diff options
author | Daniel Baumann <daniel.baumann@progress-linux.org> | 2024-04-16 19:23:18 +0000 |
---|---|---|
committer | Daniel Baumann <daniel.baumann@progress-linux.org> | 2024-04-16 19:23:18 +0000 |
commit | 43a123c1ae6613b3efeed291fa552ecd909d3acf (patch) | |
tree | fd92518b7024bc74031f78a1cf9e454b65e73665 /src/cmd/cgo/out.go | |
parent | Initial commit. (diff) | |
download | golang-1.20-43a123c1ae6613b3efeed291fa552ecd909d3acf.tar.xz golang-1.20-43a123c1ae6613b3efeed291fa552ecd909d3acf.zip |
Adding upstream version 1.20.14.upstream/1.20.14upstream
Signed-off-by: Daniel Baumann <daniel.baumann@progress-linux.org>
Diffstat (limited to 'src/cmd/cgo/out.go')
-rw-r--r-- | src/cmd/cgo/out.go | 1988 |
1 files changed, 1988 insertions, 0 deletions
diff --git a/src/cmd/cgo/out.go b/src/cmd/cgo/out.go new file mode 100644 index 0000000..b2933e2 --- /dev/null +++ b/src/cmd/cgo/out.go @@ -0,0 +1,1988 @@ +// Copyright 2009 The Go Authors. All rights reserved. +// Use of this source code is governed by a BSD-style +// license that can be found in the LICENSE file. + +package main + +import ( + "bytes" + "cmd/internal/pkgpath" + "debug/elf" + "debug/macho" + "debug/pe" + "fmt" + "go/ast" + "go/printer" + "go/token" + "internal/xcoff" + "io" + "os" + "os/exec" + "path/filepath" + "regexp" + "sort" + "strings" + "unicode" +) + +var ( + conf = printer.Config{Mode: printer.SourcePos, Tabwidth: 8} + noSourceConf = printer.Config{Tabwidth: 8} +) + +// writeDefs creates output files to be compiled by gc and gcc. +func (p *Package) writeDefs() { + var fgo2, fc io.Writer + f := creat(*objDir + "_cgo_gotypes.go") + defer f.Close() + fgo2 = f + if *gccgo { + f := creat(*objDir + "_cgo_defun.c") + defer f.Close() + fc = f + } + fm := creat(*objDir + "_cgo_main.c") + + var gccgoInit strings.Builder + + fflg := creat(*objDir + "_cgo_flags") + for k, v := range p.CgoFlags { + for _, arg := range v { + fmt.Fprintf(fflg, "_CGO_%s=%s\n", k, arg) + } + if k == "LDFLAGS" && !*gccgo { + for _, arg := range v { + fmt.Fprintf(fgo2, "//go:cgo_ldflag %q\n", arg) + } + } + } + fflg.Close() + + // Write C main file for using gcc to resolve imports. + fmt.Fprintf(fm, "#include <stddef.h>\n") // For size_t below. + fmt.Fprintf(fm, "int main() { return 0; }\n") + if *importRuntimeCgo { + fmt.Fprintf(fm, "void crosscall2(void(*fn)(void*) __attribute__((unused)), void *a __attribute__((unused)), int c __attribute__((unused)), size_t ctxt __attribute__((unused))) { }\n") + fmt.Fprintf(fm, "size_t _cgo_wait_runtime_init_done(void) { return 0; }\n") + fmt.Fprintf(fm, "void _cgo_release_context(size_t ctxt __attribute__((unused))) { }\n") + fmt.Fprintf(fm, "char* _cgo_topofstack(void) { return (char*)0; }\n") + } else { + // If we're not importing runtime/cgo, we *are* runtime/cgo, + // which provides these functions. We just need a prototype. + fmt.Fprintf(fm, "void crosscall2(void(*fn)(void*), void *a, int c, size_t ctxt);\n") + fmt.Fprintf(fm, "size_t _cgo_wait_runtime_init_done(void);\n") + fmt.Fprintf(fm, "void _cgo_release_context(size_t);\n") + } + fmt.Fprintf(fm, "void _cgo_allocate(void *a __attribute__((unused)), int c __attribute__((unused))) { }\n") + fmt.Fprintf(fm, "void _cgo_panic(void *a __attribute__((unused)), int c __attribute__((unused))) { }\n") + fmt.Fprintf(fm, "void _cgo_reginit(void) { }\n") + + // Write second Go output: definitions of _C_xxx. + // In a separate file so that the import of "unsafe" does not + // pollute the original file. + fmt.Fprintf(fgo2, "// Code generated by cmd/cgo; DO NOT EDIT.\n\n") + fmt.Fprintf(fgo2, "package %s\n\n", p.PackageName) + fmt.Fprintf(fgo2, "import \"unsafe\"\n\n") + if *importSyscall { + fmt.Fprintf(fgo2, "import \"syscall\"\n\n") + } + if *importRuntimeCgo { + if !*gccgoDefineCgoIncomplete { + fmt.Fprintf(fgo2, "import _cgopackage \"runtime/cgo\"\n\n") + fmt.Fprintf(fgo2, "type _ _cgopackage.Incomplete\n") // prevent import-not-used error + } else { + fmt.Fprintf(fgo2, "//go:notinheap\n") + fmt.Fprintf(fgo2, "type _cgopackage_Incomplete struct{ _ struct{ _ struct{} } }\n") + } + } + if *importSyscall { + fmt.Fprintf(fgo2, "var _ syscall.Errno\n") + } + fmt.Fprintf(fgo2, "func _Cgo_ptr(ptr unsafe.Pointer) unsafe.Pointer { return ptr }\n\n") + + if !