ctx, k, tmp1, tmp1) < 0) {
error:
EVP_CIPHER_CTX_free(evp_ctx);
return -1;
}
/* tmp2 = IN1 = SQN || AMF || SQN || AMF */
memcpy(tmp2, sqn, 6);
memcpy(tmp2 + 6, amf, 2);
memcpy(tmp2 + 8, tmp2, 8);
/* OUT1 = E_K(TEMP XOR rot(IN1 XOR OP_C, r1) XOR c1) XOR OP_C */
/*
* rotate (tmp2 XOR OP_C) by r1 (= 0x40 = 8 bytes)
*/
for (i = 0; i < 16; i++) tmp3[(i + 8) % 16] = tmp2[i] ^ opc[i];
/*
* XOR with TEMP = E_K(RAND XOR OP_C)
*/
for (i = 0; i < 16; i++) tmp3[i] ^= tmp1[i];
/* XOR with c1 (= ..00, i.e., NOP) */
/*
* f1 || f1* = E_K(tmp3) XOR OP_c
*/
if (aes_128_encrypt_block(evp_ctx, k, tmp3, tmp1) < 0) goto error; /* Reuses existing key */
for (i = 0; i < 16; i++) tmp1[i] ^= opc[i];
if (mac_a) memcpy(mac_a, tmp1, 8); /* f1 */
if (mac_s) memcpy(mac_s, tmp1 + 8, 8); /* f1* */
EVP_CIPHER_CTX_free(evp_ctx);
return 0;
}
/** milenage_f2345 - Milenage f2, f3, f4, f5, f5* algorithms
*
* @param[out] res Buffer for RES = 64-bit signed response (f2), or NULL
* @param[out] ck Buffer for CK = 128-bit confidentiality key (f3), or NULL
* @param[out] ik Buffer for IK = 128-bit integrity key (f4), or NULL
* @param[out] ak Buffer for AK = 48-bit anonymity key (f5), or NULL
* @param[out] ak_resync Buffer for AK = 48-bit anonymity key (f5*), or NULL
* @param[in] opc 128-bit value derived from OP and K.
* @param[in] k 128-bit subscriber key
* @param[in] rand 128-bit random challenge
* @return
* - 0 on success.
* - -1 on failure.
*/
static int milenage_f2345(uint8_t res[MILENAGE_RES_SIZE],
uint8_t ik[MILENAGE_IK_SIZE],
uint8_t ck[MILENAGE_CK_SIZE],
uint8_t ak[MILENAGE_AK_SIZE],
uint8_t ak_resync[MILENAGE_AK_SIZE],
uint8_t const opc[MILENAGE_OPC_SIZE],
uint8_t const k[MILENAGE_KI_SIZE],
uint8_t const rand[MILENAGE_RAND_SIZE])
{
uint8_t tmp1[16], tmp2[16], tmp3[16];
int i;
EVP_CIPHER_CTX *evp_ctx;
/* tmp2 = TEMP = E_K(RAND XOR OP_C) */
for (i = 0; i < 16; i++) tmp1[i] = rand[i] ^ opc[i];
evp_ctx = EVP_CIPHER_CTX_new();
if (!evp_ctx) {
fr_strerror_printf("Failed allocating EVP context");
return -1;
}
if (aes_128_encrypt_block(evp_ctx, k, tmp1, tmp2) < 0) {
error:
EVP_CIPHER_CTX_free(evp_ctx);
return -1;
}
/* OUT2 = E_K(rot(TEMP XOR OP_C, r2) XOR c2) XOR OP_C */
/* OUT3 = E_K(rot(TEMP XOR OP_C, r3) XOR c3) XOR OP_C */
/* OUT4 = E_K(rot(TEMP XOR OP_C, r4) XOR c4) XOR OP_C */
/* OUT5 = E_K(rot(TEMP XOR OP_C, r5) XOR c5) XOR OP_C */
/* f2 and f5 */
/* rotate by r2 (= 0, i.e., NOP) */
for (i = 0; i < 16; i++) tmp1[i] = tmp2[i] ^ opc[i];
tmp1[15] ^= 1; /* XOR c2 (= ..01) */
/* f5 || f2 = E_K(tmp1) XOR OP_c */
