diff options
Diffstat (limited to '')
-rw-r--r-- | Documentation/technical/remembering-renames.txt | 671 |
1 files changed, 671 insertions, 0 deletions
diff --git a/Documentation/technical/remembering-renames.txt b/Documentation/technical/remembering-renames.txt new file mode 100644 index 0000000..73f4176 --- /dev/null +++ b/Documentation/technical/remembering-renames.txt @@ -0,0 +1,671 @@ +Rebases and cherry-picks involve a sequence of merges whose results are +recorded as new single-parent commits. The first parent side of those +merges represent the "upstream" side, and often include a far larger set of +changes than the second parent side. Traditionally, the renames on the +first-parent side of that sequence of merges were repeatedly re-detected +for every merge. This file explains why it is safe and effective during +rebases and cherry-picks to remember renames on the upstream side of +history as an optimization, assuming all merges are automatic and clean +(i.e. no conflicts and not interrupted for user input or editing). + +Outline: + + 0. Assumptions + + 1. How rebasing and cherry-picking work + + 2. Why the renames on MERGE_SIDE1 in any given pick are *always* a + superset of the renames on MERGE_SIDE1 for the next pick. + + 3. Why any rename on MERGE_SIDE1 in any given pick is _almost_ always also + a rename on MERGE_SIDE1 for the next pick + + 4. A detailed description of the counter-examples to #3. + + 5. Why the special cases in #4 are still fully reasonable to use to pair + up files for three-way content merging in the merge machinery, and why + they do not affect the correctness of the merge. + + 6. Interaction with skipping of "irrelevant" renames + + 7. Additional items that need to be cached + + 8. How directory rename detection interacts with the above and why this + optimization is still safe even if merge.directoryRenames is set to + "true". + + +=== 0. Assumptions === + +There are two assumptions that will hold throughout this document: + + * The upstream side where commits are transplanted to is treated as the + first parent side when rebase/cherry-pick call the merge machinery + + * All merges are fully automatic + +and a third that will hold in sections 2-5 for simplicity, that I'll later +address in section 8: + + * No directory renames occur + + +Let me explain more about each assumption and why I include it: + + +The first assumption is merely for the purposes of making this document +clearer; the optimization implementation does not actually depend upon it. +However, the assumption does hold in all cases because it reflects the way +that both rebase and cherry-pick were implemented; and the implementation +of cherry-pick and rebase are not readily changeable for backwards +compatibility reasons (see for example the discussion of the --ours and +--theirs flag in the documentation of `git checkout`, particularly the +comments about how they behave with rebase). The optimization avoids +checking first-parent-ness, though. It checks the conditions that make the +optimization valid instead, so it would still continue working if someone +changed the parent ordering that cherry-pick and rebase use. But making +this assumption does make this document much clearer and prevents me from +having to repeat every example twice. + +If the second assumption is violated, then the optimization simply is +turned off and thus isn't relevant to consider. The second assumption can +also be stated as "there is no interruption for a user to resolve conflicts +or to just further edit or tweak files". While real rebases and +cherry-picks are often interrupted (either because it's an interactive +rebase where the user requested to stop and edit, or because there were +conflicts that the user needs to resolve), the cache of renames is not +stored on disk, and thus is thrown away as soon as the rebase or cherry +pick stops for the user to resolve the operation. + +The third assumption makes sections 2-5 simpler, and allows people to +understand the basics of why this optimization is safe and effective, and +then I can go back and address the specifics in section 8. It is probably +also worth noting that if directory renames do occur, then the default of +merge.directoryRenames being set to "conflict" means that the operation +will stop for users to resolve the conflicts and the cache will be thrown +away, and thus that there won't be an optimization to apply. So, the only +reason we need to address directory renames specifically, is that some +users will have set merge.directoryRenames to "true" to allow the merges to +continue to proceed automatically. The optimization is still safe with +this config setting, but we have to discuss a few more cases to show why; +this discussion is deferred until section 8. + + +=== 1. How rebasing and cherry-picking work === + +Consider the following setup (from the git-rebase manpage): + + A---B---C topic + / + D---E---F---G main + +After rebasing or cherry-picking topic onto main, this will appear as: + + A'--B'--C' topic + / + D---E---F---G main + +The way the commits A', B', and C' are created is through a series of +merges, where rebase or cherry-pick sequentially uses each of the three +A-B-C commits in a special merge operation. Let's label the three commits +in the merge operation as MERGE_BASE, MERGE_SIDE1, and MERGE_SIDE2. For +this picture, the three commits for each of the three merges would be: + +To create A': + MERGE_BASE: E + MERGE_SIDE1: G + MERGE_SIDE2: A + +To create B': + MERGE_BASE: A + MERGE_SIDE1: A' + MERGE_SIDE2: B + +To create C': + MERGE_BASE: B + MERGE_SIDE1: B' + MERGE_SIDE2: C + +Sometimes, folks are surprised that these three-way merges are done. It +can be useful in understanding these three-way merges to view them in a +slightly different light. For example, in creating C', you can view it as +either: + + * Apply the changes between B & C to B' + * Apply the changes between B & B' to C + +Conceptually the two statements above are the same as a three-way merge of +B, B', and C, at least the parts before you decide to record a commit. + + +=== 2. Why the renames on MERGE_SIDE1 in any given pick are always a === +=== superset of the renames on MERGE_SIDE1 for the next pick. === + +The merge machinery uses the filenames it is fed from MERGE_BASE, +MERGE_SIDE1, and MERGE_SIDE2. It will only move content to a different +filename under one of three conditions: + + * To make both pieces of a conflict available to a user during conflict + resolution (examples: directory/file conflict, add/add type conflict + such as symlink vs. regular file) + + * When MERGE_SIDE1 renames the file. + + * When MERGE_SIDE2 renames the file. + +First, let's remember what commits are involved in the first and second +picks of the cherry-pick or rebase sequence: + +To create A': + MERGE_BASE: E + MERGE_SIDE1: G + MERGE_SIDE2: A + +To create B': + MERGE_BASE: A + MERGE_SIDE1: A' + MERGE_SIDE2: B + +So, in particular, we need to show that the renames between E and G are a +superset of those between A and A'. + +A' is created by the first merge. A' will only have renames for one of the +three reasons listed above. The first case, a conflict, results in a +situation where the cache is dropped and thus this optimization doesn't +take effect, so we need not consider that case. The third case, a rename +on MERGE_SIDE2 (i.e. from G to A), will show up in A' but it also shows up +in A -- therefore when diffing A and A' that path does not show up as a +rename. The only remaining way for renames to show up in A' is for the +rename to come from MERGE_SIDE1. Therefore, all renames between A and A' +are a subset of those between E and G. Equivalently, all renames between E +and G are a superset of those between A and A'. + + +=== 3. Why any rename on MERGE_SIDE1 in any given pick is _almost_ === +=== always also a rename on MERGE_SIDE1 for the next pick. === + +Let's again look at the first two picks: + +To create A': + MERGE_BASE: E + MERGE_SIDE1: G + MERGE_SIDE2: A + +To create B': + MERGE_BASE: A + MERGE_SIDE1: A' + MERGE_SIDE2: B + +Now let's look at any given rename from MERGE_SIDE1 of the first pick, i.e. +any given rename from E to G. Let's use the filenames 'oldfile' and +'newfile' for demonstration purposes. That first pick will function as +follows; when the rename is detected, the merge machinery will do a +three-way content merge of the following: + E:oldfile + G:newfile + A:oldfile +and produce a new result: + A':newfile + +Note above that I've assumed that E->A did not rename oldfile. If that +side did rename, then we most likely have a rename/rename(1to2) conflict +that will cause the rebase or cherry-pick operation to halt and drop the +in-memory cache of renames and thus doesn't need to be considered further. +In the special case that E->A does rename the file but also renames it to +newfile, then there is no conflict from the renaming and the merge can +succeed. In this special case, the rename is not valid to cache because +the second merge will find A:newfile in the MERGE_BASE (see also the new +testcases in t6429 with "rename same file identically" in their +description). So a rename/rename(1to1) needs to be specially handled by +pruning renames from the cache and decrementing the dir_rename_counts in +the current and leading directories associated with those renames. Or, +since these are really rare, one could just take the easy way out and +disable the remembering renames optimization when a rename/rename(1to1) +happens. + +The previous paragraph handled the cases for E->A renaming oldfile, let's +continue assuming that oldfile is not renamed in A. + +As per the diagram for creating B', MERGE_SIDE1 involves the changes from A +to A'. So, we are curious whether A:oldfile and A':newfile will be viewed +as renames. Note that: + + * There will be no A':oldfile (because there could not have been a + G:oldfile as we do not do break detection in the merge machinery and + G:newfile was detected as a rename, and by the construction of the + rename above that merged cleanly, the merge machinery will ensure there + is no 'oldfile' in