*gccgo { + fmt.Fprintf(fgo2, "//go:linkname _Cgo_always_false runtime.cgoAlwaysFalse\n") + fmt.Fprintf(fgo2, "var _Cgo_always_false bool\n") + fmt.Fprintf(fgo2, "//go:linkname _Cgo_use runtime.cgoUse\n") + fmt.Fprintf(fgo2, "func _Cgo_use(interface{})\n") + } + + typedefNames := make([]string, 0, len(typedef)) + for name := range typedef { + if name == "_Ctype_void" { + // We provide an appropriate declaration for + // _Ctype_void below (#39877). + continue + } + typedefNames = append(typedefNames, name) + } + sort.Strings(typedefNames) + for _, name := range typedefNames { + def := typedef[name] + fmt.Fprintf(fgo2, "type %s ", name) + // We don't have source info for these types, so write them out without source info. + // Otherwise types would look like: + // + // type _Ctype_struct_cb struct { + // //line :1 + // on_test *[0]byte + // //line :1 + // } + // + // Which is not useful. Moreover we never override source info, + // so subsequent source code uses the same source info. + // Moreover, empty file name makes compile emit no source debug info at all. + var buf bytes.Buffer + noSourceConf.Fprint(&buf, fset, def.Go) + if bytes.HasPrefix(buf.Bytes(), []byte("_Ctype_")) || + strings.HasPrefix(name, "_Ctype_enum_") || + strings.HasPrefix(name, "_Ctype_union_") { + // This typedef is of the form `typedef a b` and should be an alias. + fmt.Fprintf(fgo2, "= ") + } + fmt.Fprintf(fgo2, "%s", buf.Bytes()) + fmt.Fprintf(fgo2, "\n\n") + } + if *gccgo { + fmt.Fprintf(fgo2, "type _Ctype_void byte\n") + } else { + fmt.Fprintf(fgo2, "type _Ctype_void [0]byte\n") + } + + if *gccgo { + fmt.Fprint(fgo2, gccgoGoProlog) + fmt.Fprint(fc, p.cPrologGccgo()) + } else { + fmt.Fprint(fgo2, goProlog) + } + + if fc != nil { + fmt.Fprintf(fc, "#line 1 \"cgo-generated-wrappers\"\n") + } + if fm != nil { + fmt.Fprintf(fm, "#line 1 \"cgo-generated-wrappers\"\n") + } + + gccgoSymbolPrefix := p.gccgoSymbolPrefix() + + cVars := make(map[string]bool) + for _, key := range nameKeys(p.Name) { + n := p.Name[key] + if !n.IsVar() { + continue + } + + if !cVars[n.C] { + if *gccgo { + fmt.Fprintf(fc, "extern byte *%s;\n", n.C) + } else { + // Force a reference to all symbols so that + // the external linker will add DT_NEEDED + // entries as needed on ELF systems. + // Treat function variables differently + // to avoid type conflict errors from LTO + // (Link Time Optimization). + if n.Kind == "fpvar" { + fmt.Fprintf(fm, "extern void %s();\n", n.C) + } else { + fmt.Fprintf(fm, "extern char %s[];\n", n.C) + fmt.Fprintf(fm, "void *_cgohack_%s = %s;\n\n", n.C, n.C) + } + fmt.Fprintf(fgo2, "//go:linkname __cgo_%s %s\n", n.C, n.C) + fmt.Fprintf(fgo2, "//go:cgo_import_static %s\n", n.C) + fmt.Fprintf(fgo2, "var __cgo_%s byte\n", n.C) + } + cVars[n.C] = true + } + + var node ast.Node + if n.Kind == "var" { + node = &ast.StarExpr{X: n.Type.Go} + } else if n.Kind == "fpvar" { + node = n.Type.Go + } else { + panic(fmt.Errorf("invalid var kind %q", n.Kind)) + } + if *gccgo { + fmt.Fprintf(fc, `extern void *%s __asm__("%s.%s");`, n.Mangle, gccgoSymbolPrefix, gccgoToSymbol(n.Mangle)) + fmt.Fprintf(&gccgoInit, "\t%s = &%s;\n", n.Mangle, n.C) + fmt.Fprintf(fc, "\n") + } + + fmt.Fprintf(fgo2, "var %s ", n.Mangle) + conf.Fprint(fgo2, fset, node) + if !*gccgo { + fmt.Fprintf(fgo2, " = (") + conf.Fprint(fgo2, fset, node) + fmt.Fprintf(fgo2, ")(unsafe.Pointer(&__cgo_%s))", n.C) + } + fmt.Fprintf(fgo2, "\n") + } + if *gccgo { + fmt.Fprintf(fc, "\n") + } + + for _, key := range nameKeys(p.Name) { + n := p.Name[key] + if n.Const != "" { + fmt.Fprintf(fgo2, "const %s = %s\n", n.Mangle, n.Const) + } + } + fmt.Fprintf(fgo2, "\n") + + callsMalloc := false + for _, key := range nameKeys(p.Name) { + n := p.Name[key] + if n.FuncType != nil { + p.writeDefsFunc(fgo2, n, &callsMalloc) + } + } + + fgcc := creat(*objDir + "_cgo_export.c") + fgcch := creat(*objDir + "_cgo_export.h") + if *gccgo { + p.writeGccgoExports(fgo2, fm, fgcc, fgcch) + } else { + p.writeExports(fgo2, fm, fgcc, fgcch) + } + + if callsMalloc && !