if (aes_128_encrypt_block(evp_ctx, k, tmp1, tmp3) < 0) goto error;
for (i = 0; i < 16; i++) tmp3[i] ^= opc[i];
if (res) memcpy(res, tmp3 + 8, 8); /* f2 */
if (ak) memcpy(ak, tmp3, 6); /* f5 */
/* f3 */
if (ck) {
/* rotate by r3 = 0x20 = 4 bytes */
for (i = 0; i < 16; i++) tmp1[(i + 12) % 16] = tmp2[i] ^ opc[i];
tmp1[15] ^= 2; /* XOR c3 (= ..02) */
if (aes_128_encrypt_block(evp_ctx, k, tmp1, ck) < 0) goto error;
for (i = 0; i < 16; i++) ck[i] ^= opc[i];
}
/* f4 */
if (ik) {
/* rotate by r4 = 0x40 = 8 bytes */
for (i = 0; i < 16; i++) tmp1[(i + 8) % 16] = tmp2[i] ^ opc[i];
tmp1[15] ^= 4; /* XOR c4 (= ..04) */
if (aes_128_encrypt_block(evp_ctx, k, tmp1, ik) < 0) goto error;
for (i = 0; i < 16; i++) ik[i] ^= opc[i];
}
/* f5* */
if (ak_resync) {
/* rotate by r5 = 0x60 = 12 bytes */
for (i = 0; i < 16; i++) tmp1[(i + 4) % 16] = tmp2[i] ^ opc[i];
tmp1[15] ^= 8; /* XOR c5 (= ..08) */
if (aes_128_encrypt_block(evp_ctx, k, tmp1, tmp1) < 0) goto error;
for (i = 0; i < 6; i++) ak_resync[i] = tmp1[i] ^ opc[i];
}
EVP_CIPHER_CTX_free(evp_ctx);
return 0;
}
/** Derive OPc from OP and Ki
*
* @param[out] opc The derived Operator Code used as an input to other Milenage
* functions.
* @param[in] op Operator Code.
* @param[in] ki Subscriber key.
* @return
* - 0 on success.
* - -1 on failure.
*/
int milenage_opc_generate(uint8_t opc[MILENAGE_OPC_SIZE],
uint8_t const op[MILENAGE_OP_SIZE],
uint8_t const ki[MILENAGE_KI_SIZE])
{
int ret;
uint8_t tmp[MILENAGE_OPC_SIZE];
EVP_CIPHER_CTX *evp_ctx;
size_t i;
evp_ctx = EVP_CIPHER_CTX_new();
if (!evp_ctx) {
fr_strerror_printf("Failed allocating EVP context");
return -1;
}
ret = aes_128_encrypt_block(evp_ctx, ki, op, tmp);
EVP_CIPHER_CTX_free(evp_ctx);
if (ret < 0) return ret;
for (i = 0; i < sizeof(tmp); i++) opc[i] = op[i] ^ tmp[i];
return 0;
}
/** Generate AKA AUTN, IK, CK, RES
*
* @param[out] autn Buffer for AUTN = 128-bit authentication token.
* @param[out] ik Buffer for IK = 128-bit integrity key (f4), or NULL.
* @param[out] ck Buffer for CK = 128-bit confidentiality key (f3), or NULL.
* @param[out] ak Buffer for AK = 48-bit anonymity key (f5), or NULL
* @param[out] res Buffer for RES = 64-bit signed response (f2), or NULL.
* @param[in] opc 128-bit operator variant algorithm configuration field (encr.).
* @param[in] amf 16-bit authentication management field.
* @param[in] ki 128-bit subscriber key.
* @param[in] sqn 48-bit sequence number (host byte order).
* @param[in] rand 128-bit random challenge.
* @return
* - 0 on success.
* - -1 on failure.
