diff options
author | Daniel Baumann <daniel.baumann@progress-linux.org> | 2024-04-16 19:23:18 +0000 |
---|---|---|
committer | Daniel Baumann <daniel.baumann@progress-linux.org> | 2024-04-16 19:23:18 +0000 |
commit | 43a123c1ae6613b3efeed291fa552ecd909d3acf (patch) | |
tree | fd92518b7024bc74031f78a1cf9e454b65e73665 /src/cmd/cgo/gcc.go | |
parent | Initial commit. (diff) | |
download | golang-1.20-43a123c1ae6613b3efeed291fa552ecd909d3acf.tar.xz golang-1.20-43a123c1ae6613b3efeed291fa552ecd909d3acf.zip |
Adding upstream version 1.20.14.upstream/1.20.14upstream
Signed-off-by: Daniel Baumann <daniel.baumann@progress-linux.org>
Diffstat (limited to '')
-rw-r--r-- | src/cmd/cgo/gcc.go | 3421 |
1 files changed, 3421 insertions, 0 deletions
diff --git a/src/cmd/cgo/gcc.go b/src/cmd/cgo/gcc.go new file mode 100644 index 0000000..5df4a8c --- /dev/null +++ b/src/cmd/cgo/gcc.go @@ -0,0 +1,3421 @@ +// Copyright 2009 The Go Authors. All rights reserved. +// Use of this source code is governed by a BSD-style +// license that can be found in the LICENSE file. + +// Annotate Ref in Prog with C types by parsing gcc debug output. +// Conversion of debug output to Go types. + +package main + +import ( + "bytes" + "debug/dwarf" + "debug/elf" + "debug/macho" + "debug/pe" + "encoding/binary" + "errors" + "flag" + "fmt" + "go/ast" + "go/parser" + "go/token" + "internal/xcoff" + "math" + "os" + "os/exec" + "strconv" + "strings" + "unicode" + "unicode/utf8" + + "cmd/internal/quoted" +) + +var debugDefine = flag.Bool("debug-define", false, "print relevant #defines") +var debugGcc = flag.Bool("debug-gcc", false, "print gcc invocations") + +var nameToC = map[string]string{ + "schar": "signed char", + "uchar": "unsigned char", + "ushort": "unsigned short", + "uint": "unsigned int", + "ulong": "unsigned long", + "longlong": "long long", + "ulonglong": "unsigned long long", + "complexfloat": "float _Complex", + "complexdouble": "double _Complex", +} + +var incomplete = "_cgopackage.Incomplete" + +// cname returns the C name to use for C.s. +// The expansions are listed in nameToC and also +// struct_foo becomes "struct foo", and similarly for +// union and enum. +func cname(s string) string { + if t, ok := nameToC[s]; ok { + return t + } + + if strings.HasPrefix(s, "struct_") { + return "struct " + s[len("struct_"):] + } + if strings.HasPrefix(s, "union_") { + return "union " + s[len("union_"):] + } + if strings.HasPrefix(s, "enum_") { + return "enum " + s[len("enum_"):] + } + if strings.HasPrefix(s, "sizeof_") { + return "sizeof(" + cname(s[len("sizeof_"):]) + ")" + } + return s +} + +// DiscardCgoDirectives processes the import C preamble, and discards +// all #cgo CFLAGS and LDFLAGS directives, so they don't make their +// way into _cgo_export.h. +func (f *File) DiscardCgoDirectives() { + linesIn := strings.Split(f.Preamble, "\n") + linesOut := make([]string, 0, len(linesIn)) + for _, line := range linesIn { + l := strings.TrimSpace(line) + if len(l) < 5 || l[:4] != "#cgo" || !unicode.IsSpace(rune(l[4])) { + linesOut = append(linesOut, line) + } else { + linesOut = append(linesOut, "") + } + } + f.Preamble = strings.Join(linesOut, "\n") +} + +// addToFlag appends args to flag. All flags are later written out onto the +// _cgo_flags file for the build system to use. +func (p *Package) addToFlag(flag string, args []string) { + p.CgoFlags[flag] = append(p.CgoFlags[flag], args...) + if flag == "CFLAGS" { + // We'll also need these when preprocessing for dwarf information. + // However, discard any -g options: we need to be able + // to parse the debug info, so stick to what we expect. + for _, arg := range args { + if !strings.HasPrefix(arg, "-g") { + p.GccOptions = append(p.GccOptions, arg) + } + } + } +} + +// splitQuoted splits the string s around each instance of one or more consecutive +// white space characters while taking into account quotes and escaping, and +// returns an array of substrings of s or an empty list if s contains only white space. +// Single quotes and double quotes are recognized to prevent splitting within the +// quoted region, and are removed from the resulting substrings. If a quote in s +// isn't closed err will be set and r will have the unclosed argument as the +// last element. The backslash is used for escaping. +// +// For example, the following string: +// +// `a b:"c d" 'e''f' "g\""` +// +// Would be parsed as: +// +// []string{"a", "b:c d", "ef", `g"`} +func splitQuoted(s string) (r []string, err error) { + var args []string + arg := make([]rune, len(s)) + escaped := false + quoted := false + quote := '\x00' + i := 0 + for _, r := range s { + switch { + case escaped: + escaped = false + case r == '\\': + escaped = true + continue + case quote != 0: + if r == quote { + quote = 0 + continue + } + case r == '"' || r == '\'': + quoted = true + quote = r + continue + case unicode.IsSpace(r): + if quoted || i > 0 { + quoted = false + args = append(args, string(arg[:i])) + i = 0 + } + continue + } + arg[i] = r + i++ + } + if quoted || i > 0 { + args = append(args, string(arg[:i])) + } + if quote != 0 { + err = errors.New("unclosed quote") + } else if escaped { + err = errors.New("unfinished escaping") + } + return args, err +} + +// Translate rewrites f.AST, the original Go input, to remove +// references to the imported package C, replacing them with +// references to the equivalent Go types, functions, and variables. +func (p *Package) Translate(f *File) { + for _, cref := range f.Ref { + // Convert C.ulong to C.unsigned long, etc. + cref.Name.C = cname(cref.Name.Go) + } + + var conv typeConv + conv.Init(p.PtrSize, p.IntSize) + + p.loadDefines(f) + p.typedefs = map[string]bool{} + p.typedefList = nil + numTypedefs := -1 + for len(p.typedefs) > numTypedefs { + numTypedefs = len(p.typedefs) + // Also ask about any typedefs we've seen so far. + for _, info := range p.typedefList { + if f.Name[info.typedef] != nil { + continue + } + n := &Name{ + Go: info.typedef, + C: info.typedef, + } + f.Name[info.typedef] = n + f.NamePos[n] = info.pos + } + needType := p.guessKinds(f) + if len(needType) > 0 { + p.loadDWARF(f, &conv, needType) + } + + // In godefs mode we're OK with the typedefs, which + // will presumably also be defined in the file, we + // don't want to resolve them to their base types. + if *godefs { + break + } + } + p.prepareNames(f) + if p.rewriteCalls(f) { + // Add `import _cgo_unsafe "unsafe"` after the package statement. + f.Edit.Insert(f.offset(f.AST.Name.End()), "; import _cgo_unsafe \"unsafe\"") + } + p.rewriteRef(f) +} + +// loadDefines coerces gcc into spitting out the #defines in use +// in the file f and saves relevant renamings in f.Name[name].Define. +func (p *Package) loadDefines(f *File) { + var b bytes.Buffer + b.WriteString(builtinProlog) + b.WriteString(f.Preamble) + stdout := p.gccDefines(b.Bytes()) + + for _, line := range strings.Split(stdout, "\n") { + if len(line) < 9 || line[0:7] != "#define" { + continue + } + + line = strings.TrimSpace(line[8:]) + + var key, val string + spaceIndex := strings.Index(line, " ") + tabIndex := strings.Index(line, "\t") + + if spaceIndex == -1 && tabIndex == -1 { + continue + } else if tabIndex == -1 || (spaceIndex != -1 && spaceIndex < tabIndex) { + key = line[0:spaceIndex] + val = strings.TrimSpace(line[spaceIndex:]) + } else { + key = line[0:tabIndex] + val = strings.TrimSpace(line[tabIndex:]) + } + + if key == "__clang__" { + p.GccIsClang = true + } + + if n := f.Name[key]; n != nil { + if *debugDefine { + fmt.Fprintf(os.Stderr, "#define %s %s\n", key, val) + } + n.Define = val + } + } +} + +// guessKinds tricks gcc into revealing the kind of each +// name xxx for the references C.xxx in the Go input. +// The kind is either a constant, type, or variable. +func (p *Package) guessKinds(f *File) []*Name { + // Determine kinds for names we already know about, + // like #defines or 'struct foo', before bothering with gcc. + var names, needType []*Name + optional := map[*Name]bool{} + for _, key := range nameKeys(f.Name) { + n := f.Name[key] + // If we've already found this name as a #define + // and we can translate it as a constant value, do so. + if n.Define != "" { + if i, err := strconv.ParseInt(n.Define, 0, 64); err == nil { + n.Kind = "iconst" + // Turn decimal into hex, just for consistency + // with enum-derived constants. Otherwise + // in the cgo -godefs output half the constants + // are in hex and half are in whatever the #define used. + n.Const = fmt.Sprintf("%#x", i) + } else if n.Define[0] == '\'' { + if _, err := parser.ParseExpr(n.Define); err == nil { + n.Kind = "iconst" + n.Const = n.Define + } + } else if n.Define[0] == '"' { + if _, err := parser.ParseExpr(n.Define); err == nil { + n.Kind = "sconst" + n.Const = n.Define + } + } + + if n.IsConst() { + continue + } + } + + // If this is a struct, union, or enum type name, no need to guess the kind. + if strings.HasPrefix(n.C, "struct ") || strings.HasPrefix(n.C, "union ") || strings.HasPrefix(n.C, "enum ") { + n.Kind = "type" + needType = append(needType, n) + continue + } + + if (goos == "darwin" || goos == "ios") && strings.HasSuffix(n.C, "Ref") { + // For FooRef, find out if FooGetTypeID exists. + s := n.C[:len(n.C)-3] + "GetTypeID" + n := &Name{Go: s, C: s} + names = append(names, n) + optional[n] = true + } + + // Otherwise, we'll need to find out from gcc. + names = append(names, n) + } + + // Bypass gcc if there's nothing left to find out. + if len(names) == 0 { + return needType + } + + // Coerce gcc into telling us whether each name is a type, a value, or undeclared. + // For names, find out whether they are integer constants. + // We used to look at specific warning or error messages here, but that tied the + // behavior too closely to specific versions of the compilers. + // Instead, arrange that we can infer what we need from only the presence or absence + // of an error on a specific line. + // + // For each name, we generate these lines, where xxx is the index in toSniff plus one. + // + // #line xxx "not-declared" + // void __cgo_f_xxx_1(void) { __typeof__(name) *__cgo_undefined__1; } + // #line xxx "not-type" + // void __cgo_f_xxx_2(void) { name *__cgo_undefined__2; } + // #line xxx "not-int-const" + // void __cgo_f_xxx_3(void) { enum { __cgo_undefined__3 = (name)*1 }; } + // #line xxx "not-num-const" + // void __cgo_f_xxx_4(void) { static const double __cgo_undefined__4 = (name); } + // #line xxx "not-str-lit" + // void __cgo_f_xxx_5(void) { static const char __cgo_undefined__5[] = (name); } + // + // If we see an error at not-declared:xxx, the corresponding name is not declared. + // If we see an error at not-type:xxx, the corresponding name is not a type. + // If we see an error at not-int-const:xxx, the corresponding name is not an integer constant. + // If we see an error at not-num-const:xxx, the corresponding name is not a number constant. + // If we see an error at not-str-lit:xxx, the corresponding name is not a string literal. + // + // The specific input forms are chosen so that they are valid C syntax regardless of + // whether name denotes a type or an expression. + + var b bytes.Buffer + b.WriteString(builtinProlog) + b.WriteString(f.Preamble) + + for i, n := range names { + fmt.Fprintf(&b, "#line %d \"not-declared\"\n"+ + "void __cgo_f_%d_1(void) { __typeof__(%s) *__cgo_undefined__1; }\n"+ + "#line %d \"not-type\"\n"+ + "void __cgo_f_%d_2(void) { %s *__cgo_undefined__2; }\n"+ + "#line %d \"not-int-const\"\n"+ + "void __cgo_f_%d_3(void) { enum { __cgo_undefined__3 = (%s)*1 }; }\n"+ + "#line %d \"not-num-const\"\n"+ + "void __cgo_f_%d_4(void) { static const double __cgo_undefined__4 = (%s); }\n"+ + "#line %d \"not-str-lit\"\n"+ + "void __cgo_f_%d_5(void) { static const char __cgo_undefined__5[] = (%s); }\n", + i+1, i+1, n.C, + i+1, i+1, n.C, + i+1, i+1, n.C, + i+1, i+1, n.C, + i+1, i+1, n.C, + ) + } + fmt.Fprintf(&b, "#line 1 \"completed\"\n"+ + "int __cgo__1 = __cgo__2;\n") + + // We need