the result). + + * There will be no A:newfile (if there had been, we would have had a + rename/add conflict). + + * Clearly A:oldfile and A':newfile are "related" (A':newfile came from a + clean three-way content merge involving A:oldfile). + +We can also expound on the third point above, by noting that three-way +content merges can also be viewed as applying the differences between the +base and one side to the other side. Thus we can view A':newfile as +having been created by taking the changes between E:oldfile and G:newfile +(which were detected as being related, i.e. <50% changed) to A:oldfile. + +Thus A:oldfile and A':newfile are just as related as E:oldfile and +G:newfile are -- they have exactly identical differences. Since the latter +were detected as renames, A:oldfile and A':newfile should also be +detectable as renames almost always. + + +=== 4. A detailed description of the counter-examples to #3. === + +We already noted in section 3 that rename/rename(1to1) (i.e. both sides +renaming a file the same way) was one counter-example. The more +interesting bit, though, is why did we need to use the "almost" qualifier +when stating that A:oldfile and A':newfile are "almost" always detectable +as renames? + +Let's repeat an earlier point that section 3 made: + + A':newfile was created by applying the changes between E:oldfile and + G:newfile to A:oldfile. The changes between E:oldfile and G:newfile were + <50% of the size of E:oldfile. + +If those changes that were <50% of the size of E:oldfile are also <50% of +the size of A:oldfile, then A:oldfile and A':newfile will be detectable as +renames. However, if there is a dramatic size reduction between E:oldfile +and A:oldfile (but the changes between E:oldfile, G:newfile, and A:oldfile +still somehow merge cleanly), then traditional rename detection would not +detect A:oldfile and A':newfile as renames. + +Here's an example where that can happen: + * E:oldfile had 20 lines + * G:newfile added 10 new lines at the beginning of the file + * A:oldfile kept the first 3 lines of the file, and deleted all the rest +then + => A':newfile would have 13 lines, 3 of which matches those in A:oldfile. +E:oldfile -> G:newfile would be detected as a rename, but A:oldfile and +A':newfile would not be. + + +=== 5. Why the special cases in #4 are still fully reasonable to use to === +=== pair up files for three-way content merging in the merge machinery, === +=== and why they do not affect the correctness of the merge. === + +In the rename/rename(1to1) case, A:newfile and A':newfile are not renames +since they use the *same* filename. However, files with the same filename +are obviously fine to pair up for three-way content merging (the merge +machinery has never employed break detection). The interesting +counter-example case is thus not the rename/rename(1to1) case, but the case +where A did not rename oldfile. That was the case that we spent most of +the time discussing in sections 3 and 4. The remainder of this section +will be devoted to that case as well. + +So, even if A:oldfile and A':newfile aren't detectable as renames, why is +it still reasonable to pair them up for three-way content merging in the +merge machinery? There are multiple reasons: + + * As noted in sections 3 and 4, the diff between A:oldfile and A':newfile + is *exactly* the same as the diff between E:oldfile and G:newfile. The + latter pair were detected as renames, so it seems unlikely to surprise + users for us to treat A:oldfile and A':newfile as renames. + + * In fact, "oldfile" and "newfile" were at one point detected as renames + due to how they were constructed in the E..G chain. And we used that + information once already in this rebase/cherry-pick. I think users + would be unlikely to be surprised at us continuing to treat the files + as renames and would quickly understand why we had done so. + + * Marking or declaring files as renames is *not* the end goal for merges. + Merges use renames to determine which files make sense to be paired up + for three-way content merges. + + * A:oldfile and A':newfile were _already_ paired up in a three-way + content merge; that is how A':newfile was created. In fact, that + three-way content merge was clean. So using them again in a later + three-way content merge seems very reasonable. + +However, the above is focusing on the common scenarios. Let's try to look +at all possible unusual scenarios and compare without the optimization to +with the optimization. Consider the following theoretical cases; we will +then dive into each to determine which of them are possible, +and if so, what they mean: + + 1. Without the optimization, the second merge results in a conflict. + With the optimization, the second merge also results in a conflict. + Questions: Are the conflicts confusingly different? Better in one case? + + 2. Without the optimization, the second merge results in NO conflict. + With the optimization, the second merge also results in NO conflict. + Questions: Are the merges the same? + + 3. Without the optimization, the