*gccgo { + fmt.Fprint(fgo2, strings.Replace(cMallocDefGo, "PREFIX", cPrefix, -1)) + fmt.Fprint(fgcc, strings.Replace(strings.Replace(cMallocDefC, "PREFIX", cPrefix, -1), "PACKED", p.packedAttribute(), -1)) + } + + if err := fgcc.Close(); err != nil { + fatalf("%s", err) + } + if err := fgcch.Close(); err != nil { + fatalf("%s", err) + } + + if *exportHeader != "" && len(p.ExpFunc) > 0 { + fexp := creat(*exportHeader) + fgcch, err := os.Open(*objDir + "_cgo_export.h") + if err != nil { + fatalf("%s", err) + } + defer fgcch.Close() + _, err = io.Copy(fexp, fgcch) + if err != nil { + fatalf("%s", err) + } + if err = fexp.Close(); err != nil { + fatalf("%s", err) + } + } + + init := gccgoInit.String() + if init != "" { + // The init function does nothing but simple + // assignments, so it won't use much stack space, so + // it's OK to not split the stack. Splitting the stack + // can run into a bug in clang (as of 2018-11-09): + // this is a leaf function, and when clang sees a leaf + // function it won't emit the split stack prologue for + // the function. However, if this function refers to a + // non-split-stack function, which will happen if the + // cgo code refers to a C function not compiled with + // -fsplit-stack, then the linker will think that it + // needs to adjust the split stack prologue, but there + // won't be one. Marking the function explicitly + // no_split_stack works around this problem by telling + // the linker that it's OK if there is no split stack + // prologue. + fmt.Fprintln(fc, "static void init(void) __attribute__ ((constructor, no_split_stack));") + fmt.Fprintln(fc, "static void init(void) {") + fmt.Fprint(fc, init) + fmt.Fprintln(fc, "}") + } +} + +// elfImportedSymbols is like elf.File.ImportedSymbols, but it +// includes weak symbols. +// +// A bug in some versions of LLD (at least LLD 8) cause it to emit +// several pthreads symbols as weak, but we need to import those. See +// issue #31912 or https://bugs.llvm.org/show_bug.cgi?id=42442. +// +// When doing external linking, we hand everything off to the external +// linker, which will create its own dynamic symbol tables. For +// internal linking, this may turn weak imports into strong imports, +// which could cause dynamic linking to fail if a symbol really isn't +// defined. However, the standard library depends on everything it +// imports, and this is the primary use of dynamic symbol tables with +// internal linking. +func elfImportedSymbols(f *elf.File) []elf.ImportedSymbol { + syms, _ := f.DynamicSymbols() + var imports []elf.ImportedSymbol + for _, s := range syms { + if (elf.ST_BIND(s.Info) == elf.STB_GLOBAL || elf.ST_BIND(s.Info) == elf.STB_WEAK) && s.Section == elf.SHN_UNDEF { + imports = append(imports, elf.ImportedSymbol{ + Name: s.Name, + Library: s.Library, + Version: s.Version, + }) + } + } + return imports +} + +func dynimport(obj string) { + stdout := os.Stdout + if *dynout != "" { + f, err := os.Create(*dynout) + if err != nil { + fatalf("%s", err) + } + stdout = f + } + + fmt.Fprintf(stdout, "package %s\n", *dynpackage) + + if f, err := elf.Open(obj); err == nil { + if *dynlinker { + // Emit the cgo_dynamic_linker line. + if sec := f.Section(".interp"); sec != nil { + if data, err := sec.Data(); err == nil && len(data) > 1 { + // skip trailing \0 in data + fmt.Fprintf(stdout, "//go:cgo_dynamic_linker %q\n", string(data[:len(data)-1])) + } + } + } + sym := elfImportedSymbols(f) + for _, s := range sym { + targ := s.Name + if s.Version != "" { + targ += "#" + s.Version + } + checkImportSymName(s.Name) + checkImportSymName(targ) + fmt.Fprintf(stdout, "//go:cgo_import_dynamic %s %s %q\n", s.Name, targ, s.Library) + } + lib, _ := f.ImportedLibraries() + for _, l := range lib { + fmt.Fprintf(stdout, "//go:cgo_import_dynamic _ _ %q\n", l) + } + return + } + + if f, err := macho.Open(obj); err == nil { + sym, _ := f.ImportedSymbols() + for _, s := range sym { + if len(s) > 0 && s[0] == '_' { + s = s[1:] + } + checkImportSymName(s) + fmt.Fprintf(stdout, "//go:cgo_import_dynamic %s %s %q\n", s, s, "") + } + lib, _ := f.ImportedLibraries() + for _, l := range lib { + fmt.Fprintf(stdout, "//go:cgo_import_dynamic _ _ %q\n", l) + } + return + } + + if f, err := pe.Open(obj); err == nil { + sym, _ := f.ImportedSymbols() + for _, s := range sym { + ss := strings.Split(s, ":") + name := strings.Split(ss[0], "@")[0] + checkImportSymName(name) + checkImportSymName(ss[0]) + fmt.Fprintf(stdout, "//go:cgo_import_dynamic %s %s %q\n", name, ss[0], strings.ToLower(ss[1])) + } + return + } + + if f, err := xcoff.Open(obj); err == nil { + sym, err := f.ImportedSymbols() + if err != nil { + fatalf("cannot load imported symbols from XCOFF file %s: %v", obj, err) + } + for _, s := range sym { + if s.Name == "runtime_rt0_go" || s.Name == "_rt0_ppc64_aix_lib" { + // These symbols are imported by runtime/cgo but + // must not be added to _cgo_import.go as there are + // Go symbols. + continue + } + checkImportSymName(s.Name) + fmt.Fprintf(stdout, "//go:cgo_import_dynamic %s %s %q\n", s.Name, s.Name, s.Library) + } + lib, err := f.ImportedLibraries() + if err != nil { + fatalf("cannot load imported libraries from XCOFF file %s: %v", obj, err) + } + for _, l := range lib { + fmt.Fprintf(stdout, "//go:cgo_import_dynamic _ _ %q\n", l) + } + return + } + + fatalf("cannot parse %s as ELF, Mach-O, PE or XCOFF", obj) +} + +// checkImportSymName checks a symbol name we are going to emit as part +// of a //go:cgo_import_dynamic pragma. These names come from object +// files, so they may be corrupt. We are going to emit them unquoted, +// so while they don't need to be valid symbol names (and in some cases, +// involving symbol versions, they won't be) they must contain only +// graphic characters and must not contain Go comments. +func checkImportSymName(s string) { + for _, c := range s { + if !unicode.IsGraphic(c) || unicode.IsSpace(c) { + fatalf("dynamic symbol %q contains unsupported character", s) + } + } + if strings.Contains(s, "//") || strings.Contains(s, "/*") { + fatalf("dynamic symbol %q contains Go comment") + } +} + +// Construct a gcc struct matching the gc argument frame. +// Assumes that in gcc, char is 1 byte, short 2 bytes, int 4 bytes, long long 8 bytes. +// These assumptions are checked by the gccProlog. +// Also assumes that gc convention is to word-align the +// input and output parameters. +func (p *Package) structType(n *Name) (string, int64) { + var buf strings.Builder + fmt.Fprint(&buf, "struct {\n") + off := int64(0) + for i, t := range n.FuncType.Params { + if off%t.Align != 0 { + pad := t.Align - off%t.Align + fmt.Fprintf(&buf, "\t\tchar __pad%d[%d];\n", off, pad) + off += pad + } + c := t.Typedef + if c == "" { + c = t.C.String() + } + fmt.Fprintf(&buf, "\t\t%s p%d;\n", c, i) + off += t.Size + } + if off%p.PtrSize != 0 { + pad := p.PtrSize - off%p.PtrSize + fmt.Fprintf(&buf, "\t\tchar __pad%d[%d];\n", off, pad) + off += pad + } + if t := n.FuncType.Result; t != nil { + if off%t.Align != 0 { + pad := t.Align - off%t.Align + fmt.Fprintf(&buf, "\t\tchar __pad%d[%d];\n", off, pad) + off += pad + } + fmt.Fprintf(&buf, "\t\t%s r;\n", t.C) + off += t.Size + } + if off%p.PtrSize != 0 { + pad := p.PtrSize - off%p.PtrSize + fmt.Fprintf(&buf, "\t\tchar __pad%d[%d];\n", off, pad) + off += pad + } + if off == 0 { + fmt.Fprintf(&buf, "\t\tchar unused;\n") // avoid empty struct + } + fmt.Fprintf(&buf, "\t}") + return buf.String(), off +} + +func (p *Package) writeDefsFunc(fgo2 io.Writer, n *Name, callsMalloc *bool) { + name := n.Go + gtype := n.FuncType.Go + void := gtype.Results == nil || len(gtype.Results.List) == 0 + if n.AddError { + // Add "error" to return type list. + // Type list is known to be 0 or 1 element - it's a C function. + err := &ast.Field{Type: ast.NewIdent("error")} + l := gtype.Results.List + if len(l) == 0 { + l = []*ast.Field{err} + } else { + l = []*ast.Field{l[0], err} + } + t := new(ast.FuncType) + *t = *gtype + t.Results = &ast.FieldList{List: l} + gtype = t + } + + // Go func declaration. + d := &ast.FuncDecl{ + Name: ast.NewIdent(n.Mangle), + Type: gtype, + } + + // Builtins defined in the C prolog. + inProlog := builtinDefs[name] != "" + cname := fmt.Sprintf("_cgo%s%s", cPrefix, n.Mangle) + paramnames := []string(nil) + if d.Type.Params != nil { + for i, param := range d.Type.Params.List { + paramName := fmt.Sprintf("p%d", i) + param.Names = []*ast.Ident{ast.NewIdent(paramName)} + paramnames = append(paramnames, paramName) + } + } + + if *gccgo { + // Gccgo style hooks. + fmt.Fprint(fgo2, "\n") + conf.Fprint(fgo2, fset, d) + fmt.Fprint(fgo2, " {\n") + if !inProlog { + fmt.Fprint(fgo2, "\tdefer syscall.CgocallDone()\n") + fmt.Fprint(fgo2, "\tsyscall.Cgocall()\n") + } + if n.AddError { + fmt.Fprint(fgo2, "\tsyscall.SetErrno(0)\n") + } + fmt.Fprint(fgo2, "\t") + if !void { + fmt.Fprint(fgo2, "r := ") + } + fmt.Fprintf(fgo2, "%s(%s)\n", cname, strings.Join(paramnames, ", ")) + + if n.AddError { + fmt.Fprint(fgo2, "\te := syscall.GetErrno()\n") + fmt.Fprint(fgo2, "\tif e != 0 {\n") + fmt.Fprint(fgo2, "\t\treturn ") + if !void { + fmt.Fprint(fgo2, "r, ") + } + fmt.Fprint(fgo2, "e\n") + fmt.Fprint(fgo2, "\t}\n") + fmt.Fprint(fgo2, "\treturn ") + if !void { + fmt.Fprint(fgo2, "r, ") + } + fmt.Fprint(fgo2, "nil\n") + } else if !void { + fmt.Fprint(fgo2, "\treturn r\n") + } + + fmt.Fprint(fgo2, "}\n") + + // declare the C function. + fmt.Fprintf(fgo2, "//extern %s\n", cname) + d.Name = ast.NewIdent(cname) + if n.AddError { + l := d.Type.Results.List + d.Type.Results.List = l[:len(l)-1] + } + conf.Fprint(fgo2, fset, d) + fmt.Fprint(fgo2, "\n") + + return + } + + if inProlog { + fmt.Fprint(fgo2, builtinDefs[name]) + if strings.Contains(builtinDefs[name], "_cgo_cmalloc") { + *callsMalloc = true + } + return + } + + // Wrapper calls into gcc, passing a pointer to the argument frame. + fmt.Fprintf(fgo2, "//go:cgo_import_static %s\n", cname) + fmt.Fprintf(fgo2, "//go:linkname __cgofn_%s %s\n", cname, cname) + fmt.Fprintf(fgo2, "var __cgofn_%s byte\n", cname) + fmt.Fprintf(fgo2, "var %s = unsafe.Pointer(&__cgofn_%s)\n", cname, cname) + + nret := 0 + if !void { + d.Type.Results.List[0].Names = []*ast.Ident{ast.NewIdent("r1")} + nret = 1 + } + if n.AddError { + d.Type.Results.List[nret].Names = []*ast.Ident{ast.NewIdent("r2")} + } + + fmt.Fprint(fgo2, "\n") + fmt.Fprint(fgo2, "//go:cgo_unsafe_args\n") + conf.Fprint(fgo2, fset, d) + fmt.Fprint(fgo2, " {\n") + + // NOTE: Using uintptr to hide from escape analysis. + arg := "0" + if len(paramnames) > 0 { + arg = "uintptr(unsafe.Pointer(&p0))" + } else if !void { + arg = "uintptr(unsafe.Pointer(&r1))" + } + + prefix := "" + if n.AddError { + prefix = "errno := " + } + fmt.Fprintf(fgo2, "\t%s_cgo_runtime_cgocall(%s, %s)\n", prefix, cname, arg) + if n.AddError { + fmt.Fprintf(fgo2, "\tif errno != 0 { r2 = syscall.Errno(errno) }\n") + } + fmt.Fprintf(fgo2, "\tif _Cgo_always_false {\n") + if d.Type.Params != nil { + for i := range d.Type.Params.List { + fmt.Fprintf(fgo2, "\t\t_Cgo_use(p%d)\n", i) + } + } + fmt.Fprintf(fgo2, "\t}\n") + fmt.Fprintf(fgo2, "\treturn\n") + fmt.Fprintf(fgo2, "}\n") +} + +// writeOutput creates stubs for a specific source file to be compiled by gc +func (p *Package) writeOutput(f *File, srcfile string) { + base := srcfile + base = strings.TrimSuffix(base, ".go") + base = filepath.Base(base) + fgo1 := creat(*objDir + base + ".cgo1.go") + fgcc := creat(*objDir + base + ".cgo2.c") + + p.GoFiles = append(p.GoFiles, base+".cgo1.go") + p.GccFiles = append(p.GccFiles, base+".cgo2.c") + + // Write Go output: Go input with rewrites of C.xxx to _C_xxx. + fmt.Fprintf(fgo1, "// Code generated by cmd/cgo; DO NOT EDIT.