to parse the output from this gcc command, so ensure that it + // doesn't have any ANSI escape sequences in it. (TERM=dumb is + // insufficient; if the user specifies CGO_CFLAGS=-fdiagnostics-color, + // GCC will ignore TERM, and GCC can also be configured at compile-time + // to ignore TERM.) + stderr := p.gccErrors(b.Bytes(), "-fdiagnostics-color=never") + if strings.Contains(stderr, "unrecognized command line option") { + // We're using an old version of GCC that doesn't understand + // -fdiagnostics-color. Those versions can't print color anyway, + // so just rerun without that option. + stderr = p.gccErrors(b.Bytes()) + } + if stderr == "" { + fatalf("%s produced no output\non input:\n%s", gccBaseCmd[0], b.Bytes()) + } + + completed := false + sniff := make([]int, len(names)) + const ( + notType = 1 << iota + notIntConst + notNumConst + notStrLiteral + notDeclared + ) + sawUnmatchedErrors := false + for _, line := range strings.Split(stderr, "\n") { + // Ignore warnings and random comments, with one + // exception: newer GCC versions will sometimes emit + // an error on a macro #define with a note referring + // to where the expansion occurs. We care about where + // the expansion occurs, so in that case treat the note + // as an error. + isError := strings.Contains(line, ": error:") + isErrorNote := strings.Contains(line, ": note:") && sawUnmatchedErrors + if !isError && !isErrorNote { + continue + } + + c1 := strings.Index(line, ":") + if c1 < 0 { + continue + } + c2 := strings.Index(line[c1+1:], ":") + if c2 < 0 { + continue + } + c2 += c1 + 1 + + filename := line[:c1] + i, _ := strconv.Atoi(line[c1+1 : c2]) + i-- + if i < 0 || i >= len(names) { + if isError { + sawUnmatchedErrors = true + } + continue + } + + switch filename { + case "completed": + // Strictly speaking, there is no guarantee that seeing the error at completed:1 + // (at the end of the file) means we've seen all the errors from earlier in the file, + // but usually it does. Certainly if we don't see the completed:1 error, we did + // not get all the errors we expected. + completed = true + + case "not-declared": + sniff[i] |= notDeclared + case "not-type": + sniff[i] |= notType + case "not-int-const": + sniff[i] |= notIntConst + case "not-num-const": + sniff[i] |= notNumConst + case "not-str-lit": + sniff[i] |= notStrLiteral + default: + if isError { + sawUnmatchedErrors = true + } + continue + } + + sawUnmatchedErrors = false + } + + if !completed { + fatalf("%s did not produce error at completed:1\non input:\n%s\nfull error output:\n%s", gccBaseCmd[0], b.Bytes(), stderr) + } + + for i, n := range names { + switch sniff[i] { + default: + if sniff[i]¬Declared != 0 && optional[n] { + // Ignore optional undeclared identifiers. + // Don't report an error, and skip adding n to the needType array. + continue + } + error_(f.NamePos[n], "could not determine kind of name for C.%s", fixGo(n.Go)) + case notStrLiteral | notType: + n.Kind = "iconst" + case notIntConst | notStrLiteral | notType: + n.Kind = "fconst" + case notIntConst | notNumConst | notType: + n.Kind = "sconst" + case notIntConst | notNumConst | notStrLiteral: + n.Kind = "type" + case notIntConst | notNumConst | notStrLiteral | notType: + n.Kind = "not-type" + } + needType = append(needType, n) + } + if nerrors > 0 { + // Check if compiling the preamble by itself causes any errors, + // because the messages we've printed out so far aren't helpful + // to users debugging preamble mistakes. See issue 8442. + preambleErrors := p.gccErrors([]byte(builtinProlog + f.Preamble)) + if len(preambleErrors) > 0 { + error_(token.NoPos, "\n%s errors for preamble:\n%s", gccBaseCmd[0], preambleErrors) + } + + fatalf("unresolved names") + } + + return needType +} + +// loadDWARF parses the DWARF debug information generated +// by gcc to learn the details of the constants, variables, and types +// being referred to as C.xxx. +func (p *Package) loadDWARF(f *File, conv *typeConv, names []*Name) { + // Extract the types from the DWARF section of an object + // from a well-formed C program. Gcc only generates DWARF info + // for symbols in the object file, so it is not enough to print the + // preamble and hope the symbols we care about will be there. + // Instead, emit + // __typeof__(names[i]) *__cgo__i; + // for each entry in names and then dereference the type we + // learn for __cgo__i. + var b bytes.Buffer + b.WriteString(builtinProlog) + b.WriteString(f.Preamble) + b.WriteString("#line 1 \"cgo-dwarf-inference\"\n") + for i, n := range names { + fmt.Fprintf(&b, "__typeof__(%s) *__cgo__%d;\n", n.C, i) + if n.Kind == "iconst" { + fmt.Fprintf(&b, "enum { __cgo_enum__%d = %s };\n", i, n.C) + } + } + + // We create a data block initialized with the values, + // so we can read them out of the object file. + fmt.Fprintf(&b, "long long __cgodebug_ints[] = {\n") + for _, n := range names { + if n.Kind == "iconst" { + fmt.Fprintf(&b, "\t%s,\n", n.C) + } else { + fmt.Fprintf(&b, "\t0,\n") + } + } + // for the last entry, we cannot use 0, otherwise + // in case all __cgodebug_data is zero initialized, + // LLVM-based gcc will place the it in the __DATA.__common + // zero-filled section (our debug/macho doesn't support + // this) + fmt.Fprintf(&b, "\t1\n") + fmt.Fprintf(&b, "};\n") + + // do the same work for floats. + fmt.Fprintf(&b, "double __cgodebug_floats[] = {\n") + for _, n := range names { + if n.Kind == "fconst" { + fmt.Fprintf(&b, "\t%s,\n", n.C) + } else { + fmt.Fprintf(&b, "\t0,\n") + } + } + fmt.Fprintf(&b, "\t1\n") + fmt.Fprintf(&b, "};\n") + + // do the same work for strings. + for i, n := range names { + if n.Kind == "sconst" { + fmt.Fprintf(&b, "const char __cgodebug_str__%d[] = %s;\n", i, n.C) + fmt.Fprintf(&b, "const unsigned long long __cgodebug_strlen__%d = sizeof(%s)-1;\n", i, n.C) + } + } + + d, ints, floats, strs := p.gccDebug(b.Bytes(), len(names)) + + // Scan DWARF info for top-level TagVariable entries with AttrName __cgo__i. + types := make([]dwarf.Type, len(names)) + r := d.Reader() + for { + e, err := r.Next() + if err != nil { + fatalf("reading DWARF entry: %s", err) + } + if e == nil { + break + } + switch e.Tag { + case dwarf.TagVariable: + name, _ := e.Val(dwarf.AttrName).(string) + // As of https://reviews.llvm.org/D123534, clang + // now emits DW_TAG_variable DIEs that have + // no name (so as to be able to describe the + // type and source locations of constant strings + // like the second arg in the call below: + // + // myfunction(42, "foo") + // + // If a var has no name we won't see attempts to + // refer to it via "C.<name>", so skip these vars + // + // See issue 53000 for more context. + if name == "" { + break + } + typOff, _ := e.Val(dwarf.AttrType).(dwarf.Offset) + if typOff == 0 { + if e.Val(dwarf.AttrSpecification) != nil { + // Since we are reading all the DWARF, + // assume we will see the variable elsewhere. + break + } + fatalf("malformed DWARF TagVariable entry") + } + if !strings.HasPrefix(name, "__cgo__") { + break + } + typ, err := d.Type(typOff) + if err != nil { + fatalf("loading DWARF type: %s", err) + } + t, ok := typ.(*dwarf.PtrType) + if !ok || t == nil { + fatalf("internal error: %s has non-pointer type", name) + } + i, err := strconv.Atoi(name[7:]) + if err != nil { + fatalf("malformed __cgo__ name: %s", name) + } + types[i] = t.Type + p.recordTypedefs(t.Type, f.NamePos[names[i]]) + } + if e.Tag != dwarf.TagCompileUnit { + r.SkipChildren() + } + } + + // Record types and typedef information. + for i, n := range names { + if strings.HasSuffix(n.Go, "GetTypeID") && types[i].String() == "func() CFTypeID" { + conv.getTypeIDs[n.Go[:len(n.Go)-9]] = true + } + } + for i, n := range names { + if types[i] == nil { + continue + } + pos := f.NamePos[n] + f, fok := types[i].(*dwarf.FuncType) + if n.Kind != "type" && fok { + n.Kind = "func" + n.FuncType = conv.FuncType(f, pos) + } else { + n.Type = conv.Type(types[i], pos) + switch n.Kind { + case "iconst": + if i < len(ints) { + if _, ok := types[i].(*dwarf.UintType); ok { + n.Const = fmt.Sprintf("%#x", uint64(ints[i])) + } else { + n.Const = fmt.Sprintf("%#x", ints[i]) + } + } + case "fconst": + if i >= len(floats) { + break + } + switch base(types[i]).(type) { + case *dwarf.IntType, *dwarf.UintType: + // This has an integer type so it's + // not really a floating point + // constant. This can happen when the + // C compiler complains about using + // the value as an integer constant, + // but not as a general constant. + // Treat this as a variable of the + // appropriate type, not a constant, + // to get C-style type handling, + // avoiding the problem that C permits + // uint64(-1) but Go does not. + // See issue 26066. + n.Kind = "var" + default: + n.Const = fmt.Sprintf("%f", floats[i]) + } + case "sconst": + if i < len(strs) { + n.Const = fmt.Sprintf("%q", strs[i]) + } + } + } + conv.FinishType(pos) + } +} + +// recordTypedefs remembers in p.typedefs all the typedefs used in dtypes and its children. +func (p *Package) recordTypedefs(dtype dwarf.Type, pos token.Pos) { + p.recordTypedefs1(dtype, pos, map[dwarf.Type]bool{}) +} + +func (p *Package) recordTypedefs1(dtype dwarf.Type, pos token.Pos, visited map[dwarf.Type]bool) { + if dtype == nil { + return + } + if visited[dtype] { + return + } + visited[dtype] = true + switch dt := dtype.(type) { + case *dwarf.TypedefType: + if strings.HasPrefix(dt.Name, "__builtin") { + // Don't look inside builtin types. There be dragons. + return + } + if !p.typedefs[dt.Name] { + p.typedefs[dt.Name] = true + p.typedefList = append(p.typedefList, typedefInfo{dt.Name, pos}) + p.recordTypedefs1(dt.Type, pos, visited) + } + case *dwarf.PtrType: + p.recordTypedefs1(dt.Type, pos, visited) + case *dwarf.ArrayType: + p.recordTypedefs1(dt.Type, pos, visited) + case *dwarf.QualType: + p.recordTypedefs1(dt.Type, pos, visited) + case *dwarf.FuncType: + p.recordTypedefs1(dt.ReturnType, pos, visited) + for _, a := range dt.ParamType { + p.recordTypedefs1(a, pos, visited) + } + case *dwarf.StructType: + for _, f := range dt.Field { + p.recordTypedefs1(f.Type, pos, visited) + } + } +} + +// prepareNames finalizes the Kind field of not-type names and sets +// the mangled name of all names. +func (p *Package) prepareNames(f *File) { + for _, n := range f.Name { + if n.Kind == "not-type" { + if n.Define == "" { + n.Kind = "var" + } else { + n.Kind = "macro" + n.FuncType = &FuncType{ + Result: n.Type, + Go: &ast.FuncType{ + Results: &ast.FieldList{List: []*ast.Field{{Type: n.Type.Go}}}, + }, + } + } + } + p.mangleName(n) + if n.Kind == "type" && typedef[n.Mangle] == nil { + typedef[n.Mangle] = n.Type + } + } +} + +// mangleName does name mangling to translate names +// from the original Go source files to the names +// used in the final Go files generated by cgo. +func (p *Package) mangleName(n *Name) { + // When using gccgo variables have to be + // exported so that they become global symbols + // that the C code can refer to. + prefix := "_C" + if *gccgo && n.IsVar() { + prefix = "C" + } + n.Mangle = prefix + n.Kind + "_" + n.Go +} + +func (f *File) isMangledName(s string) bool { + prefix := "_C" + if strings.HasPrefix(s, prefix) { + t := s[len(prefix):] + for _, k := range nameKinds { + if strings.HasPrefix(t, k+"_") { + return true + } + } + } + return false +} + +// rewriteCalls rewrites all calls that pass pointers to check that +// they follow the rules for passing pointers between Go and C. +// This reports whether the package needs to import unsafe as _cgo_unsafe. +func (p *Package) rewriteCalls(f *File) bool { + needsUnsafe := false + // Walk backward so that in C.f1(C.f2()) we rewrite C.f2 first. + for _, call := range f.Calls { + if call.Done { + continue + } + start := f.offset(call.Call.Pos()) + end := f.offset(call.Call.End()) + str, nu := p.rewriteCall(f, call) + if str != "" { + f.Edit.Replace(start, end, str) + if nu { + needsUnsafe = true + } + } + } + return needsUnsafe +} + +// rewriteCall rewrites one call to add pointer checks. +// If any pointer checks are required, we rewrite the call into a +// function literal that calls _cgoCheckPointer for each pointer +// argument and then calls the original function. +// This returns the rewritten call and whether the package needs to +// import unsafe as _cgo_unsafe. +// If it returns the empty string, the call did not need to be rewritten. +func (p *Package) rewriteCall(f *File, call *Call) (string, bool) { + // This is a call to C.xxx; set goname to "xxx". + // It may have already been mangled by rewriteName. + var goname string + switch fun := call.Call.Fun.