diff options
Diffstat (limited to '')
-rw-r--r-- | lib/frrcu.c | 516 |
1 files changed, 516 insertions, 0 deletions
diff --git a/lib/frrcu.c b/lib/frrcu.c new file mode 100644 index 0000000..c7cc655 --- /dev/null +++ b/lib/frrcu.c @@ -0,0 +1,516 @@ +// SPDX-License-Identifier: ISC +/* + * Copyright (c) 2017-19 David Lamparter, for NetDEF, Inc. + */ + +/* implementation notes: this is an epoch-based RCU implementation. rcu_seq + * (global variable) counts the current epoch. Threads hold a specific epoch + * in rcu_read_lock(). This is the oldest epoch a thread might be accessing + * data from. + * + * The rcu_seq global is only pushed forward on rcu_read_lock() and + * rcu_read_unlock() calls. This makes things a tad more efficient since + * those are the only places it matters: + * - on rcu_read_lock, we don't want to hold an old epoch pointlessly + * - on rcu_read_unlock, we want to make sure we're not stuck on an old epoch + * when heading into a long idle period where no thread holds RCU + * + * rcu_thread structures themselves are RCU-free'd. + * + * rcu_head structures are the most iffy; normally for an ATOMLIST we would + * need to make sure we use rcu_free or pthread_rwlock to deallocate old items + * to prevent ABA or use-after-free problems. However, our ATOMLIST code + * guarantees that if the list remains non-empty in all cases, we only need + * the "last" pointer to do an "add_tail()", i.e. we can't run into ABA/UAF + * issues - but we do need to keep at least 1 item on the list. + * + * (Search the atomlist code for all uses of "last") + */ + +#ifdef HAVE_CONFIG_H +#include "config.h" +#endif + +#include <pthread.h> +#ifdef HAVE_PTHREAD_NP_H +#include <pthread_np.h> +#endif +#include <string.h> +#include <unistd.h> +#include <signal.h> + +#include "frrcu.h" +#include "seqlock.h" +#include "atomlist.h" + +DEFINE_MTYPE_STATIC(LIB, RCU_THREAD, "RCU thread"); +DEFINE_MTYPE_STATIC(LIB, RCU_NEXT, "RCU sequence barrier"); + +DECLARE_ATOMLIST(rcu_heads, struct rcu_head, head); + +PREDECL_ATOMLIST(rcu_threads); +struct rcu_thread { + struct rcu_threads_item head; + + struct rcu_head rcu_head; + + struct seqlock rcu; + + /* only accessed by thread itself, not atomic */ + unsigned depth; +}; +DECLARE_ATOMLIST(rcu_threads, struct rcu_thread, head); + +static const struct rcu_action rcua_next = { .type = RCUA_NEXT }; +static const struct rcu_action rcua_end = { .type = RCUA_END }; +static const struct rcu_action rcua_close = { .type = RCUA_CLOSE }; + +struct rcu_next { + struct rcu_head head_free; + struct rcu_head head_next; +}; + +#define rcu_free_internal(mtype, ptr, field) \ + do { \ + typeof(ptr) _ptr = (ptr); \ + struct rcu_head *_rcu_head = &_ptr->field; \ + static const struct rcu_action _rcu_action = { \ + .type = RCUA_FREE, \ + .u.free = { \ + .mt = mtype, \ + .offset = offsetof(typeof(*_ptr), field), \ + }, \ + }; \ + _rcu_head->action = &_rcu_action; \ + rcu_heads_add_tail(&rcu_heads, _rcu_head); \ + } while (0) + +/* primary global RCU position */ +static struct seqlock rcu_seq; +/* this is set to rcu_seq whenever something is added on the RCU queue. + * rcu_read_lock() and rcu_read_unlock() will then bump rcu_seq up one step. + */ +static _Atomic seqlock_val_t rcu_dirty; + +static struct rcu_threads_head rcu_threads; +static struct rcu_heads_head rcu_heads; + +/* main thread & RCU sweeper have pre-setup rcu_thread structures. The + * reasons are different: + * + * - rcu_thread_main is there because the main thread isn't started like + * other threads, it's implicitly created when the program is started. So + * rcu_thread_main