*/
int milenage_umts_generate(uint8_t autn[MILENAGE_AUTN_SIZE],
uint8_t ik[MILENAGE_IK_SIZE],
uint8_t ck[MILENAGE_CK_SIZE],
uint8_t ak[MILENAGE_AK_SIZE],
uint8_t res[MILENAGE_RES_SIZE],
uint8_t const opc[MILENAGE_OPC_SIZE],
uint8_t const amf[MILENAGE_AMF_SIZE],
uint8_t const ki[MILENAGE_KI_SIZE],
uint64_t sqn,
uint8_t const rand[MILENAGE_RAND_SIZE])
{
uint8_t mac_a[8], ak_buff[MILENAGE_AK_SIZE];
uint8_t sqn_buff[MILENAGE_SQN_SIZE];
uint8_t *p = autn;
size_t i;
if ((milenage_f1(mac_a, NULL, opc, ki, rand,
uint48_to_buff(sqn_buff, sqn), amf) < 0) ||
(milenage_f2345(res, ik, ck, ak_buff, NULL, opc, ki, rand) < 0)) return -1;
/*
* AUTN = (SQN ^ AK) || AMF || MAC_A
*/
for (i = 0; i < sizeof(sqn_buff); i++) *p++ = sqn_buff[i] ^ ak_buff[i];
memcpy(p, amf, MILENAGE_AMF_SIZE);
p += MILENAGE_AMF_SIZE;
memcpy(p, mac_a, sizeof(mac_a));
/*
* Output the anonymity key if required
*/
if (ak) memcpy(ak, ak_buff, sizeof(ak_buff));
return 0;
}
/** Milenage AUTS validation
*
* @param[out] sqn SQN = 48-bit sequence number (host byte order).
* @param[in] opc 128-bit operator variant algorithm configuration field (encr.).
* @param[in] ki 128-bit subscriber key.
* @param[in] rand 128-bit random challenge.
* @param[in] auts 112-bit authentication token from client.
* @return
* - 0 on success with sqn filled.
* - -1 on failure.
*/
int milenage_auts(uint64_t *sqn,
uint8_t const opc[MILENAGE_OPC_SIZE],
uint8_t const ki[MILENAGE_KI_SIZE],
uint8_t const rand[MILENAGE_RAND_SIZE],
uint8_t const auts[MILENAGE_AUTS_SIZE])
{
uint8_t amf[MILENAGE_AMF_SIZE] = { 0x00, 0x00 }; /* TS 33.102 v7.0.0, 6.3.3 */
uint8_t ak[MILENAGE_AK_SIZE], mac_s[MILENAGE_MAC_S_SIZE];
uint8_t sqn_buff[MILENAGE_SQN_SIZE];
size_t i;
if (milenage_f2345(NULL, NULL, NULL, NULL, ak, opc, ki, rand)) return -1;
for (i = 0; i < sizeof(sqn_buff); i++) sqn_buff[i] = auts[i] ^ ak[i];
if (milenage_f1(NULL, mac_s, opc, ki, rand, sqn_buff, amf) || CRYPTO_memcmp(mac_s, auts + 6, 8) != 0) return -1;
*sqn = uint48_from_buff(sqn_buff);
return 0;
}
/** Generate GSM-Milenage (3GPP TS 55.205) authentication triplet from a quintuplet
*
* @param[out] sres Buffer for SRES = 32-bit SRES.
* @param[out] kc 64-bit Kc.
* @param[in] ik 128-bit integrity.
* @param[in] ck Confidentiality key.
* @param[in] res 64-bit signed response.
*/
void milenage_gsm_from_umts(uint8_t sres[MILENAGE_SRES_SIZE],
uint8_t kc[MILENAGE_KC_SIZE],
uint8_t const ik[MILENAGE_IK_SIZE],
uint8_t const ck[MILENAGE_CK_SIZE],
uint8_t const res[MILENAGE_RES_SIZE])
{
int i;
for (i = 0; i < 8; i++) kc[i] = ck[i] ^ ck[i + 8] ^ ik[i] ^ ik[i + 8];
#ifdef GSM_MILENAGE_ALT_SRES
memcpy(sres, res, 4);
#else /* GSM_MILENAGE_ALT_SRES */
for (i = 0; i < 4; i++) sres[i] = res[i] ^ res[i + 4];
#endif /* GSM_MILENAGE_ALT_SRES */
}
/** Generate GSM-Milenage (3GPP TS 55.205) authentication triplet
*
* @param[out] sres Buffer for SRES = 32-bit SRES.