(type) { + case *ast.SelectorExpr: + goname = fun.Sel.Name + case *ast.Ident: + goname = strings.TrimPrefix(fun.Name, "_C2func_") + goname = strings.TrimPrefix(goname, "_Cfunc_") + } + if goname == "" || goname == "malloc" { + return "", false + } + name := f.Name[goname] + if name == nil || name.Kind != "func" { + // Probably a type conversion. + return "", false + } + + params := name.FuncType.Params + args := call.Call.Args + end := call.Call.End() + + // Avoid a crash if the number of arguments doesn't match + // the number of parameters. + // This will be caught when the generated file is compiled. + if len(args) != len(params) { + return "", false + } + + any := false + for i, param := range params { + if p.needsPointerCheck(f, param.Go, args[i]) { + any = true + break + } + } + if !any { + return "", false + } + + // We need to rewrite this call. + // + // Rewrite C.f(p) to + // func() { + // _cgo0 := p + // _cgoCheckPointer(_cgo0, nil) + // C.f(_cgo0) + // }() + // Using a function literal like this lets us evaluate the + // function arguments only once while doing pointer checks. + // This is particularly useful when passing additional arguments + // to _cgoCheckPointer, as done in checkIndex and checkAddr. + // + // When the function argument is a conversion to unsafe.Pointer, + // we unwrap the conversion before checking the pointer, + // and then wrap again when calling C.f. This lets us check + // the real type of the pointer in some cases. See issue #25941. + // + // When the call to C.f is deferred, we use an additional function + // literal to evaluate the arguments at the right time. + // defer func() func() { + // _cgo0 := p + // return func() { + // _cgoCheckPointer(_cgo0, nil) + // C.f(_cgo0) + // } + // }()() + // This works because the defer statement evaluates the first + // function literal in order to get the function to call. + + var sb bytes.Buffer + sb.WriteString("func() ") + if call.Deferred { + sb.WriteString("func() ") + } + + needsUnsafe := false + result := false + twoResults := false + if !call.Deferred { + // Check whether this call expects two results. + for _, ref := range f.Ref { + if ref.Expr != &call.Call.Fun { + continue + } + if ref.Context == ctxCall2 { + sb.WriteString("(") + result = true + twoResults = true + } + break + } + + // Add the result type, if any. + if name.FuncType.Result != nil { + rtype := p.rewriteUnsafe(name.FuncType.Result.Go) + if rtype != name.FuncType.Result.Go { + needsUnsafe = true + } + sb.WriteString(gofmtLine(rtype)) + result = true + } + + // Add the second result type, if any. + if twoResults { + if name.FuncType.Result == nil { + // An explicit void result looks odd but it + // seems to be how cgo has worked historically. + sb.WriteString("_Ctype_void") + } + sb.WriteString(", error)") + } + } + + sb.WriteString("{ ") + + // Define _cgoN for each argument value. + // Write _cgoCheckPointer calls to sbCheck. + var sbCheck bytes.Buffer + for i, param := range params { + origArg := args[i] + arg, nu := p.mangle(f, &args[i], true) + if nu { + needsUnsafe = true + } + + // Use "var x T = ..." syntax to explicitly convert untyped + // constants to the parameter type, to avoid a type mismatch. + ptype := p.rewriteUnsafe(param.Go) + + if !p.needsPointerCheck(f, param.Go, args[i]) || param.BadPointer { + if ptype != param.Go { + needsUnsafe = true + } + fmt.Fprintf(&sb, "var _cgo%d %s = %s; ", i, + gofmtLine(ptype), gofmtPos(arg, origArg.Pos())) + continue + } + + // Check for &a[i]. + if p.checkIndex(&sb, &sbCheck, arg, i) { + continue + } + + // Check for &x. + if p.checkAddr(&sb, &sbCheck, arg, i) { + continue + } + + fmt.Fprintf(&sb, "_cgo%d := %s; ", i, gofmtPos(arg, origArg.Pos())) + fmt.Fprintf(&sbCheck, "_cgoCheckPointer(_cgo%d, nil); ", i) + } + + if call.Deferred { + sb.WriteString("return func() { ") + } + + // Write out the calls to _cgoCheckPointer. + sb.WriteString(sbCheck.String()) + + if result { + sb.WriteString("return ") + } + + m, nu := p.mangle(f, &call.Call.Fun, false) + if nu { + needsUnsafe = true + } + sb.WriteString(gofmtPos(m, end)) + + sb.WriteString("(") + for i := range params { + if i > 0 { + sb.WriteString(", ") + } + fmt.Fprintf(&sb, "_cgo%d", i) + } + sb.WriteString("); ") + if call.Deferred { + sb.WriteString("}") + } + sb.WriteString("}") + if call.Deferred { + sb.WriteString("()") + } + sb.WriteString("()") + + return sb.String(), needsUnsafe +} + +// needsPointerCheck reports whether the type t needs a pointer check. +// This is true if t is a pointer and if the value to which it points +// might contain a pointer. +func (p *Package) needsPointerCheck(f *File, t ast.Expr, arg ast.Expr) bool { + // An untyped nil does not need a pointer check, and when + // _cgoCheckPointer returns the untyped nil the type assertion we + // are going to insert will fail. Easier to just skip nil arguments. + // TODO: Note that this fails if nil is shadowed. + if id, ok := arg.(*ast.Ident); ok && id.Name == "nil" { + return false + } + + return p.hasPointer(f, t, true) +} + +// hasPointer is used by needsPointerCheck. If top is true it returns +// whether t is or contains a pointer that might point to a pointer. +// If top is false it reports whether t is or contains a pointer. +// f may be nil. +func (p *Package) hasPointer(f *File, t ast.Expr, top bool) bool { + switch t := t.(type) { + case *ast.ArrayType: + if t.Len == nil { + if !top { + return true + } + return p.hasPointer(f, t.Elt, false) + } + return p.hasPointer(f, t.Elt, top) + case *ast.StructType: + for _, field := range t.Fields.List { + if p.hasPointer(f, field.Type, top) { + return true + } + } + return false + case *ast.StarExpr: // Pointer type. + if !top { + return true + } + // Check whether this is a pointer to a C union (or class) + // type that contains a pointer. + if unionWithPointer[t.X] { + return true + } + return p.hasPointer(f, t.X, false) + case *ast.FuncType, *ast.InterfaceType, *ast.MapType, *ast.ChanType: + return true + case *ast.Ident: + // TODO: Handle types defined within function. + for _, d := range p.Decl { + gd, ok := d.(*ast.GenDecl) + if !ok || gd.Tok != token.TYPE { + continue + } + for _, spec := range gd.Specs { + ts, ok := spec.(*ast.TypeSpec) + if !ok { + continue + } + if ts.Name.Name == t.Name { + return p.hasPointer(f, ts.Type, top) + } + } + } + if def := typedef[t.Name]; def != nil { + return p.hasPointer(f, def.Go, top) + } + if t.Name == "string" { + return !top + } + if t.Name == "error" { + return true + } + if goTypes[t.Name] != nil { + return false + } + // We can't figure out the type. Conservative + // approach is to assume it has a pointer. + return true + case *ast.SelectorExpr: + if l, ok := t.X.(*ast.Ident); !ok || l.Name != "C" { + // Type defined in a different package. + // Conservative approach is to assume it has a + // pointer. + return true + } + if f == nil { + // Conservative approach: assume pointer. + return true + } + name := f.Name[t.Sel.Name] + if name != nil && name.Kind == "type" && name.Type != nil && name.Type.Go != nil { + return p.hasPointer(f, name.Type.Go, top) + } + // We can't figure out the type. Conservative + // approach is to assume it has a pointer. + return true + default: + error_(t.Pos(), "could not understand type %s", gofmt(t)) + return true + } +} + +// mangle replaces references to C names in arg with the mangled names, +// rewriting calls when it finds them. +// It removes the corresponding references in f.Ref and f.Calls, so that we +// don't try to do the replacement again in rewriteRef or rewriteCall. +// If addPosition is true, add position info to the idents of C names in arg. +func (p *Package) mangle(f *File, arg *ast.Expr, addPosition bool) (ast.Expr, bool) { + needsUnsafe := false + f.walk(arg, ctxExpr, func(f *File, arg interface{}, context astContext) { + px, ok := arg.(*ast.Expr) + if !ok { + return + } + sel, ok := (*px).(*ast.SelectorExpr) + if ok { + if l, ok := sel.X.(*ast.Ident); !ok || l.Name != "C" { + return + } + + for _, r := range f.Ref { + if r.Expr == px { + *px = p.rewriteName(f, r, addPosition) + r.Done = true + break + } + } + + return + } + + call, ok := (*px).(*ast.CallExpr) + if !ok { + return + } + + for _, c := range f.Calls { + if !c.Done && c.Call.Lparen == call.Lparen { + cstr, nu := p.rewriteCall(f, c) + if cstr != "" { + // Smuggle the rewritten call through an ident. + *px = ast.NewIdent(cstr) + if nu { + needsUnsafe = true + } + c.Done = true + } + } + } + }) + return *arg, needsUnsafe +} + +// checkIndex checks whether arg has the form &a[i], possibly inside +// type conversions. If so, then in the general case it writes +// +// _cgoIndexNN := a +// _cgoNN := &cgoIndexNN[i] // with type conversions, if any +// +// to sb, and writes +// +// _cgoCheckPointer(_cgoNN, _cgoIndexNN) +// +// to sbCheck, and returns true. If a is a simple variable or field reference, +// it writes +// +// _cgoIndexNN := &a +// +// and dereferences the uses of _cgoIndexNN. Taking the address avoids +// making a copy of an array. +// +// This tells _cgoCheckPointer to check the complete contents of the +// slice or array being indexed, but no other part of the memory allocation. +func (p *Package) checkIndex(sb, sbCheck *bytes.Buffer, arg ast.Expr, i int) bool { + // Strip type conversions. + x := arg + for { + c, ok := x.(*ast.CallExpr) + if !ok || len(c.Args) != 1 || !p.isType(c.Fun) { + break + } + x = c.Args[0] + } + u, ok := x.(*ast.UnaryExpr) + if !ok || u.Op != token.AND { + return false + } + index, ok := u.X.(*ast.IndexExpr) + if !ok { + return false + } + + addr := "" + deref := "" + if p.isVariable(index.X) { + addr = "&" + deref = "*" + } + + fmt.Fprintf(sb, "_cgoIndex%d := %s%s; ", i, addr, gofmtPos(index.X, index.X.Pos())) + origX := index.X + index.X = ast.NewIdent(fmt.Sprintf("_cgoIndex%d", i)) + if deref == "*" { + index.X = &ast.StarExpr{X: index.X} + } + fmt.Fprintf(sb, "_cgo%d := %s; ", i, gofmtPos(arg, arg.Pos())) + index.X = origX + + fmt.Fprintf(sbCheck, "_cgoCheckPointer(_cgo%d, %s_cgoIndex%d); ", i, deref, i) + + return true +} + +// checkAddr checks whether arg has the form &x, possibly inside type +// conversions. If so, it writes +// +// _cgoBaseNN := &x +// _cgoNN := _cgoBaseNN // with type conversions, if any +// +// to sb, and writes +// +// _cgoCheckPointer(_cgoBaseNN, true) +// +// to sbCheck, and returns true. This tells _cgoCheckPointer to check +// just the contents of the pointer being passed, not any other part +// of the memory allocation. This is run after checkIndex, which looks +// for the special case of &a[i], which requires different checks. +func (p *Package) checkAddr(sb, sbCheck *bytes.Buffer, arg ast.Expr, i int) bool { + // Strip type conversions. + px := &arg + for { + c, ok := (*px).(*ast.CallExpr) + if !ok || len(c.Args) != 1 || !p.isType(c.Fun) { + break + } + px = &c.Args[0] + } + if u, ok := (*px).(*ast.UnaryExpr); !ok || u.Op != token.AND { + return false + } + + fmt.Fprintf(sb, "_cgoBase%d := %s; ", i, gofmtPos(*px, (*px).Pos())) + + origX := *px + *px = ast.NewIdent(fmt.Sprintf("_cgoBase%d", i)) + fmt.Fprintf(sb, "_cgo%d := %s; ", i, gofmtPos(arg, arg.Pos())) + *px = origX + + // Use "0 == 0" to do the right thing in the unlikely event + // that "true" is shadowed. + fmt.Fprintf(sbCheck, "_cgoCheckPointer(_cgoBase%d, 0 == 0); ", i) + + return true +} + +// isType reports whether the expression is definitely a type. +// This is conservative--it returns false for an unknown identifier. +func (p *Package) isType(t ast.Expr) bool { + switch t := t.