\n\n") + if strings.ContainsAny(srcfile, "\r\n") { + // This should have been checked when the file path was first resolved, + // but we double check here just to be sure. + fatalf("internal error: writeOutput: srcfile contains unexpected newline character: %q", srcfile) + } + fmt.Fprintf(fgo1, "//line %s:1:1\n", srcfile) + fgo1.Write(f.Edit.Bytes()) + + // While we process the vars and funcs, also write gcc output. + // Gcc output starts with the preamble. + fmt.Fprintf(fgcc, "%s\n", builtinProlog) + fmt.Fprintf(fgcc, "%s\n", f.Preamble) + fmt.Fprintf(fgcc, "%s\n", gccProlog) + fmt.Fprintf(fgcc, "%s\n", tsanProlog) + fmt.Fprintf(fgcc, "%s\n", msanProlog) + + for _, key := range nameKeys(f.Name) { + n := f.Name[key] + if n.FuncType != nil { + p.writeOutputFunc(fgcc, n) + } + } + + fgo1.Close() + fgcc.Close() +} + +// fixGo converts the internal Name.Go field into the name we should show +// to users in error messages. There's only one for now: on input we rewrite +// C.malloc into C._CMalloc, so change it back here. +func fixGo(name string) string { + if name == "_CMalloc" { + return "malloc" + } + return name +} + +var isBuiltin = map[string]bool{ + "_Cfunc_CString": true, + "_Cfunc_CBytes": true, + "_Cfunc_GoString": true, + "_Cfunc_GoStringN": true, + "_Cfunc_GoBytes": true, + "_Cfunc__CMalloc": true, +} + +func (p *Package) writeOutputFunc(fgcc *os.File, n *Name) { + name := n.Mangle + if isBuiltin[name] || p.Written[name] { + // The builtins are already defined in the C prolog, and we don't + // want to duplicate function definitions we've already done. + return + } + p.Written[name] = true + + if *gccgo { + p.writeGccgoOutputFunc(fgcc, n) + return + } + + ctype, _ := p.structType(n) + + // Gcc wrapper unpacks the C argument struct + // and calls the actual C function. + fmt.Fprintf(fgcc, "CGO_NO_SANITIZE_THREAD\n") + if n.AddError { + fmt.Fprintf(fgcc, "int\n") + } else { + fmt.Fprintf(fgcc, "void\n") + } + fmt.Fprintf(fgcc, "_cgo%s%s(void *v)\n", cPrefix, n.Mangle) + fmt.Fprintf(fgcc, "{\n") + if n.AddError { + fmt.Fprintf(fgcc, "\tint _cgo_errno;\n") + } + // We're trying to write a gcc struct that matches gc's layout. + // Use packed attribute to force no padding in this struct in case + // gcc has different packing requirements. + fmt.Fprintf(fgcc, "\t%s %v *_cgo_a = v;\n", ctype, p.packedAttribute()) + if n.FuncType.Result != nil { + // Save the stack top for use below. + fmt.Fprintf(fgcc, "\tchar *_cgo_stktop = _cgo_topofstack();\n") + } + tr := n.FuncType.Result + if tr != nil { + fmt.Fprintf(fgcc, "\t__typeof__(_cgo_a->r) _cgo_r;\n") + } + fmt.Fprintf(fgcc, "\t_cgo_tsan_acquire();\n") + if n.AddError { + fmt.Fprintf(fgcc, "\terrno = 0;\n") + } + fmt.Fprintf(fgcc, "\t") + if tr != nil { + fmt.Fprintf(fgcc, "_cgo_r = ") + if c := tr.C.String(); c[len(c)-1] == '*' { + fmt.Fprint(fgcc, "(__typeof__(_cgo_a->r)) ") + } + } + if n.Kind == "macro" { + fmt.Fprintf(fgcc, "%s;\n", n.C) + } else { + fmt.Fprintf(fgcc, "%s(", n.C) + for i := range n.FuncType.Params { + if i > 0 { + fmt.Fprintf(fgcc, ", ") + } + fmt.Fprintf(fgcc, "_cgo_a->p%d", i) + } + fmt.Fprintf(fgcc, ");\n") + } + if n.AddError { + fmt.Fprintf(fgcc, "\t_cgo_errno = errno;\n") + } + fmt.Fprintf(fgcc, "\t_cgo_tsan_release();\n") + if n.FuncType.Result != nil { + // The cgo call may have caused a stack copy (via a callback). + // Adjust the return value pointer appropriately. + fmt.Fprintf(fgcc, "\t_cgo_a = (void*)((char*)_cgo_a + (_cgo_topofstack() - _cgo_stktop));\n") + // Save the return value. + fmt.Fprintf(fgcc, "\t_cgo_a->r = _cgo_r;\n") + // The return value is on the Go stack. If we are using msan, + // and if the C value is partially or completely uninitialized, + // the assignment will mark the Go stack as uninitialized. + // The Go compiler does not update msan for changes to the + // stack. It is possible that the stack will remain + // uninitialized, and then later be used in a way that is + // visible to msan, possibly leading to a false positive. + // Mark the stack space as written, to avoid this problem. + // See issue 26209. + fmt.Fprintf(fgcc, "\t_cgo_msan_write(&_cgo_a->r, sizeof(_cgo_a->r));\n") + } + if n.AddError { + fmt.Fprintf(fgcc, "\treturn _cgo_errno;\n") + } + fmt.Fprintf(fgcc, "}\n") + fmt.Fprintf(fgcc, "\n") +} + +// Write out a wrapper for a function when using gccgo. This is a +// simple wrapper that just calls the real function. We only need a +// wrapper to support static functions in the prologue--without a +// wrapper, we can't refer to the