* @param[out] kc 64-bit Kc.
* @param[in] opc 128-bit operator variant algorithm configuration field (encr.).
* @param[in] ki 128-bit subscriber key.
* @param[in] rand 128-bit random challenge.
* @return
* - 0 on success.
* - -1 on failure.
*/
int milenage_gsm_generate(uint8_t sres[MILENAGE_SRES_SIZE],
uint8_t kc[MILENAGE_KC_SIZE],
uint8_t const opc[MILENAGE_OPC_SIZE],
uint8_t const ki[MILENAGE_KI_SIZE],
uint8_t const rand[MILENAGE_RAND_SIZE])
{
uint8_t res[MILENAGE_RES_SIZE], ck[MILENAGE_CK_SIZE], ik[MILENAGE_IK_SIZE];
if (milenage_f2345(res, ik, ck, NULL, NULL, opc, ki, rand)) return -1;
milenage_gsm_from_umts(sres, kc, ik, ck, res);
return 0;
}
/** Milenage check
*
* @param[out] ik Buffer for IK = 128-bit integrity key (f4), or NULL.
* @param[out] ck Buffer for CK = 128-bit confidentiality key (f3), or NULL.
* @param[out] res Buffer for RES = 64-bit signed response (f2), or NULL.
* @param[in] auts 112-bit buffer for AUTS.
* @param[in] opc 128-bit operator variant algorithm configuration field (encr.).
* @param[in] ki 128-bit subscriber key.
* @param[in] sqn 48-bit sequence number.
* @param[in] rand 128-bit random challenge.
* @param[in] autn 128-bit authentication token.
* @return
* - 0 on success.
* - -1 on failure.
* - -2 on synchronization failure
*/
int milenage_check(uint8_t ik[MILENAGE_IK_SIZE],
uint8_t ck[MILENAGE_CK_SIZE],
uint8_t res[MILENAGE_RES_SIZE],
uint8_t auts[MILENAGE_AUTS_SIZE],
uint8_t const opc[MILENAGE_OPC_SIZE],
uint8_t const ki[MILENAGE_KI_SIZE],
uint64_t sqn,
uint8_t const rand[MILENAGE_RAND_SIZE],
uint8_t const autn[MILENAGE_AUTN_SIZE])
{
uint8_t mac_a[MILENAGE_MAC_A_SIZE], ak[MILENAGE_AK_SIZE], rx_sqn[MILENAGE_SQN_SIZE];
uint8_t sqn_buff[MILENAGE_SQN_SIZE];
const uint8_t *amf;
size_t i;
uint48_to_buff(sqn_buff, sqn);
//FR_PROTO_HEX_DUMP(autn, MILENAGE_AUTN_SIZE, "AUTN");
//FR_PROTO_HEX_DUMP(rand, MILENAGE_RAND_SIZE, "RAND");
if (milenage_f2345(res, ck, ik, ak, NULL, opc, ki, rand)) return -1;
//FR_PROTO_HEX_DUMP(res, MILENAGE_RES_SIZE, "RES");
//FR_PROTO_HEX_DUMP(ck, MILENAGE_CK_SIZE, "CK");
//FR_PROTO_HEX_DUMP(ik, MILENAGE_IK_SIZE, "IK");
//FR_PROTO_HEX_DUMP(ak, MILENAGE_AK_SIZE, "AK");
/* AUTN = (SQN ^ AK) || AMF || MAC */
for (i = 0; i < 6; i++) rx_sqn[i] = autn[i] ^ ak[i];
//FR_PROTO_HEX_DUMP(rx_sqn, MILENAGE_SQN_SIZE, "SQN");