(type) { + case *ast.SelectorExpr: + id, ok := t.X.(*ast.Ident) + if !ok { + return false + } + if id.Name == "unsafe" && t.Sel.Name == "Pointer" { + return true + } + if id.Name == "C" && typedef["_Ctype_"+t.Sel.Name] != nil { + return true + } + return false + case *ast.Ident: + // TODO: This ignores shadowing. + switch t.Name { + case "unsafe.Pointer", "bool", "byte", + "complex64", "complex128", + "error", + "float32", "float64", + "int", "int8", "int16", "int32", "int64", + "rune", "string", + "uint", "uint8", "uint16", "uint32", "uint64", "uintptr": + + return true + } + if strings.HasPrefix(t.Name, "_Ctype_") { + return true + } + case *ast.ParenExpr: + return p.isType(t.X) + case *ast.StarExpr: + return p.isType(t.X) + case *ast.ArrayType, *ast.StructType, *ast.FuncType, *ast.InterfaceType, + *ast.MapType, *ast.ChanType: + + return true + } + return false +} + +// isVariable reports whether x is a variable, possibly with field references. +func (p *Package) isVariable(x ast.Expr) bool { + switch x := x.(type) { + case *ast.Ident: + return true + case *ast.SelectorExpr: + return p.isVariable(x.X) + case *ast.IndexExpr: + return true + } + return false +} + +// rewriteUnsafe returns a version of t with references to unsafe.Pointer +// rewritten to use _cgo_unsafe.Pointer instead. +func (p *Package) rewriteUnsafe(t ast.Expr) ast.Expr { + switch t := t.(type) { + case *ast.Ident: + // We don't see a SelectorExpr for unsafe.Pointer; + // this is created by code in this file. + if t.Name == "unsafe.Pointer" { + return ast.NewIdent("_cgo_unsafe.Pointer") + } + case *ast.ArrayType: + t1 := p.rewriteUnsafe(t.Elt) + if t1 != t.Elt { + r := *t + r.Elt = t1 + return &r + } + case *ast.StructType: + changed := false + fields := *t.Fields + fields.List = nil + for _, f := range t.Fields.List { + ft := p.rewriteUnsafe(f.Type) + if ft == f.Type { + fields.List = append(fields.List, f) + } else { + fn := *f + fn.Type = ft + fields.List = append(fields.List, &fn) + changed = true + } + } + if changed { + r := *t + r.Fields = &fields + return &r + } + case *ast.StarExpr: // Pointer type. + x1 := p.rewriteUnsafe(t.X) + if x1 != t.X { + r := *t + r.X = x1 + return &r + } + } + return t +} + +// rewriteRef rewrites all the C.xxx references in f.AST to refer to the +// Go equivalents, now that we have figured out the meaning of all +// the xxx. In *godefs mode, rewriteRef replaces the names +// with full definitions instead of mangled names. +func (p *Package) rewriteRef(f *File) { + // Keep a list of all the functions, to remove the ones + // only used as expressions and avoid generating bridge + // code for them. + functions := make(map[string]bool) + + for _, n := range f.Name { + if n.Kind == "func" { + functions[n.Go] = false + } + } + + // Now that we have all the name types filled in, + // scan through the Refs to identify the ones that + // are trying to do a ,err call. Also check that + // functions are only used in calls. + for _, r := range f.Ref { + if r.Name.IsConst() && r.Name.Const == "" { + error_(r.Pos(), "unable to find value of constant C.%s", fixGo(r.Name.Go)) + } + + if r.Name.Kind == "func" { + switch r.Context { + case ctxCall, ctxCall2: + functions[r.Name.Go] = true + } + } + + expr := p.rewriteName(f, r, false) + + if *godefs { + // Substitute definition for mangled type name. + if r.Name.Type != nil && r.Name.Kind == "type" { + expr = r.Name.Type.Go + } + if id, ok := expr.(*ast.Ident); ok { + if t := typedef[id.Name]; t != nil { + expr = t.Go + } + if id.Name == r.Name.Mangle && r.Name.Const != "" { + expr = ast.NewIdent(r.Name.Const) + } + } + } + + // Copy position information from old expr into new expr, + // in case expression being replaced is first on line. + // See golang.org/issue/6563. + pos := (*r.Expr).Pos() + if x, ok := expr.(*ast.Ident); ok { + expr = &ast.Ident{NamePos: pos, Name: x.Name} + } + + // Change AST, because some later processing depends on it, + // and also because -godefs mode still prints the AST. + old := *r.Expr + *r.Expr = expr + + // Record source-level edit for cgo output. + if !r.Done { + // Prepend a space in case the earlier code ends + // with '/', which would give us a "//" comment. + repl := " " + gofmtPos(expr, old.Pos()) + end := fset.Position(old.End()) + // Subtract 1 from the column if we are going to + // append a close parenthesis. That will set the + // correct column for the following characters. + sub := 0 + if r.Name.Kind != "type" { + sub = 1 + } + if end.Column > sub { + repl = fmt.Sprintf("%s /*line :%d:%d*/", repl, end.Line, end.Column-sub) + } + if r.Name.Kind != "type" { + repl = "(" + repl + ")" + } + f.Edit.Replace(f.offset(old.Pos()), f.offset(old.End()), repl) + } + } + + // Remove functions only used as expressions, so their respective + // bridge functions are not generated. + for name, used := range functions { + if !used { + delete(f.Name, name) + } + } +} + +// rewriteName returns the expression used to rewrite a reference. +// If addPosition is true, add position info in the ident name. +func (p *Package) rewriteName(f *File, r *Ref, addPosition bool) ast.Expr { + getNewIdent := ast.NewIdent + if addPosition { + getNewIdent = func(newName string) *ast.Ident { + mangledIdent := ast.NewIdent(newName) + if len(newName) == len(r.Name.Go) { + return mangledIdent + } + p := fset.Position((*r.Expr).End()) + if p.Column == 0 { + return mangledIdent + } + return ast.NewIdent(fmt.Sprintf("%s /*line :%d:%d*/", newName, p.Line, p.Column)) + } + } + var expr ast.Expr = getNewIdent(r.Name.Mangle) // default + switch r.Context { + case ctxCall, ctxCall2: + if r.Name.Kind != "func" { + if r.Name.Kind == "type" { + r.Context = ctxType + if r.Name.Type == nil { + error_(r.Pos(), "invalid conversion to C.%s: undefined C type '%s'", fixGo(r.Name.Go), r.Name.C) + } + break + } + error_(r.Pos(), "call of non-function C.%s", fixGo(r.Name.Go)) + break + } + if r.Context == ctxCall2 { + if r.Name.Go == "_CMalloc" { + error_(r.Pos(), "no two-result form for C.malloc") + break + } + // Invent new Name for the two-result function. + n := f.Name["2"+r.Name.Go] + if n == nil { + n = new(Name) + *n = *r.Name + n.AddError = true + n.Mangle = "_C2func_" + n.Go + f.Name["2"+r.Name.Go] = n + } + expr = getNewIdent(n.Mangle) + r.Name = n + break + } + case ctxExpr: + switch r.Name.Kind { + case "func": + if builtinDefs[r.Name.C] != "" { + error_(r.Pos(), "use of builtin '%s' not in function call", fixGo(r.Name.C)) + } + + // Function is being used in an expression, to e.g. pass around a C function pointer. + // Create a new Name for this Ref which causes the variable to be declared in Go land. + fpName := "fp_" + r.Name.Go + name := f.Name[fpName] + if name == nil { + name = &Name{ + Go: fpName, + C: r.Name.C, + Kind: "fpvar", + Type: &Type{Size: p.PtrSize, Align: p.PtrSize, C: c("void*"), Go: ast.NewIdent("unsafe.Pointer")}, + } + p.mangleName(name) + f.Name[fpName] = name + } + r.Name = name + // Rewrite into call to _Cgo_ptr to prevent assignments. The _Cgo_ptr + // function is defined in out.go and simply returns its argument. See + // issue 7757. + expr = &ast.CallExpr{ + Fun: &ast.Ident{NamePos: (*r.Expr).Pos(), Name: "_Cgo_ptr"}, + Args: []ast.Expr{getNewIdent(name.Mangle)}, + } + case "type": + // Okay - might be new(T), T(x), Generic[T], etc. + if r.Name.Type == nil { + error_(r.Pos(), "expression C.%s: undefined C type '%s'", fixGo(r.Name.Go), r.Name.C) + } + case "var": + expr = &ast.StarExpr{Star: (*r.Expr).Pos(), X: expr} + case "macro": + expr = &ast.CallExpr{Fun: expr} + } + case ctxSelector: + if r.Name.Kind == "var" { + expr = &ast.StarExpr{Star: (*r.Expr).Pos(), X: expr} + } else { + error_(r.Pos(), "only C variables allowed in selector expression %s", fixGo(r.Name.Go)) + } + case ctxType: + if r.Name.Kind != "type" { + error_(r.Pos(), "expression C.%s used as type", fixGo(r.Name.Go)) + } else if r.Name.Type == nil { + // Use of C.enum_x, C.struct_x or C.union_x without C definition. + // GCC won't raise an error when using pointers to such unknown types. + error_(r.Pos(), "type C.%s: undefined C type '%s'", fixGo(r.Name.Go), r.Name.C) + } + default: + if r.Name.Kind == "func" { + error_(r.Pos(), "must call C.%s", fixGo(r.Name.Go)) + } + } + return expr +} + +// gofmtPos returns the gofmt-formatted string for an AST node, +// with a comment setting the position before the node. +func gofmtPos(n ast.Expr, pos token.Pos) string { + s := gofmtLine(n) + p := fset.Position(pos) + if p.Column == 0 { + return s + } + return fmt.Sprintf("/*line :%d:%d*/%s", p.Line, p.Column, s) +} + +// checkGCCBaseCmd returns the start of the compiler command line. +// It uses $CC if set, or else $GCC, or else the compiler recorded +// during the initial build as defaultCC. +// defaultCC is defined in zdefaultcc.go, written by cmd/dist. +// +// The compiler command line is split into arguments on whitespace. Quotes +// are understood, so arguments may contain whitespace. +// +// checkGCCBaseCmd confirms that the compiler exists in PATH, returning +// an error if it does not. +func checkGCCBaseCmd() ([]string, error) { + // Use $CC if set, since that's what the build uses. + value := os.Getenv("CC") + if value == "" { + // Try $GCC if set, since that's what we used to use. + value = os.Getenv("GCC") + } + if value == "" { + value = defaultCC(goos, goarch) + } + args, err := quoted.Split(value) + if err != nil { + return nil, err + } + if len(args) == 0 { + return nil, errors.New("CC not set and no default found") + } + if _, err := exec.LookPath(args[0]); err != nil { + return nil, fmt.Errorf("C compiler %q not found: %v", args[0], err) + } + return args[:len(args):len(args)], nil +} + +// gccMachine returns the gcc -m flag to use, either "-m32", "-m64" or "-marm". +func (p *Package) gccMachine() []string { + switch goarch { + case "amd64": + if goos == "darwin" { + return []string{"-arch", "x86_64", "-m64"} + } + return []string{"-m64"} + case "arm64": + if goos == "darwin" { + return []string{"-arch", "arm64"} + } + case "386": + return []string{"-m32"} + case "arm": + return []string{"-marm"} // not thumb + case "s390": + return []string{"-m31"} + case "s390x": + return []string{"-m64"} + case "mips64", "mips64le": + if gomips64 == "hardfloat" { + return []string{"-mabi=64", "-mhard-float"} + } else if gomips64 == "softfloat" { + return []string{"-mabi=64", "-msoft-float"} + } + case "mips", "mipsle": + if gomips == "hardfloat" { + return []string{"-mabi=32", "-mfp32", "-mhard-float", "-mno-odd-spreg"} + } else if gomips == "softfloat" { + return []string{"-mabi=32", "-msoft-float"} + } + case "loong64": + return []string{"-mabi=lp64d"} + } + return nil +} + +func gccTmp() string { + return *objDir + "_cgo_.o" +} + +// gccCmd returns the gcc command line to use for compiling +// the input. +func (p *Package) gccCmd() []string { + c := append(gccBaseCmd, + "-w", // no warnings + "-Wno-error", // warnings are not errors + "-o"+gccTmp(), // write object to tmp + "-gdwarf-2", // generate DWARF v2 debugging symbols + "-c", // do not link + "-xc", // input language is C + ) + if p.GccIsClang { + c = append(c, + "-ferror-limit=0", + // Apple clang version 1.7 (tags/Apple/clang-77) (based on LLVM 2.9svn) + // doesn't have -Wno-unneeded-internal-declaration, so we need yet another + // flag to disable the warning. Yes, really good diagnostics, clang. + "-Wno-unknown-warning-option", + "-Wno-unneeded-internal-declaration", + "-Wno-unused-function", + "-Qunused-arguments", + // Clang embeds prototypes for some builtin functions, + // like malloc and calloc, but all size_t parameters are + // incorrectly typed unsigned long. We work around that + // by disabling the builtin functions (this is safe as + // it won't