second merge results in a conflict. + With the optimization, the second merge results in NO conflict. + Questions: Possible? Bug, bugfix, or something else? + + 4. Without the optimization, the second merge results in NO conflict. + With the optimization, the second merge results in a conflict. + Questions: Possible? Bug, bugfix, or something else? + +I'll consider all four cases, but out of order. + +The fourth case is impossible. For the code without the remembering +renames optimization to not get a conflict, B:oldfile would need to exactly +match A:oldfile -- if it doesn't, there would be a modify/delete conflict. +If A:oldfile matches B:oldfile exactly, then a three-way content merge +between A:oldfile, A':newfile, and B:oldfile would have no conflict and +just give us the version of newfile from A' as the result. + +From the same logic as the above paragraph, the second case would indeed +result in identical merges. When A:oldfile exactly matches B:oldfile, an +undetected rename would say, "Oh, I see one side didn't modify 'oldfile' +and the other side deleted it. I'll delete it. And I see you have this +brand new file named 'newfile' in A', so I'll keep it." That gives the +same results as three-way content merging A:oldfile, A':newfile, and +B:oldfile -- a removal of oldfile with the version of newfile from A' +showing up in the result. + +The third case is interesting. It means that A:oldfile and A':newfile were +not just similar enough, but that the changes between them did not conflict +with the changes between A:oldfile and B:oldfile. This would validate our +hunch that the files were similar enough to be used in a three-way content +merge, and thus seems entirely correct for us to have used them that way. +(Sidenote: One particular example here may be enlightening. Let's say that +B was an immediate revert of A. B clearly would have been a clean revert +of A, since A was B's immediate parent. One would assume that if you can +pick a commit, you should also be able to cherry-pick its immediate revert. +However, this is one of those funny corner cases; without this +optimization, we just successfully picked a commit cleanly, but we are +unable to cherry-pick its immediate revert due to the size differences +between E:oldfile and A:oldfile.) + +That leaves only the first case to consider -- when we get conflicts both +with or without the optimization. Without the optimization, we'll have a +modify/delete conflict, where both A':newfile and B:oldfile are left in the +tree for the user to deal with and no hints about the potential similarity +between the two. With the optimization, we'll have a three-way content +merged A:oldfile, A':newfile, and B:oldfile with conflict markers +suggesting we thought the files were related but giving the user the chance +to resolve. As noted above, I don't think users will find us treating +'oldfile' and 'newfile' as related as a surprise since they were between E +and G. In any event, though, this case shouldn't be concerning since we +hit a conflict in both cases, told the user what we know, and asked them to +resolve it. + +So, in summary, case 4 is impossible, case 2 yields the same behavior, and +cases 1 and 3 seem to provide as good or better behavior with the +optimization than without. + + +=== 6. Interaction with skipping of "irrelevant" renames === + +Previous optimizations involved skipping rename detection for paths +considered to be "irrelevant". See for example the following commits: + + * 32a56dfb99 ("merge-ort: precompute subset of sources for which we + need rename detection", 2021-03-11) + * 2fd9eda462 ("merge-ort: precompute whether directory rename + detection is needed", 2021-03-11) + * 9bd342137e ("diffcore-rename: determine which relevant_sources are + no longer relevant", 2021-03-13) + +Relevance is always determined by what the _other_ side of history has +done, in terms of modifying a file that our side renamed, or adding a +file to a directory which our side renamed. This means that a path +that is "irrelevant" when picking the first commit of a series in a +rebase or cherry-pick, may suddenly become "relevant" when picking the +next commit. + +The upshot of this is that we can only cache rename detection results +for relevant paths, and need to re-check relevance in subsequent +commits. If those subsequent commits have additional paths that are +relevant for rename detection, then we will need to redo rename +detection -- though we can limit it to the paths for which we have not +already detected renames. + + +=== 7. Additional items that need to be cached === + +It turns out we have to cache more than just renames; we also cache: + + A) non-renames (i.e. unpaired deletes) + B) counts of renames within directories + C) sources that were marked as RELEVANT_LOCATION, but which were + downgraded to RELEVANT_NO_MORE + D) the toplevel trees involved in the merge + +These are all stored in struct rename_info, and respectively appear in + * cached_pairs (along side actual renames, just with a value of NULL) + * dir_rename_counts + * cached_irrelevant + * merge_trees + +The reason for (A) comes from the irrelevant renames skipping +optimization discussed in section 6. The fact that irrelevant renames +are skipped means we only get a subset of the potential renames +detected and subsequent commits may need to run rename detection on +the upstream side on a subset of the remaining renames (to get the +renames that are relevant for that later commit). Since unpaired +deletes are involved in rename detection too, we don't want to +repeatedly check that those paths remain unpaired on the upstream side +with every commit we are transplanting. + +The reason for (B) is that diffcore_rename_extended() is what +generates the counts of renames by directory which is needed in +directory rename detection, and if we don't run +diffcore_rename_extended() again then we need to have the output from +it, including dir_rename_counts, from the previous run. + +The reason for (C) is that merge-ort's tree traversal will again think +those paths are relevant (marking them as RELEVANT_LOCATION), but the +fact that they were downgraded to RELEVANT_NO_MORE means that +dir_rename_counts already has the information we need for directory +rename detection. (A path which becomes RELEVANT_CONTENT in a +subsequent commit will be removed from cached_irrelevant.) + +The reason for (D) is that is how we determine whether the remember +renames optimization can be used. In particular, remembering that our +sequence of merges looks like: + + Merge 1: + MERGE_BASE: E + MERGE_SIDE1: G + MERGE_SIDE2: A + => Creates A' + + Merge 2: + MERGE_BASE: A + MERGE_SIDE1: A' + MERGE_SIDE2: B + => Creates B' + +It is the fact that the trees A and A' appear both in Merge 1 and in +Merge 2, with A as a parent of A' that allows this optimization. So +we store the trees to compare with what we are asked to merge next +time. + + +=== 8. How directory rename detection interacts with the above and === +=== why this optimization is still safe even if === +=== merge.directoryRenames is set to "true". === + +As noted in the assumptions section: + + """ + ...if directory renames do occur, then the default of + merge.directoryRenames being set to "conflict" means that the operation + will stop for users to resolve the conflicts and the cache will be + thrown away, and thus that there won't be an optimization to apply. + So, the only reason we need to address directory renames specifically, + is that some users will have set merge.directoryRenames to "true" to + allow the merges to continue to proceed automatically. + """ + +Let's remember that we need to look at how any given pick affects the next +one. So let's again use the first two picks from the diagram in section +one: + + First pick does this three-way merge: + MERGE_BASE: E + MERGE_SIDE1: G + MERGE_SIDE2: A + => creates A' + + Second pick does this three-way merge: + MERGE_BASE: A + MERGE_SIDE1: A' + MERGE_SIDE2: B + => creates B' + +Now, directory rename detection exists so that if one side of history +renames a directory, and the other side adds a new file to the old +directory, then the merge (with merge.directoryRenames=true) can move the +file into the new directory. There are two qualitatively different ways to +add a new file to an old directory: create a new file, or rename a file +into that directory. Also, directory renames can be done on either side of +history, so there are four cases to consider: + + * MERGE_SIDE1 renames old dir, MERGE_SIDE2 adds new file to old dir + * MERGE_SIDE1 renames old dir, MERGE_SIDE2 renames file into old dir + * MERGE_SIDE1 adds new file to old dir, MERGE_SIDE2 renames old dir + * MERGE_SIDE1 renames file into old dir, MERGE_SIDE2 renames old dir + +One last note before we consider these four cases: There are some +important properties about how we implement this optimization with +respect to directory rename detection that we need to bear in mind +while considering all of these cases: + + * rename caching occurs *after* applying directory renames + + * a rename created by directory rename detection is recorded for the side + of history that did the directory rename. + + * dir_rename_counts, the nested map of + {oldname => {newname => count}}, + is cached between runs as well. This basically means that directory + rename detection is also cached, though only on the side of history + that we cache renames for (MERGE_SIDE1 as far as this document is + concerned; see the assumptions section). Two interesting sub-notes + about these counts: + + * If we need to perform rename-detection again on the given side (e.g. + some paths are relevant for rename detection that weren't before), + then we clear dir_rename_counts and recompute it, making use of + cached_pairs. The reason it is important to do this is optimizations + around RELEVANT_LOCATION exist to prevent us from computing + unnecessary renames for directory rename detection and from computing + dir_rename_counts for irrelevant directories; but those same renames + or directories may become necessary for subsequent