function, since the reference is in +// a different file. +func (p *Package) writeGccgoOutputFunc(fgcc *os.File, n *Name) { + fmt.Fprintf(fgcc, "CGO_NO_SANITIZE_THREAD\n") + if t := n.FuncType.Result; t != nil { + fmt.Fprintf(fgcc, "%s\n", t.C.String()) + } else { + fmt.Fprintf(fgcc, "void\n") + } + fmt.Fprintf(fgcc, "_cgo%s%s(", cPrefix, n.Mangle) + for i, t := range n.FuncType.Params { + if i > 0 { + fmt.Fprintf(fgcc, ", ") + } + c := t.Typedef + if c == "" { + c = t.C.String() + } + fmt.Fprintf(fgcc, "%s p%d", c, i) + } + fmt.Fprintf(fgcc, ")\n") + fmt.Fprintf(fgcc, "{\n") + if t := n.FuncType.Result; t != nil { + fmt.Fprintf(fgcc, "\t%s _cgo_r;\n", t.C.String()) + } + fmt.Fprintf(fgcc, "\t_cgo_tsan_acquire();\n") + fmt.Fprintf(fgcc, "\t") + if t := n.FuncType.Result; t != nil { + fmt.Fprintf(fgcc, "_cgo_r = ") + // Cast to void* to avoid warnings due to omitted qualifiers. + if c := t.C.String(); c[len(c)-1] == '*' { + fmt.Fprintf(fgcc, "(void*)") + } + } + if n.Kind == "macro" { + fmt.Fprintf(fgcc, "%s;\n", n.C) + } else { + fmt.Fprintf(fgcc, "%s(", n.C) + for i := range n.FuncType.Params { + if i > 0 { + fmt.Fprintf(fgcc, ", ") + } + fmt.Fprintf(fgcc, "p%d", i) + } + fmt.Fprintf(fgcc, ");\n") + } + fmt.Fprintf(fgcc, "\t_cgo_tsan_release();\n") + if t := n.FuncType.Result; t != nil { + fmt.Fprintf(fgcc, "\treturn ") + // Cast to void* to avoid warnings due to omitted qualifiers + // and explicit incompatible struct types. + if c := t.C.String(); c[len(c)-1] == '*' { + fmt.Fprintf(fgcc, "(void*)") + } + fmt.Fprintf(fgcc, "_cgo_r;\n") + } + fmt.Fprintf(fgcc, "}\n") + fmt.Fprintf(fgcc, "\n") +} + +// packedAttribute returns host compiler struct attribute that will be +// used to match gc's struct layout. For example, on 386 Windows, +// gcc wants to 8-align int64s, but gc does not. +// Use __gcc_struct__ to work around https://gcc.gnu.org/PR52991 on x86, +// and https://golang.org/issue/5603. +func (p *Package) packedAttribute() string { + s := "__attribute__((__packed__" + if !p.GccIsClang && (goarch == "amd64" || goarch == "386") { + s += ", __gcc_struct__" + } + return s + "))" +} + +// exportParamName returns the value of param as it should be +// displayed in a c header file. If param contains any non-ASCII +// characters, this function will return the character p followed by +// the value of position; otherwise, this function will return the +// value of param. +func exportParamName(param string, position int) string { + if param == "" { + return fmt.Sprintf("p%d", position) + } + + pname := param + + for i := 0; i < len(param); i++ { + if param[i] > unicode.MaxASCII { + pname = fmt.Sprintf("p%d", position) + break + } + } + + return pname +} + +// Write out the various stubs we need to support functions exported +// from Go so that they are callable from C. +func (p *Package) writeExports(fgo2, fm, fgcc, fgcch io.Writer) { + p.writeExportHeader(fgcch) + + fmt.Fprintf(fgcc, "/* Code generated by cmd/cgo; DO NOT EDIT. */\n\n") + fmt.Fprintf(fgcc, "#include <stdlib.h>\n") + fmt.Fprintf(fgcc, "#include \"_cgo_export.h\"\n\n") + + // We use packed structs, but they are always aligned. + // The pragmas and address-of-packed-member are only recognized as + // warning groups in clang 4.0+, so ignore unknown pragmas first. + fmt.Fprintf(fgcc, "#pragma GCC diagnostic ignored \"-Wunknown-pragmas\"\n") + fmt.Fprintf(fgcc, "#pragma GCC diagnostic ignored \"-Wpragmas\"\n") + fmt.Fprintf(fgcc, "#pragma GCC diagnostic ignored \"-Waddress-of-packed-member\"\n") + + fmt.Fprintf(fgcc, "extern void crosscall2(void (*fn)(void *), void *, int, size_t);\n") + fmt.Fprintf(fgcc, "extern size_t _cgo_wait_runtime_init_done(void);\n") + fmt.Fprintf(fgcc, "extern void _cgo_release_context(size_t);\n\n") + fmt.Fprintf(fgcc, "extern char* _cgo_topofstack(void);") + fmt.Fprintf(fgcc, "%s\n", tsanProlog) + fmt.Fprintf(fgcc, "%s\n", msanProlog) + + for _, exp := range p.ExpFunc { + fn := exp.Func + + // Construct a struct that will be used to communicate + // arguments from C to Go. The C and Go definitions + // just have to