affect the actual compilation of the C code). + // See: https://golang.org/issue/6506. + "-fno-builtin", + ) + } + + c = append(c, p.GccOptions...) + c = append(c, p.gccMachine()...) + if goos == "aix" { + c = append(c, "-maix64") + c = append(c, "-mcmodel=large") + } + // disable LTO so we get an object whose symbols we can read + c = append(c, "-fno-lto") + c = append(c, "-") //read input from standard input + return c +} + +// gccDebug runs gcc -gdwarf-2 over the C program stdin and +// returns the corresponding DWARF data and, if present, debug data block. +func (p *Package) gccDebug(stdin []byte, nnames int) (d *dwarf.Data, ints []int64, floats []float64, strs []string) { + runGcc(stdin, p.gccCmd()) + + isDebugInts := func(s string) bool { + // Some systems use leading _ to denote non-assembly symbols. + return s == "__cgodebug_ints" || s == "___cgodebug_ints" + } + isDebugFloats := func(s string) bool { + // Some systems use leading _ to denote non-assembly symbols. + return s == "__cgodebug_floats" || s == "___cgodebug_floats" + } + indexOfDebugStr := func(s string) int { + // Some systems use leading _ to denote non-assembly symbols. + if strings.HasPrefix(s, "___") { + s = s[1:] + } + if strings.HasPrefix(s, "__cgodebug_str__") { + if n, err := strconv.Atoi(s[len("__cgodebug_str__"):]); err == nil { + return n + } + } + return -1 + } + indexOfDebugStrlen := func(s string) int { + // Some systems use leading _ to denote non-assembly symbols. + if strings.HasPrefix(s, "___") { + s = s[1:] + } + if strings.HasPrefix(s, "__cgodebug_strlen__") { + if n, err := strconv.Atoi(s[len("__cgodebug_strlen__"):]); err == nil { + return n + } + } + return -1 + } + + strs = make([]string, nnames) + + strdata := make(map[int]string, nnames) + strlens := make(map[int]int, nnames) + + buildStrings := func() { + for n, strlen := range strlens { + data := strdata[n] + if len(data) <= strlen { + fatalf("invalid string literal") + } + strs[n] = data[:strlen] + } + } + + if f, err := macho.Open(gccTmp()); err == nil { + defer f.Close() + d, err := f.DWARF() + if err != nil { + fatalf("cannot load DWARF output from %s: %v", gccTmp(), err) + } + bo := f.ByteOrder + if f.Symtab != nil { + for i := range f.Symtab.Syms { + s := &f.Symtab.Syms[i] + switch { + case isDebugInts(s.Name): + // Found it. Now find data section. + if i := int(s.Sect) - 1; 0 <= i && i < len(f.Sections) { + sect := f.Sections[i] + if sect.Addr <= s.Value && s.Value < sect.Addr+sect.Size { + if sdat, err := sect.Data(); err == nil { + data := sdat[s.Value-sect.Addr:] + ints = make([]int64, len(data)/8) + for i := range ints { + ints[i] = int64(bo.Uint64(data[i*8:])) + } + } + } + } + case isDebugFloats(s.Name): + // Found it. Now find data section. + if i := int(s.Sect) - 1; 0 <= i && i < len(f.Sections) { + sect := f.Sections[i] + if sect.Addr <= s.Value && s.Value < sect.Addr+sect.Size { + if sdat, err := sect.Data(); err == nil { + data := sdat[s.Value-sect.Addr:] + floats = make([]float64, len(data)/8) + for i := range floats { + floats[i] = math.Float64frombits(bo.Uint64(data[i*8:])) + } + } + } + } + default: + if n := indexOfDebugStr(s.Name); n != -1 { + // Found it. Now find data section. + if i := int(s.Sect) - 1; 0 <= i && i < len(f.Sections) { + sect := f.Sections[i] + if sect.Addr <= s.Value && s.Value < sect.Addr+sect.Size { + if sdat, err := sect.Data(); err == nil { + data := sdat[s.Value-sect.Addr:] + strdata[n] = string(data) + } + } + } + break + } + if n := indexOfDebugStrlen(s.Name); n != -1 { + // Found it. Now find data section. + if i := int(s.Sect) - 1; 0 <= i && i < len(f.Sections) { + sect := f.Sections[i] + if sect.Addr <= s.Value && s.Value < sect.Addr+sect.Size { + if sdat, err := sect.Data(); err == nil { + data := sdat[s.Value-sect.Addr:] + strlen := bo.Uint64(data[:8]) + if strlen > (1<<(uint(p.IntSize*8)-1) - 1) { // greater than MaxInt? + fatalf("string literal too big") + } + strlens[n] = int(strlen) + } + } + } + break + } + } + } + + buildStrings() + } + return d, ints, floats, strs + } + + if f, err := elf.Open(gccTmp()); err == nil { + defer f.Close() + d, err := f.DWARF() + if err != nil { + fatalf("cannot load DWARF output from %s: %v", gccTmp(), err) + } + bo := f.ByteOrder + symtab, err := f.Symbols() + if err == nil { + // Check for use of -fsanitize=hwaddress (issue 53285). + removeTag := func(v uint64) uint64 { return v } + if goarch == "arm64" { + for i := range symtab { + if symtab[i].Name == "__hwasan_init" { + // -fsanitize=hwaddress on ARM + // uses the upper byte of a + // memory address as a hardware + // tag. Remove it so that + // we can find the associated + // data. + removeTag = func(v uint64) uint64 { return v &^ (0xff << (64 - 8)) } + break + } + } + } + + for i := range symtab { + s := &symtab[i] + switch { + case isDebugInts(s.Name): + // Found it. Now find data section. + if i := int(s.Section); 0 <= i && i < len(f.Sections) { + sect := f.Sections[i] + val := removeTag(s.Value) + if sect.Addr <= val && val < sect.Addr+sect.Size { + if sdat, err := sect.Data(); err == nil { + data := sdat[val-sect.Addr:] + ints = make([]int64, len(data)/8) + for i := range ints { + ints[i] = int64(bo.Uint64(data[i*8:])) + } + } + } + } + case isDebugFloats(s.Name): + // Found it. Now find data section. + if i := int(s.Section); 0 <= i && i < len(f.Sections) { + sect := f.Sections[i] + val := removeTag(s.Value) + if sect.Addr <= val && val < sect.Addr+sect.Size { + if sdat, err := sect.Data(); err == nil { + data := sdat[val-sect.Addr:] + floats = make([]float64, len(data)/8) + for i := range floats { + floats[i] = math.Float64frombits(bo.Uint64(data[i*8:])) + } + } + } + } + default: + if n := indexOfDebugStr(s.Name); n != -1 { + // Found it. Now find data section. + if i := int(s.Section); 0 <= i && i < len(f.Sections) { + sect := f.Sections[i] + val := removeTag(s.Value) + if sect.Addr <= val && val < sect.Addr+sect.Size { + if sdat, err := sect.Data(); err == nil { + data := sdat[val-sect.Addr:] + strdata[n] = string(data) + } + } + } + break + } + if n := indexOfDebugStrlen(s.Name); n != -1 { + // Found it. Now find data section. + if i := int(s.Section); 0 <= i && i < len(f.Sections) { + sect := f.Sections[i] + val := removeTag(s.Value) + if sect.Addr <= val && val < sect.Addr+sect.Size { + if sdat, err := sect.Data(); err == nil { + data := sdat[val-sect.Addr:] + strlen := bo.Uint64(data[:8]) + if strlen > (1<<(uint(p.IntSize*8)-1) - 1) { // greater than MaxInt? + fatalf("string literal too big") + } + strlens[n] = int(strlen) + } + } + } + break + } + } + } + + buildStrings() + } + return d, ints, floats, strs + } + + if f, err := pe.Open(gccTmp()); err == nil { + defer f.Close() + d, err := f.DWARF() + if err != nil { + fatalf("cannot load DWARF output from %s: %v", gccTmp(), err) + } + bo := binary.LittleEndian + for _, s := range f.Symbols { + switch { + case isDebugInts(s.Name): + if i := int(s.SectionNumber) - 1; 0 <= i && i < len(f.Sections) { + sect := f.Sections[i] + if s.Value < sect.Size { + if sdat, err := sect.Data(); err == nil { + data := sdat[s.Value:] + ints = make([]int64, len(data)/8) + for i := range ints { + ints[i] = int64(bo.Uint64(data[i*8:])) + } + } + } + } + case isDebugFloats(s.Name): + if i := int(s.SectionNumber) - 1; 0 <= i && i < len(f.Sections) { + sect := f.Sections[i] + if s.Value < sect.Size { + if sdat, err := sect.Data(); err == nil { + data := sdat[s.Value:] + floats = make([]float64, len(data)/8) + for i := range floats { + floats[i] = math.Float64frombits(bo.Uint64(data[i*8:])) + } + } + } + } + default: + if n := indexOfDebugStr(s.Name); n != -1 { + if i := int(s.SectionNumber) - 1; 0 <= i && i < len(f.Sections) { + sect := f.Sections[i] + if s.Value < sect.Size { + if sdat, err := sect.Data(); err == nil { + data := sdat[s.Value:] + strdata[n] = string(data) + } + } + } + break + } + if n := indexOfDebugStrlen(s.Name); n != -1 { + if i := int(s.SectionNumber) - 1; 0 <= i && i < len(f.Sections) { + sect := f.Sections[i] + if s.Value < sect.Size { + if sdat, err := sect.Data(); err == nil { + data := sdat[s.Value:] + strlen := bo.Uint64(data[:8]) + if strlen > (1<<(uint(p.IntSize*8)-1) - 1) { // greater than MaxInt? + fatalf("string literal too big") + } + strlens[n] = int(strlen) + } + } + } + break + } + } + } + + buildStrings() + + return d, ints, floats, strs + } + + if f, err := xcoff.Open(gccTmp()); err == nil { + defer f.Close() + d, err := f.DWARF() + if err != nil { + fatalf("cannot load DWARF output from %s: %v", gccTmp(), err) + } + bo := binary.BigEndian + for _, s := range f.Symbols { + switch { + case isDebugInts(s.Name): + if i := int(s.SectionNumber) - 1; 0 <= i && i < len(f.Sections) { + sect := f.Sections[i] + if s.Value < sect.Size { + if sdat, err := sect.Data(); err == nil { + data := sdat[s.Value:] + ints = make([]int64, len(data)/8) + for i := range ints { + ints[i] = int64(bo.Uint64(data[i*8:])) + } + } + } + } + case isDebugFloats(s.Name): + if i := int(s.SectionNumber) - 1; 0 <= i && i < len(f.Sections) { + sect := f.Sections[i] + if s.Value < sect.Size { + if sdat, err := sect.Data(); err == nil { + data := sdat[s.Value:] + floats = make([]float64, len(data)/8) + for i := range floats { + floats[i] = math.Float64frombits(bo.Uint64(data[i*8:])) + } + } + } + } + default: + if n := indexOfDebugStr(s.Name); n != -1 { + if i := int(s.SectionNumber) - 1; 0 <= i && i < len(f.Sections) { + sect := f.Sections[i] + if s.Value < sect.Size { + if sdat, err := sect.Data(); err == nil { + data := sdat[s.Value:] + strdata[n] = string(data) + } + } + } + break + } + if n := indexOfDebugStrlen(s.Name); n != -1 { + if i := int(s.SectionNumber) - 1; 0 <= i && i < len(f.Sections) { + sect := f.Sections[i] + if s.Value < sect.Size { + if sdat, err := sect.Data(); err == nil { + data := sdat[s.Value:] + strlen := bo.Uint64(data[:8]) + if strlen > (1<<(uint(p.IntSize*8)-1) - 1) { // greater than MaxInt? + fatalf("string literal too big") + } + strlens[n] = int(strlen) + } + } + } + break + } + } + } + + buildStrings() + return d, ints, floats, strs + } + fatalf("cannot parse gcc output %s as ELF, Mach-O, PE, XCOFF object", gccTmp()) + panic("not reached") +} + +// gccDefines runs gcc -E -dM -xc - over the C program stdin +// and returns the corresponding standard output, which is the +// #defines that gcc encountered while processing the input +// and its included files. +func (p *Package) gccDefines(stdin []byte) string { + base := append(gccBaseCmd, "-E", "-dM", "-xc") + base = append(base, p.gccMachine()...) + stdout, _ := runGcc(stdin, append(append(base, p.GccOptions...), "-")) + return stdout +} + +// gccErrors runs gcc over the C program stdin and returns +// the errors that gcc prints. That is, this function expects +// gcc to fail. +func (p *Package) gccErrors(stdin []byte, extraArgs ...string) string { + // TODO(rsc): require failure + args := p.gccCmd() + + // Optimization options can confuse the error messages; remove them. + nargs := make([]string, 0, len(args)+len(extraArgs)) + for _, arg := range args { + if !strings.HasPrefix(arg, "-O") { + nargs = append(nargs, arg) + } + } + + // Force -O0 optimization and append extra arguments, but keep the + // trailing "-" at the end. + li := len(nargs) - 1 + last := nargs[li] + nargs[li] = "-O0" + nargs = append(nargs, extraArgs...) + nargs = append(nargs, last) + + if *debugGcc { + fmt.Fprintf(os.Stderr, "$ %s <<EOF\n", strings.Join(nargs, " ")) + os.Stderr.Write(stdin) + fmt.Fprint(os.Stderr, "EOF\n") + } + stdout, stderr, _ := run(stdin, nargs) + if *debugGcc { + os.Stderr.Write(stdout) + os.Stderr.Write(stderr) + } + return string(stderr) +} + +// runGcc runs the gcc command line args with stdin on standard input. +// If the command exits with a non-zero exit status, runGcc prints +// details about what was run and exits. +// Otherwise runGcc returns the data written to standard output and standard error. +// Note that for some of the uses