if (CRYPTO_memcmp(rx_sqn, sqn_buff, sizeof(rx_sqn)) <= 0) {
uint8_t auts_amf[MILENAGE_AMF_SIZE] = { 0x00, 0x00 }; /* TS 33.102 v7.0.0, 6.3.3 */
if (milenage_f2345(NULL, NULL, NULL, NULL, ak, opc, ki, rand)) return -1;
//FR_PROTO_HEX_DUMP(ak, sizeof(ak), "AK*");
for (i = 0; i < 6; i++) auts[i] = sqn_buff[i] ^ ak[i];
if (milenage_f1(NULL, auts + 6, opc, ki, rand, sqn_buff, auts_amf) < 0) return -1;
//FR_PROTO_HEX_DUMP(auts, 14, "AUTS");
return -2;
}
amf = autn + 6;
//FR_PROTO_HEX_DUMP(amf, MILENAGE_AMF_SIZE, "AMF");
if (milenage_f1(mac_a, NULL, opc, ki, rand, rx_sqn, amf) < 0) return -1;
//FR_PROTO_HEX_DUMP(mac_a, MILENAGE_MAC_A_SIZE, "MAC_A");
if (CRYPTO_memcmp(mac_a, autn + 8, 8) != 0) {
//FR_PROTO_HEX_DUMP(autn + 8, 8, "Received MAC_A");
fr_strerror_printf("MAC mismatch");
return -1;
}
return 0;
}
#ifdef TESTING_MILENAGE
/*
* cc milenage.c -g3 -Wall -DHAVE_DLFCN_H -DTESTING_MILENAGE -DWITH_TLS -I../../../../ -I../../../ -I ../base/ -I /usr/local/opt/openssl/include/ -include ../include/build.h -L /usr/local/opt/openssl/lib/ -l ssl -l crypto -l talloc -L ../../../../../build/lib/local/.libs/ -lfreeradius-server -lfreeradius-tls -lfreeradius-util -o test_milenage && ./test_milenage
*/
#include <freeradius-devel/util/acutest.h>
void test_set_1(void)
{
/*
* Inputs
*/
uint8_t ki[] = { 0x46, 0x5b, 0x5c, 0xe8, 0xb1, 0x99, 0xb4, 0x9f,
0xaa, 0x5f, 0x0a, 0x2e, 0xe2, 0x38, 0xa6, 0xbc };
uint8_t rand[] = { 0x23, 0x55, 0x3c, 0xbe, 0x96, 0x37, 0xa8, 0x9d,
0x21, 0x8a, 0xe6, 0x4d, 0xae, 0x47, 0xbf, 0x35 };
uint8_t sqn[] = { 0xff, 0x9b, 0xb4, 0xd0, 0xb6, 0x07 };
uint8_t amf[] = { 0xb9, 0xb9 };
uint8_t op[] = { 0xcd, 0xc2, 0x02, 0xd5, 0x12, 0x3e, 0x20, 0xf6,
0x2b, 0x6d, 0x67, 0x6a, 0xc7, 0x2c, 0xb3, 0x18 };
uint8_t opc[] = { 0xcd, 0x63, 0xcb, 0x71, 0x95, 0x4a, 0x9f, 0x4e,
0x48, 0xa5, 0x99, 0x4e, 0x37, 0xa0, 0x2b, 0xaf };
/*
* Outputs
*/
uint8_t opc_out[MILENAGE_OPC_SIZE];
uint8_t mac_a_out[MILENAGE_MAC_A_SIZE];
uint8_t mac_s_out[MILENAGE_MAC_S_SIZE];
uint8_t res_out[MILENAGE_RES_SIZE];
uint8_t ck_out[MILENAGE_CK_SIZE];
uint8_t ik_out[MILENAGE_IK_SIZE];
uint8_t ak_out[MILENAGE_AK_SIZE];
uint8_t ak_resync_out[MILENAGE_AK_SIZE];
/* function 1 */
uint8_t mac_a[] = { 0x4a, 0x9f, 0xfa, 0xc3, 0x54, 0xdf, 0xaf, 0xb3 };
/* function 1* */
uint8_t mac_s[] = { 0x01, 0xcf, 0xaf, 0x9e, 0xc4, 0xe8, 0x71, 0xe9 };