matches up implicitly. + * + * - rcu_thread_rcu isn't actually put on the rcu_threads list (makes no + * sense really), it only exists so we can call RCU-using functions from + * the RCU thread without special handling in rcu_read_lock/unlock. + */ +static struct rcu_thread rcu_thread_main; +static struct rcu_thread rcu_thread_rcu; + +static pthread_t rcu_pthread; +static pthread_key_t rcu_thread_key; +static bool rcu_active; + +static void rcu_start(void); +static void rcu_bump(void); + +/* + * preinitialization for main thread + */ +static void rcu_thread_end(void *rcu_thread); + +static void rcu_preinit(void) __attribute__((constructor)); +static void rcu_preinit(void) +{ + struct rcu_thread *rt; + + rt = &rcu_thread_main; + rt->depth = 1; + seqlock_init(&rt->rcu); + seqlock_acquire_val(&rt->rcu, SEQLOCK_STARTVAL); + + pthread_key_create(&rcu_thread_key, rcu_thread_end); + pthread_setspecific(rcu_thread_key, rt); + + rcu_threads_add_tail(&rcu_threads, rt); + + /* RCU sweeper's rcu_thread is a dummy, NOT added to rcu_threads */ + rt = &rcu_thread_rcu; + rt->depth = 1; + + seqlock_init(&rcu_seq); + seqlock_acquire_val(&rcu_seq, SEQLOCK_STARTVAL); +} + +static struct rcu_thread *rcu_self(void) +{ + return (struct rcu_thread *)pthread_getspecific(rcu_thread_key); +} + +/* + * thread management (for the non-main thread) + */ +struct rcu_thread *rcu_thread_prepare(void) +{ + struct rcu_thread *rt, *cur; + + rcu_assert_read_locked(); + + if (!rcu_active) + rcu_start(); + + cur = rcu_self(); + assert(cur->depth); + + /* new thread always starts with rcu_read_lock held at depth 1, and + * holding the same epoch as the parent (this makes it possible to + * use RCU for things passed into the thread through its arg) + */ + rt = XCALLOC(MTYPE_RCU_THREAD, sizeof(*rt)); + rt->depth = 1; + + seqlock_init(&rt->rcu); + seqlock_acquire(&rt->rcu, &cur->rcu); + + rcu_threads_add_tail(&rcu_threads, rt); + + return rt; +} + +void rcu_thread_start(struct rcu_thread *rt) +{ + pthread_setspecific(rcu_thread_key, rt); +} + +void rcu_thread_unprepare(struct rcu_thread *rt) +{ + if (rt == &rcu_thread_rcu) + return; + + rt->depth = 1; + seqlock_acquire(&rt->rcu, &rcu_seq); + + rcu_bump(); + if (rt != &rcu_thread_main) + /* this free() happens after seqlock_release() below */ + rcu_free_internal(MTYPE_RCU_THREAD, rt, rcu_head); + + rcu_threads_del(&rcu_threads, rt); + seqlock_release(&rt->rcu); +} + +static void rcu_thread_end(void *rtvoid) +{ + struct rcu_thread *rt = rtvoid; + rcu_thread_unprepare(rt); +} + +/* + * main RCU control aspects + */ + +static void rcu_bump(void) +{ + struct rcu_next *rn; + + rn = XMALLOC(MTYPE_RCU_NEXT, sizeof(*rn)); + + /* note: each RCUA_NEXT item corresponds to exactly one seqno bump. + * This means we don't need to communicate which seqno is which + * RCUA_NEXT, since we really don't care. + */ + + /* + * Important race condition: while rcu_heads_add_tail is executing, + * there is an intermediate point where the rcu_heads "last" pointer + * already points to rn->head_next, but rn->head_next isn't added to + * the list yet. That means any other "add_tail" calls append to this + * item, which isn't fully on the list yet. Freeze this thread at + * that point and look at another thread doing a rcu_bump. It adds + * these two items and then does a seqlock_bump. But the rcu_heads + * list is still "interrupted" and there's no RCUA_NEXT on the list + * yet (from either the frozen thread or the second thread). So + * rcu_main() might actually hit the end of the list at the + * "interrupt". + * + * This situation is prevented by