we expect useful data back +// on standard error, but for those uses gcc must still exit 0. +func runGcc(stdin []byte, args []string) (string, string) { + if *debugGcc { + fmt.Fprintf(os.Stderr, "$ %s <<EOF\n", strings.Join(args, " ")) + os.Stderr.Write(stdin) + fmt.Fprint(os.Stderr, "EOF\n") + } + stdout, stderr, ok := run(stdin, args) + if *debugGcc { + os.Stderr.Write(stdout) + os.Stderr.Write(stderr) + } + if !ok { + os.Stderr.Write(stderr) + os.Exit(2) + } + return string(stdout), string(stderr) +} + +// A typeConv is a translator from dwarf types to Go types +// with equivalent memory layout. +type typeConv struct { + // Cache of already-translated or in-progress types. + m map[string]*Type + + // Map from types to incomplete pointers to those types. + ptrs map[string][]*Type + // Keys of ptrs in insertion order (deterministic worklist) + // ptrKeys contains exactly the keys in ptrs. + ptrKeys []dwarf.Type + + // Type names X for which there exists an XGetTypeID function with type func() CFTypeID. + getTypeIDs map[string]bool + + // incompleteStructs contains C structs that should be marked Incomplete. + incompleteStructs map[string]bool + + // Predeclared types. + bool ast.Expr + byte ast.Expr // denotes padding + int8, int16, int32, int64 ast.Expr + uint8, uint16, uint32, uint64, uintptr ast.Expr + float32, float64 ast.Expr + complex64, complex128 ast.Expr + void ast.Expr + string ast.Expr + goVoid ast.Expr // _Ctype_void, denotes C's void + goVoidPtr ast.Expr // unsafe.Pointer or *byte + + ptrSize int64 + intSize int64 +} + +var tagGen int +var typedef = make(map[string]*Type) +var goIdent = make(map[string]*ast.Ident) + +// unionWithPointer is true for a Go type that represents a C union (or class) +// that may contain a pointer. This is used for cgo pointer checking. +var unionWithPointer = make(map[ast.Expr]bool) + +// anonymousStructTag provides a consistent tag for an anonymous struct. +// The same dwarf.StructType pointer will always get the same tag. +var anonymousStructTag = make(map[*dwarf.StructType]string) + +func (c *typeConv) Init(ptrSize, intSize int64) { + c.ptrSize = ptrSize + c.intSize = intSize + c.m = make(map[string]*Type) + c.ptrs = make(map[string][]*Type) + c.getTypeIDs = make(map[string]bool) + c.incompleteStructs = make(map[string]bool) + c.bool = c.Ident("bool") + c.byte = c.Ident("byte") + c.int8 = c.Ident("int8") + c.int16 = c.Ident("int16") + c.int32 = c.Ident("int32") + c.int64 = c.Ident("int64") + c.uint8 = c.Ident("uint8") + c.uint16 = c.Ident("uint16") + c.uint32 = c.Ident("uint32") + c.uint64 = c.Ident("uint64") + c.uintptr = c.Ident("uintptr") + c.float32 = c.Ident("float32") + c.float64 = c.Ident("float64") + c.complex64 = c.Ident("complex64") + c.complex128 = c.Ident("complex128") + c.void = c.Ident("void") + c.string = c.Ident("string") + c.goVoid = c.Ident("_Ctype_void") + + // Normally cgo translates void* to unsafe.Pointer, + // but for historical reasons -godefs uses *byte instead. + if *godefs { + c.goVoidPtr = &ast.StarExpr{X: c.byte} + } else { + c.goVoidPtr = c.Ident("unsafe.Pointer") + } +} + +// base strips away qualifiers and typedefs to get the underlying type. +func base(dt dwarf.Type) dwarf.Type { + for { + if d, ok := dt.(*dwarf.QualType); ok { + dt = d.Type + continue + } + if d, ok := dt.(*dwarf.TypedefType); ok { + dt = d.Type + continue + } + break + } + return dt +} + +// unqual strips away qualifiers from a DWARF type. +// In general we don't care about top-level qualifiers. +func unqual(dt dwarf.Type) dwarf.Type { + for { + if d, ok := dt.(*dwarf.QualType); ok { + dt = d.Type + } else { + break + } + } + return dt +} + +// Map from dwarf text names to aliases we use in package "C". +var dwarfToName = map[string]string{ + "long int": "long", + "long unsigned int": "ulong", + "unsigned int": "uint", + "short unsigned int": "ushort", + "unsigned short": "ushort", // Used by Clang; issue 13129. + "short int": "short", + "long long int": "longlong", + "long long unsigned int": "ulonglong", + "signed char": "schar", + "unsigned char": "uchar", + "unsigned long": "ulong", // Used by Clang 14; issue 53013. + "unsigned long long": "ulonglong", // Used by Clang 14; issue 53013. +} + +const signedDelta = 64 + +// String returns the current type representation. Format arguments +// are assembled within this method so that any changes in mutable +// values are taken into account. +func (tr *TypeRepr) String() string { + if len(tr.Repr) == 0 { + return "" + } + if len(tr.FormatArgs) == 0 { + return tr.Repr + } + return fmt.Sprintf(tr.Repr, tr.FormatArgs...) +} + +// Empty reports whether the result of String would be "". +func (tr *TypeRepr) Empty() bool { + return len(tr.Repr) == 0 +} + +// Set modifies the type representation. +// If fargs are provided, repr is used as a format for fmt.Sprintf. +// Otherwise, repr is used unprocessed as the type representation. +func (tr *TypeRepr) Set(repr string, fargs ...interface{}) { + tr.Repr = repr + tr.FormatArgs = fargs +} + +// FinishType completes any outstanding type mapping work. +// In particular, it resolves incomplete pointer types. +func (c *typeConv) FinishType(pos token.Pos) { + // Completing one pointer type might produce more to complete. + // Keep looping until they're all done. + for len(c.ptrKeys) > 0 { + dtype := c.ptrKeys[0] + dtypeKey := dtype.String() + c.ptrKeys = c.ptrKeys[1:] + ptrs := c.ptrs[dtypeKey] + delete(c.ptrs, dtypeKey) + + // Note Type might invalidate c.ptrs[dtypeKey]. + t := c.Type(dtype, pos) + for _, ptr := range ptrs { + ptr.Go.(*ast.StarExpr).X = t.Go + ptr.C.Set("%s*", t.C) + } + } +} + +// Type returns a *Type with the same memory layout as +// dtype when used as the type of a variable or a struct field. +func (c *typeConv) Type(dtype dwarf.Type, pos token.Pos) *Type { + return c.loadType(dtype, pos, "") +} + +// loadType recursively loads the requested dtype and its dependency graph. +func (c *typeConv) loadType(dtype dwarf.Type, pos token.Pos, parent string) *Type { + // Always recompute bad pointer typedefs, as the set of such + // typedefs changes as we see more types. + checkCache := true + if dtt, ok := dtype.(*dwarf.TypedefType); ok && c.badPointerTypedef(dtt) { + checkCache = false + } + + // The cache key should be relative to its parent. + // See issue https://golang.org/issue/31891 + key := parent + " > " + dtype.String() + + if checkCache { + if t, ok := c.m[key]; ok { + if t.Go == nil { + fatalf("%s: type conversion loop at %s", lineno(pos), dtype) + } + return t + } + } + + t := new(Type) + t.Size = dtype.Size() // note: wrong for array of pointers, corrected below + t.Align = -1 + t.C = &TypeRepr{Repr: dtype.Common().Name} + c.m[key] = t + + switch dt := dtype.(type) { + default: + fatalf("%s: unexpected type: %s", lineno(pos), dtype) + + case *dwarf.AddrType: + if t.Size != c.ptrSize { + fatalf("%s: unexpected: %d-byte address type - %s", lineno(pos), t.Size, dtype) + } + t.Go = c.uintptr + t.Align = t.Size + + case *dwarf.ArrayType: + if dt.StrideBitSize > 0 { + // Cannot represent bit-sized elements in Go. + t.Go = c.Opaque(t.Size) + break + } + count := dt.Count + if count == -1 { + // Indicates flexible array member, which Go doesn't support. + // Translate to zero-length array instead. + count = 0 + } + sub := c.Type(dt.Type, pos) + t.Align = sub.Align + t.Go = &ast.ArrayType{ + Len: c.intExpr(count), + Elt: sub.Go, + } + // Recalculate t.Size now that we know sub.Size. + t.Size = count * sub.Size + t.C.Set("__typeof__(%s[%d])", sub.C, dt.Count) + + case *dwarf.BoolType: + t.Go = c.bool + t.Align = 1 + + case *dwarf.CharType: + if t.Size != 1 { + fatalf("%s: unexpected: %d-byte char type - %s", lineno(pos), t.Size, dtype) + } + t.Go = c.int8 + t.Align = 1 + + case *dwarf.EnumType: + if t.Align = t.Size; t.Align >= c.ptrSize { + t.Align = c.ptrSize + } + t.C.Set("enum " + dt.EnumName) + signed := 0 + t.EnumValues = make(map[string]int64) + for _, ev := range dt.Val { + t.EnumValues[ev.Name] = ev.Val + if ev.Val < 0 { + signed = signedDelta + } + } + switch t.Size + int64(signed) { + default: + fatalf("%s: unexpected: %d-byte enum type - %s", lineno(pos), t.Size, dtype) + case 1: + t.Go = c.uint8 + case 2: + t.Go = c.uint16 + case 4: + t.Go = c.uint32 + case 8: + t.Go = c.uint64 + case 1 + signedDelta: + t.Go = c.int8 + case 2 + signedDelta: + t.Go = c.int16 + case 4 + signedDelta: + t.Go = c.int32 + case 8 + signedDelta: + t.Go = c.int64 + } + + case *dwarf.FloatType: + switch t.Size { + default: + fatalf("%s: unexpected: %d-byte float type - %s", lineno(pos), t.Size, dtype) + case 4: + t.Go = c.float32 + case 8: + t.Go = c.float64 + } + if t.Align = t.Size; t.Align >= c.ptrSize { + t.Align = c.ptrSize + } + + case *dwarf.ComplexType: + switch t.Size { + default: + fatalf("%s: unexpected: %d-byte complex type - %s", lineno(pos), t.Size, dtype) + case 8: + t.Go = c.complex64 + case 16: + t.Go = c.complex128 + } + if t.Align = t.Size / 2; t.Align >= c.ptrSize { + t.Align = c.ptrSize + } + + case *dwarf.FuncType: + // No attempt at translation: would enable calls + // directly between worlds, but we need to moderate those. + t.Go = c.uintptr + t.Align = c.ptrSize + + case *dwarf.IntType: + if dt.BitSize > 0 { + fatalf("%s: unexpected: %d-bit int type - %s", lineno(pos), dt.BitSize, dtype) + } + switch t.Size { + default: + fatalf("%s: unexpected: %d-byte int type - %s", lineno(pos), t.Size, dtype) + case 1: + t.Go = c.int8 + case 2: + t.Go = c.int16 + case 4: + t.Go = c.int32 + case 8: + t.Go = c.int64 + case 16: + t.Go = &ast.ArrayType{ + Len: c.intExpr(t.Size), + Elt: c.uint8, + } + } + if t.Align = t.Size; t.Align >= c.ptrSize { + t.Align = c.ptrSize + } + + case *dwarf.PtrType: + // Clang doesn't emit DW_AT_byte_size for pointer types. + if t.Size != c.ptrSize && t.Size != -1 { + fatalf("%s: unexpected: %d-byte pointer type - %s", lineno(pos), t.Size, dtype) + } + t.Size = c.ptrSize + t.Align = c.ptrSize + + if _, ok := base(dt.Type).(*dwarf.VoidType); ok { + t.Go = c.goVoidPtr + t.C.Set("void*") + dq := dt.Type + for { + if d, ok := dq.(*dwarf.QualType); ok { + t.C.Set(d.Qual + " " + t.C.String()) + dq = d.Type + } else { + break + } + } + break + } + + // Placeholder initialization; completed in FinishType. + t.Go = &ast.StarExpr{} + t.C.Set("<incomplete>*") + key := dt.Type.String() + if _, ok := c.ptrs[key]; !ok { + c.ptrKeys = append(c.ptrKeys, dt.Type) + } + c.ptrs[key] = append(c.ptrs[key], t) + + case *dwarf.QualType: + t1 := c.Type(dt.Type, pos) + t.Size = t1.Size + t.Align = t1.Align + t.Go = t1.Go + if unionWithPointer[t1.Go] { + unionWithPointer[t.Go] = true + } + t.EnumValues = nil + t.Typedef = "" + t.C.Set("%s "+dt.Qual, t1.C) + return t + + case *dwarf.StructType: + // Convert to Go struct, being careful about alignment. + // Have to give it a name to simulate C "struct foo" references. + tag := dt.StructName + if dt.ByteSize < 0 && tag == "" { // opaque unnamed struct - should not be possible + break + } + if tag == "" { + tag = anonymousStructTag[dt] + if tag == "" { + tag = "__" + strconv.Itoa(tagGen) + tagGen++ + anonymousStructTag[dt] = tag + } + } else if t.C.Empty() { + t.C.Set(dt.Kind + " " + tag) + } + name := c.Ident("_Ctype_" + dt.Kind + "_" + tag) + t.Go = name // publish before recursive calls + goIdent[name.Name] = name + if dt.ByteSize < 0 { + // Don't override old type + if _, ok := typedef[name.Name]; ok { + break + } + + // Size calculation in c.Struct/c.Opaque will die with size=-1 (unknown), + // so execute the basic things that the struct case would do + // other than try to determine a Go representation. + tt := *t + tt.C = &TypeRepr{"%s %s", []interface{}{dt.Kind, tag}} + // We don't know what the representation of this struct is, so don't let + // anyone allocate one on the Go side. As a side effect of this annotation, + // pointers to this type will not be considered pointers in Go. They won't + // get writebarrier-ed or adjusted during a stack