/* function 2 */
uint8_t res[] = { 0xa5, 0x42, 0x11, 0xd5, 0xe3, 0xba, 0x50, 0xbf };
/* function 3 */
uint8_t ck[] = { 0xb4, 0x0b, 0xa9, 0xa3, 0xc5, 0x8b, 0x2a, 0x05,
0xbb, 0xf0, 0xd9, 0x87, 0xb2, 0x1b, 0xf8, 0xcb };
/* function 4 */
uint8_t ik[] = { 0xf7, 0x69, 0xbc, 0xd7, 0x51, 0x04, 0x46, 0x04,
0x12, 0x76, 0x72, 0x71, 0x1c, 0x6d, 0x34, 0x41 };
/* function 5 */
uint8_t ak[] = { 0xaa, 0x68, 0x9c, 0x64, 0x83, 0x70 };
/* function 5* */
uint8_t ak_resync[] = { 0x45, 0x1e, 0x8b, 0xec, 0xa4, 0x3b };
int ret = 0;
/*
fr_debug_lvl = 4;
*/
ret = milenage_opc_generate(opc_out, op, ki);
TEST_CHECK(ret == 0);
//FR_PROTO_HEX_DUMP(opc_out, sizeof(opc_out), "opc");
TEST_CHECK(memcmp(opc_out, opc, sizeof(opc_out)) == 0);
if ((milenage_f1(mac_a_out, mac_s_out, opc, ki, rand, sqn, amf) < 0) ||
(milenage_f2345(res_out, ik_out, ck_out, ak_out, ak_resync_out, opc, ki, rand) < 0)) ret = -1;
//FR_PROTO_HEX_DUMP(mac_a, sizeof(mac_a_out), "mac_a");
//FR_PROTO_HEX_DUMP(mac_s, sizeof(mac_s_out), "mac_s");
//FR_PROTO_HEX_DUMP(ik_out, sizeof(ik_out), "ik");
//FR_PROTO_HEX_DUMP(ck_out, sizeof(ck_out), "ck");
//FR_PROTO_HEX_DUMP(res_out, sizeof(res_out), "res");
//FR_PROTO_HEX_DUMP(ak_out, sizeof(ak_out), "ak");
//FR_PROTO_HEX_DUMP(ak_resync_out, sizeof(ak_resync_out), "ak_resync");
TEST_CHECK(ret == 0);
TEST_CHECK(memcmp(mac_a_out, mac_a, sizeof(mac_a_out)) == 0);
TEST_CHECK(memcmp(mac_s_out, mac_s, sizeof(mac_s_out)) == 0);
TEST_CHECK(memcmp(res_out, res, sizeof(res_out)) == 0);
TEST_CHECK(memcmp(ck_out, ck, sizeof(ck_out)) == 0);
TEST_CHECK(memcmp(ik_out, ik, sizeof(ik_out)) == 0);
TEST_CHECK(memcmp(ak_out, ak, sizeof(ak_out)) == 0);
TEST_CHECK(memcmp(ak_resync, ak_resync, sizeof(ak_resync_out)) == 0);
}
void test_set_19(void)
{
/*
* Inputs
*/
uint8_t ki[] = { 0x51, 0x22, 0x25, 0x02, 0x14, 0xc3, 0x3e, 0x72,
0x3a, 0x5d, 0xd5, 0x23, 0xfc, 0x14, 0x5f, 0xc0 };
uint8_t rand[] = { 0x81, 0xe9, 0x2b, 0x6c, 0x0e, 0xe0, 0xe1, 0x2e,
0xbc, 0xeb, 0xa8, 0xd9, 0x2a, 0x99, 0xdf, 0xa5 };
uint8_t sqn[] = { 0x16, 0xf3, 0xb3, 0xf7, 0x0f, 0xc2 };
uint8_t amf[] = { 0xc3, 0xab };
uint8_t op[] = { 0xc9, 0xe8, 0x76, 0x32, 0x86, 0xb5, 0xb9, 0xff,
0xbd, 0xf5, 0x6e, 0x12, 0x97, 0xd0, 0x88, 0x7b };
uint8_t opc[] = { 0x98, 0x1d, 0x46, 0x4c, 0x7c, 0x52, 0xeb, 0x6e,
0x50, 0x36, 0x23, 0x49, 0x84, 0xad, 0x0b, 0xcf };