merges. The + easiest way to "fix up" dir_rename_counts in such cases is to just + recompute it. + + * If we prune rename/rename(1to1) entries from the cache, then we also + need to update dir_rename_counts to decrement the counts for the + involved directory and any relevant parent directories (to undo what + update_dir_rename_counts() in diffcore-rename.c incremented when the + rename was initially found). If we instead just disable the + remembering renames optimization when the exceedingly rare + rename/rename(1to1) cases occur, then dir_rename_counts will get + re-computed the next time rename detection occurs, as noted above. + + * the side with multiple commits to pick, is the side of history that we + do NOT cache renames for. Thus, there are no additional commits to + change the number of renames in a directory, except for those done by + directory rename detection (which always pad the majority). + + * the "renames" we cache are modified slightly by any directory rename, + as noted below. + +Now, with those notes out of the way, let's go through the four cases +in order: + +Case 1: MERGE_SIDE1 renames old dir, MERGE_SIDE2 adds new file to old dir + + This case looks like this: + + MERGE_BASE: E, Has olddir/ + MERGE_SIDE1: G, Renames olddir/ -> newdir/ + MERGE_SIDE2: A, Adds olddir/newfile + => creates A', With newdir/newfile + + MERGE_BASE: A, Has olddir/newfile + MERGE_SIDE1: A', Has newdir/newfile + MERGE_SIDE2: B, Modifies olddir/newfile + => expected B', with threeway-merged newdir/newfile from above + + In this case, with the optimization, note that after the first commit: + * MERGE_SIDE1 remembers olddir/ -> newdir/ + * MERGE_SIDE1 has cached olddir/newfile -> newdir/newfile + Given the cached rename noted above, the second merge can proceed as + expected without needing to perform rename detection from A -> A'. + +Case 2: MERGE_SIDE1 renames old dir, MERGE_SIDE2 renames file into old dir + + This case looks like this: + MERGE_BASE: E oldfile, olddir/ + MERGE_SIDE1: G oldfile, olddir/ -> newdir/ + MERGE_SIDE2: A oldfile -> olddir/newfile + => creates A', With newdir/newfile representing original oldfile + + MERGE_BASE: A olddir/newfile + MERGE_SIDE1: A' newdir/newfile + MERGE_SIDE2: B modify olddir/newfile + => expected B', with threeway-merged newdir/newfile from above + + In this case, with the optimization, note that after the first commit: + * MERGE_SIDE1 remembers olddir/ -> newdir/ + * MERGE_SIDE1 has cached olddir/newfile -> newdir/newfile + (NOT oldfile -> newdir/newfile; compare to case with + (p->status == 'R' && new_path) in possibly_cache_new_pair()) + + Given the cached rename noted above, the second merge can proceed as + expected without needing to perform rename detection from A -> A'. + +Case 3: MERGE_SIDE1 adds new file to old dir, MERGE_SIDE2 renames old dir + + This case looks like this: + + MERGE_BASE: E, Has olddir/ + MERGE_SIDE1: G, Adds olddir/newfile + MERGE_SIDE2: A, Renames olddir/ -> newdir/ + => creates A', With newdir/newfile + + MERGE_BASE: A, Has newdir/, but no notion of newdir/newfile + MERGE_SIDE1: A', Has newdir/newfile + MERGE_SIDE2: B, Has newdir/, but no notion of newdir/newfile + => expected B', with newdir/newfile from A' + + In this case, with the optimization, note that after the first commit there + were no renames on MERGE_SIDE1, and any renames on MERGE_SIDE2 are tossed. + But the second merge didn't need any renames so this is fine. + +Case 4: MERGE_SIDE1 renames file into old dir, MERGE_SIDE2 renames old dir + + This case looks like this: + + MERGE_BASE: E, Has olddir/ + MERGE_SIDE1: G, Renames oldfile -> olddir/newfile + MERGE_SIDE2: A, Renames olddir/ -> newdir/ + => creates A', With newdir/newfile representing original oldfile + + MERGE_BASE: A, Has oldfile + MERGE_SIDE1: A', Has newdir/newfile + MERGE_SIDE2: B, Modifies oldfile + => expected B', with threeway-merged newdir/newfile from above + + In this case, with the optimization, note that after the first commit: + * MERGE_SIDE1 remembers oldfile -> newdir/newfile + (NOT oldfile -> olddir/newfile; compare to case of second + block under p->status == 'R' in possibly_cache_new_pair()) + * MERGE_SIDE2 renames are tossed because only MERGE_SIDE1 is remembered + + Given the cached rename noted above, the second merge can proceed as + expected without needing to perform rename detection from A -> A'. + +Finally, I'll just note here that interactions with the +skip-irrelevant-renames optimization means we sometimes don't detect +renames for any files within a directory that was renamed, in which +case we will not have been able to detect any rename for the directory +itself. In such a case, we do not know whether the directory was +renamed; we want to be careful to avoid caching some kind of "this +directory was not renamed" statement. If we did, then a subsequent +commit being rebased could add a file to the old directory, and the +user would expect it to end up in the correct directory -- something +our erroneous "this directory was not renamed" cache would preclude. |