requiring that rcu_read_lock is held + * for any calls to rcu_bump, since if we're holding the current RCU + * epoch, that means rcu_main can't be chewing on rcu_heads and hit + * that interruption point. Only by the time the thread has continued + * to rcu_read_unlock() - and therefore completed the add_tail - the + * RCU sweeper gobbles up the epoch and can be sure to find at least + * the RCUA_NEXT and RCUA_FREE items on rcu_heads. + */ + rn->head_next.action = &rcua_next; + rcu_heads_add_tail(&rcu_heads, &rn->head_next); + + /* free rn that we allocated above. + * + * This is INTENTIONALLY not built into the RCUA_NEXT action. This + * ensures that after the action above is popped off the queue, there + * is still at least 1 item on the RCU queue. This means we never + * delete the last item, which is extremely important since it keeps + * the atomlist ->last pointer alive and well. + * + * If we were to "run dry" on the RCU queue, add_tail may run into the + * "last item is being deleted - start over" case, and then we may end + * up accessing old RCU queue items that are already free'd. + */ + rcu_free_internal(MTYPE_RCU_NEXT, rn, head_free); + + /* Only allow the RCU sweeper to run after these 2 items are queued. + * + * If another thread enqueues some RCU action in the intermediate + * window here, nothing bad happens - the queued action is associated + * with a larger seq# than strictly necessary. Thus, it might get + * executed a bit later, but that's not a problem. + * + * If another thread acquires the read lock in this window, it holds + * the previous epoch, but its RCU queue actions will be in the next + * epoch. This isn't a problem either, just a tad inefficient. + */ + seqlock_bump(&rcu_seq); +} + +static void rcu_bump_maybe(void) +{ + seqlock_val_t dirty; + + dirty = atomic_load_explicit(&rcu_dirty, memory_order_relaxed); + /* no problem if we race here and multiple threads bump rcu_seq; + * bumping too much causes no issues while not bumping enough will + * result in delayed cleanup + */ + if (dirty == seqlock_cur(&rcu_seq)) + rcu_bump(); +} + +void rcu_read_lock(void) +{ + struct rcu_thread *rt = rcu_self(); + + assert(rt); + if (rt->depth++ > 0) + return; + + seqlock_acquire(&rt->rcu, &rcu_seq); + /* need to hold RCU for bump ... */ + rcu_bump_maybe(); + /* ... but no point in holding the old epoch if we just bumped */ + seqlock_acquire(&rt->rcu, &rcu_seq); +} + +void rcu_read_unlock(void) +{ + struct rcu_thread *rt = rcu_self(); + + assert(rt && rt->depth); + if (--rt->depth > 0) + return; + rcu_bump_maybe(); + seqlock_release(&rt->rcu); +} + +void rcu_assert_read_locked(void) +{ + struct rcu_thread *rt = rcu_self(); + assert(rt && rt->depth && seqlock_held(&rt->rcu)); +} + +void rcu_assert_read_unlocked(void) +{ + struct rcu_thread *rt = rcu_self(); + assert(rt && !rt->depth && !seqlock_held(&rt->rcu)); +} + +/* + * RCU resource-release thread + */ + +static void *rcu_main(void *arg); + +static void rcu_start(void) +{ + /* ensure we never handle signals on the RCU thread by blocking + * everything here (new thread inherits signal mask) + */ + sigset_t oldsigs, blocksigs; + + sigfillset(&blocksigs); + pthread_sigmask(SIG_BLOCK, &blocksigs, &oldsigs); + + rcu_active = true; + + assert(!pthread_create(&rcu_pthread, NULL, rcu_main, NULL)); + + pthread_sigmask(SIG_SETMASK, &oldsigs, NULL); + +#ifdef HAVE_PTHREAD_SETNAME_NP +# ifdef GNU_LINUX + pthread_setname_np(rcu_pthread, "RCU sweeper"); +# elif defined(__NetBSD__) + pthread_setname_np(rcu_pthread, "RCU sweeper", NULL); +# endif +#elif