/*
* Outputs
*/
uint8_t opc_out[MILENAGE_OPC_SIZE];
uint8_t mac_a_out[MILENAGE_MAC_A_SIZE];
uint8_t mac_s_out[MILENAGE_MAC_S_SIZE];
uint8_t res_out[MILENAGE_RES_SIZE];
uint8_t ck_out[MILENAGE_CK_SIZE];
uint8_t ik_out[MILENAGE_IK_SIZE];
uint8_t ak_out[MILENAGE_AK_SIZE];
uint8_t ak_resync_out[MILENAGE_AK_SIZE];
/* function 1 */
uint8_t mac_a[] = { 0x2a, 0x5c, 0x23, 0xd1, 0x5e, 0xe3, 0x51, 0xd5 };
/* function 1* */
uint8_t mac_s[] = { 0x62, 0xda, 0xe3, 0x85, 0x3f, 0x3a, 0xf9, 0xd2 };
/* function 2 */
uint8_t res[] = { 0x28, 0xd7, 0xb0, 0xf2, 0xa2, 0xec, 0x3d, 0xe5 };
/* function 3 */
uint8_t ck[] = { 0x53, 0x49, 0xfb, 0xe0, 0x98, 0x64, 0x9f, 0x94,
0x8f, 0x5d, 0x2e, 0x97, 0x3a, 0x81, 0xc0, 0x0f };
/* function 4 */
uint8_t ik[] = { 0x97, 0x44, 0x87, 0x1a, 0xd3, 0x2b, 0xf9, 0xbb,
0xd1, 0xdd, 0x5c, 0xe5, 0x4e, 0x3e, 0x2e, 0x5a };
/* function 5 */
uint8_t ak[] = { 0xad, 0xa1, 0x5a, 0xeb, 0x7b, 0xb8 };
/* function 5* */
uint8_t ak_resync[] = { 0xd4, 0x61, 0xbc, 0x15, 0x47, 0x5d };
int ret = 0;
/*
fr_debug_lvl = 4;
*/
ret = milenage_opc_generate(opc_out, op, ki);
TEST_CHECK(ret == 0);
//FR_PROTO_HEX_DUMP(opc_out, sizeof(opc_out), "opc");
TEST_CHECK(memcmp(opc_out, opc, sizeof(opc_out)) == 0);
if ((milenage_f1(mac_a_out, mac_s_out, opc, ki, rand, sqn, amf) < 0) ||
(milenage_f2345(res_out, ik_out, ck_out, ak_out, ak_resync_out, opc, ki, rand) < 0)) ret = -1;
//FR_PROTO_HEX_DUMP(mac_a, sizeof(mac_a_out), "mac_a");
//FR_PROTO_HEX_DUMP(mac_s, sizeof(mac_s_out), "mac_s");
//FR_PROTO_HEX_DUMP(ik_out, sizeof(ik_out), "ik");
//FR_PROTO_HEX_DUMP(ck_out, sizeof(ck_out), "ck");
//FR_PROTO_HEX_DUMP(res_out, sizeof(res_out), "res");
//FR_PROTO_HEX_DUMP(ak_out, sizeof(ak_out), "ak");
//FR_PROTO_HEX_DUMP(ak_resync_out, sizeof(ak_resync_out), "ak_resync");
TEST_CHECK(ret == 0);
TEST_CHECK(memcmp(mac_a_out, mac_a, sizeof(mac_a_out)) == 0);
TEST_CHECK(memcmp(mac_s_out, mac_s, sizeof(mac_s_out)) == 0);
TEST_CHECK(memcmp(res_out, res, sizeof(res_out)) == 0);
TEST_CHECK(memcmp(ck_out, ck, sizeof(ck_out)) == 0);
TEST_CHECK(memcmp(ik_out, ik, sizeof(ik_out)) == 0);
TEST_CHECK(memcmp(ak_out, ak, sizeof(ak_out)) == 0);
TEST_CHECK(memcmp(ak_resync, ak_resync, sizeof(ak_resync_out)) == 0);
}
TEST_LIST = {
{ "test_set_1", test_set_1 },
{ "test_set_19", test_set_19 },
{ NULL }
};
#endif
|