copy. This should handle + // all the cases badPointerTypedef used to handle, but hopefully will + // continue to work going forward without any more need for cgo changes. + tt.Go = c.Ident(incomplete) + typedef[name.Name] = &tt + break + } + switch dt.Kind { + case "class", "union": + t.Go = c.Opaque(t.Size) + if c.dwarfHasPointer(dt, pos) { + unionWithPointer[t.Go] = true + } + if t.C.Empty() { + t.C.Set("__typeof__(unsigned char[%d])", t.Size) + } + t.Align = 1 // TODO: should probably base this on field alignment. + typedef[name.Name] = t + case "struct": + g, csyntax, align := c.Struct(dt, pos) + if t.C.Empty() { + t.C.Set(csyntax) + } + t.Align = align + tt := *t + if tag != "" { + tt.C = &TypeRepr{"struct %s", []interface{}{tag}} + } + tt.Go = g + if c.incompleteStructs[tag] { + tt.Go = c.Ident(incomplete) + } + typedef[name.Name] = &tt + } + + case *dwarf.TypedefType: + // Record typedef for printing. + if dt.Name == "_GoString_" { + // Special C name for Go string type. + // Knows string layout used by compilers: pointer plus length, + // which rounds up to 2 pointers after alignment. + t.Go = c.string + t.Size = c.ptrSize * 2 + t.Align = c.ptrSize + break + } + if dt.Name == "_GoBytes_" { + // Special C name for Go []byte type. + // Knows slice layout used by compilers: pointer, length, cap. + t.Go = c.Ident("[]byte") + t.Size = c.ptrSize + 4 + 4 + t.Align = c.ptrSize + break + } + name := c.Ident("_Ctype_" + dt.Name) + goIdent[name.Name] = name + akey := "" + if c.anonymousStructTypedef(dt) { + // only load type recursively for typedefs of anonymous + // structs, see issues 37479 and 37621. + akey = key + } + sub := c.loadType(dt.Type, pos, akey) + if c.badPointerTypedef(dt) { + // Treat this typedef as a uintptr. + s := *sub + s.Go = c.uintptr + s.BadPointer = true + sub = &s + // Make sure we update any previously computed type. + if oldType := typedef[name.Name]; oldType != nil { + oldType.Go = sub.Go + oldType.BadPointer = true + } + } + if c.badVoidPointerTypedef(dt) { + // Treat this typedef as a pointer to a _cgopackage.Incomplete. + s := *sub + s.Go = c.Ident("*" + incomplete) + sub = &s + // Make sure we update any previously computed type. + if oldType := typedef[name.Name]; oldType != nil { + oldType.Go = sub.Go + } + } + // Check for non-pointer "struct <tag>{...}; typedef struct <tag> *<name>" + // typedefs that should be marked Incomplete. + if ptr, ok := dt.Type.(*dwarf.PtrType); ok { + if strct, ok := ptr.Type.(*dwarf.StructType); ok { + if c.badStructPointerTypedef(dt.Name, strct) { + c.incompleteStructs[strct.StructName] = true + // Make sure we update any previously computed type. + name := "_Ctype_struct_" + strct.StructName + if oldType := typedef[name]; oldType != nil { + oldType.Go = c.Ident(incomplete) + } + } + } + } + t.Go = name + t.BadPointer = sub.BadPointer + if unionWithPointer[sub.Go] { + unionWithPointer[t.Go] = true + } + t.Size = sub.Size + t.Align = sub.Align + oldType := typedef[name.Name] + if oldType == nil { + tt := *t + tt.Go = sub.Go + tt.BadPointer = sub.BadPointer + typedef[name.Name] = &tt + } + + // If sub.Go.Name is "_Ctype_struct_foo" or "_Ctype_union_foo" or "_Ctype_class_foo", + // use that as the Go form for this typedef too, so that the typedef will be interchangeable + // with the base type. + // In -godefs mode, do this for all typedefs. + if isStructUnionClass(sub.Go) || *godefs { + t.Go = sub.Go + + if isStructUnionClass(sub.Go) { + // Use the typedef name for C code. + typedef[sub.Go.(*ast.Ident).Name].C = t.C + } + + // If we've seen this typedef before, and it + // was an anonymous struct/union/class before + // too, use the old definition. + // TODO: it would be safer to only do this if + // we verify that the types are the same. + if oldType != nil && isStructUnionClass(oldType.Go) { + t.Go = oldType.Go + } + } + + case *dwarf.UcharType: + if t.Size != 1 { + fatalf("%s: unexpected: %d-byte uchar type - %s", lineno(pos), t.Size, dtype) + } + t.Go = c.uint8 + t.Align = 1 + + case *dwarf.UintType: + if dt.BitSize > 0 { + fatalf("%s: unexpected: %d-bit uint type - %s", lineno(pos), dt.BitSize, dtype) + } + switch t.Size { + default: + fatalf("%s: unexpected: %d-byte uint type - %s", lineno(pos), t.Size, dtype) + case 1: + t.Go = c.uint8 + case 2: + t.Go = c.uint16 + case 4: + t.Go = c.uint32 + case 8: + t.Go = c.uint64 + case 16: + t.Go = &ast.ArrayType{ + Len: c.intExpr(t.Size), + Elt: c.uint8, + } + } + if t.Align = t.Size; t.Align >= c.ptrSize { + t.Align = c.ptrSize + } + + case *dwarf.VoidType: + t.Go = c.goVoid + t.C.Set("void") + t.Align = 1 + } + + switch dtype.(type) { + case *dwarf.AddrType, *dwarf.BoolType, *dwarf.CharType, *dwarf.ComplexType, *dwarf.IntType, *dwarf.FloatType, *dwarf.UcharType, *dwarf.UintType: + s := dtype.Common().Name + if s != "" { + if ss, ok := dwarfToName[s]; ok { + s = ss + } + s = strings.Replace(s, " ", "", -1) + name := c.Ident("_Ctype_" + s) + tt := *t + typedef[name.Name] = &tt + if !*godefs { + t.Go = name + } + } + } + + if t.Size < 0 { + // Unsized types are [0]byte, unless they're typedefs of other types + // or structs with tags. + // if so, use the name we've already defined. + t.Size = 0 + switch dt := dtype.(type) { + case *dwarf.TypedefType: + // ok + case *dwarf.StructType: + if dt.StructName != "" { + break + } + t.Go = c.Opaque(0) + default: + t.Go = c.Opaque(0) + } + if t.C.Empty() { + t.C.Set("void") + } + } + + if t.C.Empty() { + fatalf("%s: internal error: did not create C name for %s", lineno(pos), dtype) + } + + return t +} + +// isStructUnionClass reports whether the type described by the Go syntax x +// is a struct, union, or class with a tag. +func isStructUnionClass(x ast.Expr) bool { + id, ok := x.(*ast.Ident) + if !ok { + return false + } + name := id.Name + return strings.HasPrefix(name, "_Ctype_struct_") || + strings.HasPrefix(name, "_Ctype_union_") || + strings.HasPrefix(name, "_Ctype_class_") +} + +// FuncArg returns a Go type with the same memory layout as +// dtype when used as the type of a C function argument. +func (c *typeConv) FuncArg(dtype dwarf.Type, pos token.Pos) *Type { + t := c.Type(unqual(dtype), pos) + switch dt := dtype.(type) { + case *dwarf.ArrayType: + // Arrays are passed implicitly as pointers in C. + // In Go, we must be explicit. + tr := &TypeRepr{} + tr.Set("%s*", t.C) + return &Type{ + Size: c.ptrSize, + Align: c.ptrSize, + Go: &ast.StarExpr{X: t.Go}, + C: tr, + } + case *dwarf.TypedefType: + // C has much more relaxed rules than Go for + // implicit type conversions. When the parameter + // is type T defined as *X, simulate a little of the + // laxness of C by making the argument *X instead of T. + if ptr, ok := base(dt.Type).(*dwarf.PtrType); ok { + // Unless the typedef happens to point to void* since + // Go has special rules around using unsafe.Pointer. + if _, void := base(ptr.Type).(*dwarf.VoidType); void { + break + } + // ...or the typedef is one in which we expect bad pointers. + // It will be a uintptr instead of *X. + if c.baseBadPointerTypedef(dt) { + break + } + + t = c.Type(ptr, pos) + if t == nil { + return nil + } + + // For a struct/union/class, remember the C spelling, + // in case it has __attribute__((unavailable)). + // See issue 2888. + if isStructUnionClass(t.Go) { + t.Typedef = dt.Name + } + } + } + return t +} + +// FuncType returns the Go type analogous to dtype. +// There is no guarantee about matching memory layout. +func (c *typeConv) FuncType(dtype *dwarf.FuncType, pos token.Pos) *FuncType { + p := make([]*Type, len(dtype.ParamType)) + gp := make([]*ast.Field, len(dtype.ParamType)) + for i, f := range dtype.ParamType { + // gcc's DWARF generator outputs a single DotDotDotType parameter for + // function pointers that specify no parameters (e.g. void + // (*__cgo_0)()). Treat this special case as void. This case is + // invalid according to ISO C anyway (i.e. void (*__cgo_1)(...) is not + // legal). + if _, ok := f.(*dwarf.DotDotDotType); ok && i == 0 { + p, gp = nil, nil + break + } + p[i] = c.FuncArg(f, pos) + gp[i] = &ast.Field{Type: p[i].Go} + } + var r *Type + var gr []*ast.Field + if _, ok := base(dtype.ReturnType).(*dwarf.VoidType); ok { + gr = []*ast.Field{{Type: c.goVoid}} + } else if dtype.ReturnType != nil { + r = c.Type(unqual(dtype.ReturnType), pos) + gr = []*ast.Field{{Type: r.Go}} + } + return &FuncType{ + Params: p, + Result: r, + Go: &ast.FuncType{ + Params: &ast.FieldList{List: gp}, + Results: &ast.FieldList{List: gr}, + }, + } +} + +// Identifier +func (c *typeConv) Ident(s string) *ast.Ident { + return ast.NewIdent(s) +} + +// Opaque type of n bytes. +func (c *typeConv) Opaque(n int64) ast.Expr { + return &ast.ArrayType{ + Len: c.intExpr(n), + Elt: c.byte, + } +} + +// Expr for integer n. +func (c *typeConv) intExpr(n int64) ast.Expr { + return &ast.BasicLit{ + Kind: token.INT, + Value: strconv.FormatInt(n, 10), + } +} + +// Add padding of given size to fld. +func (c *typeConv) pad(fld []*ast.Field, sizes []int64, size int64) ([]*ast.Field, []int64) { + n := len(fld) + fld = fld[0 : n+1] + fld[n] = &ast.Field{Names: []*ast.Ident{c.Ident("_")}, Type: c.Opaque(size)} + sizes = sizes[0 : n+1] + sizes[n] = size + return fld, sizes +} + +// Struct conversion: return Go and (gc) C syntax for type. +func (c *typeConv) Struct(dt *dwarf.StructType, pos token.Pos) (expr *ast.StructType, csyntax string, align int64) { + // Minimum alignment for a struct is 1 byte. + align = 1 + + var buf strings.Builder + buf.WriteString("struct {") + fld := make([]*ast.Field, 0, 2*len(dt.Field)+1) // enough for padding around every field + sizes := make([]int64, 0, 2*len(dt.Field)+1) + off := int64(0) + + // Rename struct fields that happen to be named Go keywords into + // _{keyword}. Create a map from C ident -> Go ident. The Go ident will + // be mangled. Any existing identifier that already has the same name on + // the C-side will cause the Go-mangled version to be prefixed with _. + // (e.g. in a struct with fields '_type' and 'type', the latter would be + // rendered as '__type' in Go). + ident := make(map[string]string) + used := make(map[string]bool) + for _, f := range dt.Field { + ident[f.Name] = f.Name + used[f.Name] = true + } + + if !*godefs { + for cid, goid := range ident { + if token.Lookup(goid).IsKeyword() { + // Avoid keyword + goid = "_" + goid + + // Also avoid existing fields + for _, exist := used[goid]; exist; _, exist = used[goid] { + goid = "_" + goid + } + + used[goid] = true + ident[cid] = goid + } + } + } + + anon := 0 + for _, f := range dt.Field { + name := f.Name + ft := f.Type + + // In godefs mode, if this field is a C11 + // anonymous union then treat the first field in the + // union as the field in the struct. This handles + // cases like the glibc <sys/resource.h> file; see + // issue 6677. + if *godefs { + if st, ok := f.Type.