defined(HAVE_PTHREAD_SET_NAME_NP) + pthread_set_name_np(rcu_pthread, "RCU sweeper"); +#endif +} + +static void rcu_do(struct rcu_head *rh) +{ + struct rcu_head_close *rhc; + void *p; + + switch (rh->action->type) { + case RCUA_FREE: + p = (char *)rh - rh->action->u.free.offset; + if (rh->action->u.free.mt) + qfree(rh->action->u.free.mt, p); + else + free(p); + break; + case RCUA_CLOSE: + rhc = container_of(rh, struct rcu_head_close, + rcu_head); + close(rhc->fd); + break; + case RCUA_CALL: + p = (char *)rh - rh->action->u.call.offset; + rh->action->u.call.fptr(p); + break; + + case RCUA_INVALID: + case RCUA_NEXT: + case RCUA_END: + default: + assert(0); + } +} + +static void rcu_watchdog(struct rcu_thread *rt) +{ +#if 0 + /* future work: print a backtrace for the thread that's holding up + * RCU. The only (good) way of doing that is to send a signal to the + * other thread, save away the backtrace in the signal handler, and + * block here until the signal is done processing. + * + * Just haven't implemented that yet. + */ + fprintf(stderr, "RCU watchdog %p\n", rt); +#endif +} + +static void *rcu_main(void *arg) +{ + struct rcu_thread *rt; + struct rcu_head *rh = NULL; + bool end = false; + struct timespec maxwait; + + seqlock_val_t rcuval = SEQLOCK_STARTVAL; + + pthread_setspecific(rcu_thread_key, &rcu_thread_rcu); + + while (!end) { + seqlock_wait(&rcu_seq, rcuval); + + /* RCU watchdog timeout, TODO: configurable value */ + clock_gettime(CLOCK_MONOTONIC, &maxwait); + maxwait.tv_nsec += 100 * 1000 * 1000; + if (maxwait.tv_nsec >= 1000000000) { + maxwait.tv_sec++; + maxwait.tv_nsec -= 1000000000; + } + + frr_each (rcu_threads, &rcu_threads, rt) + if (!seqlock_timedwait(&rt->rcu, rcuval, &maxwait)) { + rcu_watchdog(rt); + seqlock_wait(&rt->rcu, rcuval); + } + + while ((rh = rcu_heads_pop(&rcu_heads))) { + if (rh->action->type == RCUA_NEXT) + break; + else if (rh->action->type == RCUA_END) + end = true; + else + rcu_do(rh); + } + + rcuval += SEQLOCK_INCR; + } + + /* rcu_shutdown can only be called singlethreaded, and it does a + * pthread_join, so it should be impossible that anything ended up + * on the queue after RCUA_END + */ +#if 1 + assert(!rcu_heads_first(&rcu_heads)); +#else + while ((rh = rcu_heads_pop(&rcu_heads))) + if (rh->action->type >= RCUA_FREE) + rcu_do(rh); +#endif + return NULL; +} + +void rcu_shutdown(void) +{ + static struct rcu_head rcu_head_end; + struct rcu_thread *rt = rcu_self(); + void *retval; + + if (!rcu_active) + return; + + rcu_assert_read_locked(); + assert(rcu_threads_count(&rcu_threads) == 1); + + rcu_enqueue(&rcu_head_end, &rcua_end); + + rt->depth = 0; + seqlock_release(&rt->rcu); + seqlock_release(&rcu_seq); + rcu_active = false; + + /* clearing rcu_active is before pthread_join in case we hang in + * pthread_join & get a SIGTERM or something - in that case, just + * ignore the maybe-still-running RCU thread + */ + if (pthread_join(rcu_pthread, &retval) == 0) { + seqlock_acquire_val(&rcu_seq, SEQLOCK_STARTVAL); + seqlock_acquire_val(&rt->rcu, SEQLOCK_STARTVAL); + rt->depth = 1; + } +} + +/* + * RCU'd free functions + */ + +void rcu_enqueue(struct rcu_head *rh, const struct rcu_action *action) +{ + /* refer to rcu_bump() for why we need to hold RCU when adding items + * to rcu_heads + */ + rcu_assert_read_locked(); + + rh->action = action; + + if (!rcu_active) { + rcu_do(rh); + return; + } + rcu_heads_add_tail(&rcu_heads, rh); + atomic_store_explicit(&rcu_dirty, seqlock_cur(&rcu_seq), + memory_order_relaxed); +} + +void rcu_close(struct rcu_head_close *rhc, int fd) +{ + rhc->fd = fd; + rcu_enqueue(&rhc->rcu_head, &rcua_close); +} |