1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
|
# GDB macros for use with Quagga.
#
# Macros in this file are not daemon specific. E.g., OS or FRR library
# APIs.
#
# The macro file can be loaded with 'source <filename>'. They can then be
# called by the user. Macros that explore more complicated structs generally
# take pointer arguments.
#
# E.g.:
#
# (gdb) source ~paul/code/frr/gdb/lib.txt
# (gdb) break bgp_packet.c:613
# Breakpoint 3 at 0x7fa883033a32: file bgp_packet.c, line 613.
# (gdb) cont
# ...
# (gdb) cont
# Breakpoint 3, bgp_write_packet (peer=0x7fa885199080) at bgp_packet.c:614
# 614 if (CHECK_FLAG (adv->path->peer->cap,PEER_CAP_RESTART_RCV)
# (gdb) dump_prefix4 &adv->rn->p
# IPv4:10.1.1.0/24
# (gdb) dump_prefix &adv->rn->p
# IPv4:10.1.1.0/24
#
define def_ntohs
set $data = (char *)$arg0
set $i = 0
set $_ = $data[$i++] << 8
set $_ += $data[$i++]
end
document def_ntohs
Read a 2-byte short at the given pointed to area as big-endian and
return it in $_
Argument: Pointer to a 2-byte, big-endian short word.
Returns: Integer value of that word in $_
end
define def_ntohl
set $data = (char *)$arg0
set $i = 0
set $_ = $data[$i++] << 24
set $_ += $data[$i++] << 16
set $_ += $data[$i++] << 8
set $_ += $data[$i++]
end
document def_ntohl
Read a 4-byte integer at the given pointed to area as big-endian and
return it in $_
Argument: Pointer to a big-endian 4-byte word.
Returns: Integer value of that word in $_
end
# NB: This is in more complicated iterative form, rather than more
# conventional and simpler recursive form, because GDB has a recursion limit
# on macro calls (I think).
define walk_route_table_next
# callee saves
set $_top = $top
set $_node = $node
set $_prevl = $prevl
set $top = (struct route_node *)$arg0
set $node = (struct route_node *)$arg1
set $prevl = $node
# first try left
#echo try left\n
set $node = $prevl->link[0]
# otherwise try right
if ($node == 0)
#echo left null, try right\n
set $node = $prevl->link[1]
end
# otherwise go up, till we find the first right that
# we havn't been to yet
if ($node == 0)
set $node = $prevl
while ($node != $top)
#echo right null, try up and right\n
set $prevl = $node
set $parent = $node->parent
set $node = $parent->link[1]
if ($node != 0 && $node != $prevl)
#echo found node \n
loop_break
end
#echo go up\n
set $node = $parent
end
end
#printf "next node: 0x%x\n", $node
set $_ = $node
set $top = $_top
set $node = $_node
set $prevl = $_prevl
end
document walk_route_table_next
Return the next node to visit in the given route_table (or subset of) and
the given current node.
Arguments:
1st: (struct route_node *) to the top of the route_table to walk
2nd: (struct route_node *) to the current node
Returns: The (struct route_node *) for the next to visit in $_
end
define walk_route_table
set $_visited = $visited
set $_node = $node
set $top = $_top
set $node = (struct route_node *)$arg0
set $top = (struct route_node *)$arg0
set $visited = 0
while ($node != 0)
printf "Node: 0x%x", $node
if ($node->info != 0)
printf "\tinfo: 0x%x", $node->info
set $visited = $visited + 1
end
printf "\n"
walk_route_table_next $top $node
set $node = $_
# we've gotten back to the top, finish
if ($node == $top)
set $node = 0
end
end
printf "Visited: %u\n", $visited
set $top = $_top
set $visited = $_visited
set $node = $_node
end
document walk_route_table
Walk through a routing table (or subset thereof) and dump all the non-null
(struct route_node *)->info pointers.
Argument: A lib/hread.h::(struct route_node *) pointing to the route_node
under which all data should be dumped
end
define dump_timeval
set $tv = (struct timeval *)$arg0
set $day = 3600*24
if $tv->tv_sec > $day
printf "%d days, ", $tv->tv_sec / $day
end
if $tv->tv_sec > 3600
printf "%dh", $tv->tv_sec / 3600
end
if ($tv->tv_sec % 3600) > 60
printf "%dm", ($tv->tv_sec % 3600) / 60
end
printf "%d", $tv->tv_sec % 3600 % 60
if $tv->tv_usec != 0
printf ".%06d", $tv->tv_usec
end
printf "s"
end
document dump_timeval
Human readable dump of a (struct timeval *) argument
end
define dump_s_addr
set $addr = (char *)$arg0
printf "%d.%d.%d.%d", $addr[0], $addr[1], $addr[2], $addr[3]
end
define dump_s6_addr
set $a6 = (char *)$arg0
set $field = 0
while ($field < 16)
set $i1 = $field++
set $i2 = $field++
printf "%x%x", $a6[$i1], $a6[$i2]
if ($field > 2 && ($field % 4 == 0))
printf ":"
end
end
end
document dump_s6_addr
Interpret the memory starting at given address as an IPv6 s6_addr and
print in human readable form.
end
define dump_prefix4
set $p = (struct prefix *) $arg0
echo IPv4:
dump_s_addr &($p->u.prefix4)
printf "/%d\n", $p->prefixlen
end
document dump_prefix4
Textual dump of a (struct prefix4 *) argument.
end
define dump_prefix6
set $p = (struct prefix *) $arg0
echo IPv6:
dump_s6_addr &($p->u.prefix6)
printf "/%d\n", $p->prefixlen
end
document dump_prefix6
Textual dump of a (struct prefix6 *) argument.
end
define dump_prefix
set $p = $arg0
if ($p->family == 2)
dump_prefix4 $p
end
if ($p->family == 10)
dump_prefix6 $p
end
end
document dump_prefix
Human readable dump of a (struct prefix *) argument.
end
define rn_next_down
set $node = $arg0
while ($node != 0)
print/x $node
if ($node->link[0] != 0)
set $node = $node->link[0]
else
set $node = $node->link[1]
end
end
end
document rn_next_down
Walk left-down a given route table, dumping locations of route_nodes
Argument: A single (struct route_node *).
end
define rn_next_up
set $top = (struct route_node *)$arg0
set $node = (struct route_node *)$arg1
while ($node != $top)
echo walk up\n
set $prevl = $node
set $parent = $node->parent
set $node = $parent->link[1]
if ($node != 0 && $node != $prevl)
echo found a node\n
loop_break
end
echo going up\n
set $node = $parent
end
output/x $node
echo \n
end
document rn_next_up
Walk up-and-right from the given route_node to the next valid route_node
which is not the given "top" route_node
Arguments:
1st: A (struct route_node *) to the top of the route table.
2nd: The (struct route_node *) to walk up from
end
define mq_walk
set $mg = (struct memgroup *)$arg0
while ($mg)
printf "showing active allocations in memory group %s\n", $mg->name
set $mt = (struct memtype *)$mg->types
while ($mt)
printf "memstats: %s:%zu\n", $mt->name, $mt->n_alloc
set $mt = $mt->next
end
set $mg = $mg->next
end
document mg_walk
Walk the memory data structures to show what is holding memory.
Arguments:
1st: A (struct memgroup *) where to start the walk. If you are not
sure where to start pass it mg_first, which is a global DS for
all memory allocated in FRR
end
|