(*dwarf.StructType); ok && name == "" && st.Kind == "union" && len(st.Field) > 0 && !used[st.Field[0].Name] { + name = st.Field[0].Name + ident[name] = name + ft = st.Field[0].Type + } + } + + // TODO: Handle fields that are anonymous structs by + // promoting the fields of the inner struct. + + t := c.Type(ft, pos) + tgo := t.Go + size := t.Size + talign := t.Align + if f.BitOffset > 0 || f.BitSize > 0 { + // The layout of bitfields is implementation defined, + // so we don't know how they correspond to Go fields + // even if they are aligned at byte boundaries. + continue + } + + if talign > 0 && f.ByteOffset%talign != 0 { + // Drop misaligned fields, the same way we drop integer bit fields. + // The goal is to make available what can be made available. + // Otherwise one bad and unneeded field in an otherwise okay struct + // makes the whole program not compile. Much of the time these + // structs are in system headers that cannot be corrected. + continue + } + + // Round off up to talign, assumed to be a power of 2. + off = (off + talign - 1) &^ (talign - 1) + + if f.ByteOffset > off { + fld, sizes = c.pad(fld, sizes, f.ByteOffset-off) + off = f.ByteOffset + } + if f.ByteOffset < off { + // Drop a packed field that we can't represent. + continue + } + + n := len(fld) + fld = fld[0 : n+1] + if name == "" { + name = fmt.Sprintf("anon%d", anon) + anon++ + ident[name] = name + } + fld[n] = &ast.Field{Names: []*ast.Ident{c.Ident(ident[name])}, Type: tgo} + sizes = sizes[0 : n+1] + sizes[n] = size + off += size + buf.WriteString(t.C.String()) + buf.WriteString(" ") + buf.WriteString(name) + buf.WriteString("; ") + if talign > align { + align = talign + } + } + if off < dt.ByteSize { + fld, sizes = c.pad(fld, sizes, dt.ByteSize-off) + off = dt.ByteSize + } + + // If the last field in a non-zero-sized struct is zero-sized + // the compiler is going to pad it by one (see issue 9401). + // We can't permit that, because then the size of the Go + // struct will not be the same as the size of the C struct. + // Our only option in such a case is to remove the field, + // which means that it cannot be referenced from Go. + for off > 0 && sizes[len(sizes)-1] == 0 { + n := len(sizes) + fld = fld[0 : n-1] + sizes = sizes[0 : n-1] + } + + if off != dt.ByteSize { + fatalf("%s: struct size calculation error off=%d bytesize=%d", lineno(pos), off, dt.ByteSize) + } + buf.WriteString("}") + csyntax = buf.String() + + if *godefs { + godefsFields(fld) + } + expr = &ast.StructType{Fields: &ast.FieldList{List: fld}} + return +} + +// dwarfHasPointer reports whether the DWARF type dt contains a pointer. +func (c *typeConv) dwarfHasPointer(dt dwarf.Type, pos token.Pos) bool { + switch dt := dt.(type) { + default: + fatalf("%s: unexpected type: %s", lineno(pos), dt) + return false + + case *dwarf.AddrType, *dwarf.BoolType, *dwarf.CharType, *dwarf.EnumType, + *dwarf.FloatType, *dwarf.ComplexType, *dwarf.FuncType, + *dwarf.IntType, *dwarf.UcharType, *dwarf.UintType, *dwarf.VoidType: + + return false + + case *dwarf.ArrayType: + return c.dwarfHasPointer(dt.Type, pos) + + case *dwarf.PtrType: + return true + + case *dwarf.QualType: + return c.dwarfHasPointer(dt.Type, pos) + + case *dwarf.StructType: + for _, f := range dt.Field { + if c.dwarfHasPointer(f.Type, pos) { + return true + } + } + return false + + case *dwarf.TypedefType: + if dt.Name == "_GoString_" || dt.Name == "_GoBytes_" { + return true + } + return c.dwarfHasPointer(dt.Type, pos) + } +} + +func upper(s string) string { + if s == "" { + return "" + } + r, size := utf8.DecodeRuneInString(s) + if r == '_' { + return "X" + s + } + return string(unicode.ToUpper(r)) + s[size:] +} + +// godefsFields rewrites field names for use in Go or C definitions. +// It strips leading common prefixes (like tv_ in tv_sec, tv_usec) +// converts names to upper case, and rewrites _ into Pad_godefs_n, +// so that all fields are exported. +func godefsFields(fld []*ast.Field) { + prefix := fieldPrefix(fld) + + // Issue 48396: check for duplicate field names. + if prefix != "" { + names := make(map[string]bool) + fldLoop: + for _, f := range fld { + for _, n := range f.Names { + name := n.Name + if name == "_" { + continue + } + if name != prefix { + name = strings.TrimPrefix(n.Name, prefix) + } + name = upper(name) + if names[name] { + // Field name conflict: don't remove prefix. + prefix = "" + break fldLoop + } + names[name] = true + } + } + } + + npad := 0 + for _, f := range fld { + for _, n := range f.Names { + if n.Name != prefix { + n.Name = strings.TrimPrefix(n.Name, prefix) + } + if n.Name == "_" { + // Use exported name instead. + n.Name = "Pad_cgo_" + strconv.Itoa(npad) + npad++ + } + n.Name = upper(n.Name) + } + } +} + +// fieldPrefix returns the prefix that should be removed from all the +// field names when generating the C or Go code. For generated +// C, we leave the names as is (tv_sec, tv_usec), since that's what +// people are used to seeing in C. For generated Go code, such as +// package syscall's data structures, we drop a common prefix +// (so sec, usec, which will get turned into Sec, Usec for exporting). +func fieldPrefix(fld []*ast.Field) string { + prefix := "" + for _, f := range fld { + for _, n := range f.Names { + // Ignore field names that don't have the prefix we're + // looking for. It is common in C headers to have fields + // named, say, _pad in an otherwise prefixed header. + // If the struct has 3 fields tv_sec, tv_usec, _pad1, then we + // still want to remove the tv_ prefix. + // The check for "orig_" here handles orig_eax in the + // x86 ptrace register sets, which otherwise have all fields + // with reg_ prefixes. + if strings.HasPrefix(n.Name, "orig_") || strings.HasPrefix(n.Name, "_") { + continue + } + i := strings.Index(n.Name, "_") + if i < 0 { + continue + } + if prefix == "" { + prefix = n.Name[:i+1] + } else if prefix != n.Name[:i+1] { + return "" + } + } + } + return prefix +} + +// anonymousStructTypedef reports whether dt is a C typedef for an anonymous +// struct. +func (c *typeConv) anonymousStructTypedef(dt *dwarf.TypedefType) bool { + st, ok := dt.Type.(*dwarf.StructType) + return ok && st.StructName == "" +} + +// badPointerTypedef reports whether dt is a C typedef that should not be +// considered a pointer in Go. A typedef is bad if C code sometimes stores +// non-pointers in this type. +// TODO: Currently our best solution is to find these manually and list them as +// they come up. A better solution is desired. +// Note: DEPRECATED. There is now a better solution. Search for incomplete in this file. +func (c *typeConv) badPointerTypedef(dt *dwarf.TypedefType) bool { + if c.badCFType(dt) { + return true + } + if c.badJNI(dt) { + return true + } + if c.badEGLType(dt) { + return true + } + return false +} + +// badVoidPointerTypedef is like badPointerTypeDef, but for "void *" typedefs that should be _cgopackage.Incomplete. +func (c *typeConv) badVoidPointerTypedef(dt *dwarf.TypedefType) bool { + // Match the Windows HANDLE type (#42018). + if goos != "windows" || dt.Name != "HANDLE" { + return false + } + // Check that the typedef is "typedef void *<name>". + if ptr, ok := dt.Type.(*dwarf.PtrType); ok { + if _, ok := ptr.Type.(*dwarf.VoidType); ok { + return true + } + } + return false +} + +// badStructPointerTypedef is like badVoidPointerTypedefs but for structs. +func (c *typeConv) badStructPointerTypedef(name string, dt *dwarf.StructType) bool { + // Windows handle types can all potentially contain non-pointers. + // badVoidPointerTypedef handles the "void *" HANDLE type, but other + // handles are defined as + // + // struct <name>__{int unused;}; typedef struct <name>__ *name; + // + // by the DECLARE_HANDLE macro in STRICT mode. The macro is declared in + // the Windows ntdef.h header, + // + // https://github.com/tpn/winsdk-10/blob/master/Include/10.0.16299.0/shared/ntdef.h#L779 + if goos != "windows" { + return false + } + if len(dt.Field) != 1 { + return false + } + if dt.StructName != name+"__" { + return false + } + if f := dt.Field[0]; f.Name != "unused" || f.Type.Common().Name != "int" { + return false + } + return true +} + +// baseBadPointerTypedef reports whether the base of a chain of typedefs is a bad typedef +// as badPointerTypedef reports. +func (c *typeConv) baseBadPointerTypedef(dt *dwarf.TypedefType) bool { + for { + if t, ok := dt.Type.(*dwarf.TypedefType); ok { + dt = t + continue + } + break + } + return c.badPointerTypedef(dt) +} + +func (c *typeConv) badCFType(dt *dwarf.TypedefType) bool { + // The real bad types are CFNumberRef and CFDateRef. + // Sometimes non-pointers are stored in these types. + // CFTypeRef is a supertype of those, so it can have bad pointers in it as well. + // We return true for the other *Ref types just so casting between them is easier. + // We identify the correct set of types as those ending in Ref and for which + // there exists a corresponding GetTypeID function. + // See comment below for details about the bad pointers. + if goos != "darwin" && goos != "ios" { + return false + } + s := dt.Name + if !strings.HasSuffix(s, "Ref") { + return false + } + s = s[:len(s)-3] + if s == "CFType" { + return true + } + if c.getTypeIDs[s] { + return true + } + if i := strings.Index(s, "Mutable"); i >= 0 && c.getTypeIDs[s[:i]+s[i+7:]] { + // Mutable and immutable variants share a type ID. + return true + } + return false +} + +// Comment from Darwin's CFInternal.h +/* +// Tagged pointer support +// Low-bit set means tagged object, next 3 bits (currently) +// define the tagged object class, next 4 bits are for type +// information for the specific tagged object class. Thus, +// the low byte is for type info, and the rest of a pointer +// (32 or 64-bit) is for payload, whatever the tagged class. +// +// Note that the specific integers used to identify the +// specific tagged classes can and will change from release +// to release (that's why this stuff is in CF*Internal*.h), +// as can the definition of type info vs payload above. +// +#if __LP64__ +#define CF_IS_TAGGED_OBJ(PTR) ((uintptr_t)(PTR) & 0x1) +#define CF_TAGGED_OBJ_TYPE(PTR) ((uintptr_t)(PTR) & 0xF) +#else +#define CF_IS_TAGGED_OBJ(PTR) 0 +#define CF_TAGGED_OBJ_TYPE(PTR) 0 +#endif + +enum { + kCFTaggedObjectID_Invalid = 0, + kCFTaggedObjectID_Atom = (0 << 1) + 1, + kCFTaggedObjectID_Undefined3 = (1 << 1) + 1, + kCFTaggedObjectID_Undefined2 = (2 << 1) + 1, + kCFTaggedObjectID_Integer = (3 << 1) + 1, + kCFTaggedObjectID_DateTS = (4 << 1) + 1, + kCFTaggedObjectID_ManagedObjectID = (5 << 1) + 1, // Core Data + kCFTaggedObjectID_Date = (6 << 1) + 1, + kCFTaggedObjectID_Undefined7 = (7 << 1) + 1, +}; +*/ + +func (c *typeConv) badJNI(dt *dwarf.TypedefType) bool { + // In Dalvik and ART, the jobject type in the JNI interface of the JVM has the + // property that it is sometimes (always?) a small integer instead of a real pointer. + // Note: although only the android JVMs are bad in this respect, we declare the JNI types + // bad regardless of platform, so the same Go code compiles on both android and non-android. + if parent, ok := jniTypes[dt.Name]; ok { + // Try to make sure we're talking about a JNI type, not just some random user's + // type that happens to use the same name. + // C doesn't have the notion of a package, so it's hard to be certain. + + // Walk up to jobject, checking each typedef on the way. + w := dt + for parent != "" { + t, ok := w.Type.(*dwarf.TypedefType) + if !ok || t.Name != parent { + return false + } + w = t + parent, ok = jniTypes[w.Name] + if !ok { + return false + } + } + + // Check that the typedef is either: + // 1: + // struct _jobject; + // typedef struct _jobject *jobject; + // 2: (in NDK16 in C++) + // class _jobject {}; + // typedef _jobject* jobject; + // 3: (in NDK16 in C) + // typedef void* jobject; + if ptr, ok := w.Type.(*dwarf.PtrType); ok { + switch v := ptr.Type.(type) { + case *dwarf.VoidType: + return true + case *dwarf.StructType: + if v.StructName == "_jobject" && len(v.Field) == 0 { + switch v.Kind { + case "struct": + if v.Incomplete { + return true + } + case "class": + if !v.Incomplete { + return true + } + } + } + } + } + } + return false +} + +func (c *typeConv) badEGLType(dt *dwarf.TypedefType) bool { + if dt.Name != "EGLDisplay" && dt.Name != "EGLConfig" { + return false + } + // Check that the typedef is "typedef void *<name>". + if ptr, ok := dt.Type.(*dwarf.PtrType); ok { + if _, ok := ptr.Type.(*dwarf.VoidType); ok { + return true + } + } + return false +} + +// jniTypes maps from JNI types that we want to be uintptrs, to the underlying type to which +// they are mapped. The base "jobject" maps to the empty string. +var jniTypes = map[string]string{ + "jobject": "", + "jclass": "jobject", + "jthrowable": "jobject", + "jstring": "jobject", + "jarray": "jobject", + "jbooleanArray": "jarray", + "jbyteArray": "jarray", + "jcharArray": "jarray", + "jshortArray": "jarray", + "jintArray": "jarray", + "jlongArray": "jarray", + "jfloatArray": "jarray", + "jdoubleArray": "jarray", + "jobjectArray": "jarray", + "jweak": "jobject", +} |