agree. The gcc struct will be compiled + // with __attribute__((packed)) so all padding must be + // accounted for explicitly. + ctype := "struct {\n" + gotype := new(bytes.Buffer) + fmt.Fprintf(gotype, "struct {\n") + off := int64(0) + npad := 0 + argField := func(typ ast.Expr, namePat string, args ...interface{}) { + name := fmt.Sprintf(namePat, args...) + t := p.cgoType(typ) + if off%t.Align != 0 { + pad := t.Align - off%t.Align + ctype += fmt.Sprintf("\t\tchar __pad%d[%d];\n", npad, pad) + off += pad + npad++ + } + ctype += fmt.Sprintf("\t\t%s %s;\n", t.C, name) + fmt.Fprintf(gotype, "\t\t%s ", name) + noSourceConf.Fprint(gotype, fset, typ) + fmt.Fprintf(gotype, "\n") + off += t.Size + } + if fn.Recv != nil { + argField(fn.Recv.List[0].Type, "recv") + } + fntype := fn.Type + forFieldList(fntype.Params, + func(i int, aname string, atype ast.Expr) { + argField(atype, "p%d", i) + }) + forFieldList(fntype.Results, + func(i int, aname string, atype ast.Expr) { + argField(atype, "r%d", i) + }) + if ctype == "struct {\n" { + ctype += "\t\tchar unused;\n" // avoid empty struct + } + ctype += "\t}" + fmt.Fprintf(gotype, "\t}") + + // Get the return type of the wrapper function + // compiled by gcc. + gccResult := "" + if fntype.Results == nil || len(fntype.Results.List) == 0 { + gccResult = "void" + } else if len(fntype.Results.List) == 1 && len(fntype.Results.List[0].Names) <= 1 { + gccResult = p.cgoType(fntype.Results.List[0].Type).C.String() + } else { + fmt.Fprintf(fgcch, "\n/* Return type for %s */\n", exp.ExpName) + fmt.Fprintf(fgcch, "struct %s_return {\n", exp.ExpName) + forFieldList(fntype.Results, + func(i int, aname string, atype ast.Expr) { + fmt.Fprintf(fgcch, "\t%s r%d;", p.cgoType(atype).C, i) + if len(aname) > 0 { + fmt.Fprintf(fgcch, " /* %s */", aname) + } + fmt.Fprint(fgcch, "\n") + }) + fmt.Fprintf(fgcch, "};\n") + gccResult = "struct " + exp.ExpName + "_return" + } + + // Build the wrapper function compiled by gcc. + gccExport := "" + if goos == "windows" { + gccExport = "__declspec(dllexport) " + } + s := fmt.Sprintf("%s%s %s(", gccExport, gccResult, exp.ExpName) + if fn.Recv != nil { + s += p.cgoType(fn.Recv.List[0].Type).C.String() + s += " recv" + } + forFieldList(fntype.Params, + func(i int, aname string, atype ast.Expr) { + if i > 0 || fn.Recv != nil { + s += ", " + } + s += fmt.Sprintf("%s %s", p.cgoType(atype).C, exportParamName(aname, i)) + }) + s += ")" + + if len(exp.Doc) > 0 { + fmt.Fprintf(fgcch, "\n%s", exp.Doc) + if !strings.HasSuffix(exp.Doc, "\n") { + fmt.Fprint(fgcch, "\n") + } + } + fmt.Fprintf(fgcch, "extern %s;\n", s) + + fmt.Fprintf(fgcc, "extern void _cgoexp%s_%s(void *);\n", cPrefix, exp.ExpName) + fmt.Fprintf(fgcc, "\nCGO_NO_SANITIZE_THREAD") + fmt.Fprintf(fgcc, "\n%s\n", s) + fmt.Fprintf(fgcc, "{\n") + fmt.Fprintf(fgcc, "\tsize_t _cgo_ctxt = _cgo_wait_runtime_init_done();\n") + // The results part of the argument structure must be + // initialized to 0 so the write barriers generated by + // the assignments to these fields in Go are safe. + // + // We use a local static variable to get the zeroed + // value of the argument type. This avoids including + // string.h for memset, and is also robust to C++ + // types with constructors. Both GCC and LLVM optimize + // this into just zeroing _cgo_a. + fmt.Fprintf(fgcc, "\ttypedef %s %v _cgo_argtype;\n", ctype, p.packedAttribute()) + fmt.Fprintf(fgcc, "\tstatic _cgo_argtype _cgo_zero;\n") + fmt.Fprintf(fgcc, "\t_cgo_argtype _cgo_a = _cgo_zero;\n") + if gccResult != "void" && (len(fntype.Results.List) > 1 || len(fntype.Results.List[0].Names) > 1) { + fmt.Fprintf(fgcc, "\t%s r;\n", gccResult) + } + if fn.Recv != nil { + fmt.Fprintf(fgcc, "\t_cgo_a.recv = recv;\n") + } + forFieldList(fntype.Params, + func(i int, aname string, atype ast.Expr) { + fmt.Fprintf(fgcc, "\t_cgo_a.p%d = %s;\n", i, exportParamName(aname, i)) + }) + fmt.Fprintf(fgcc, "\t_cgo_tsan_release();\n") + fmt.Fprintf(fgcc, "\tcrosscall2(_cgoexp%s_%s, &_cgo_a, %d, _cgo_ctxt);\n", cPrefix, exp.ExpName, off) + fmt.Fprintf(fgcc, "\t_cgo_tsan_acquire();\n") + fmt.Fprintf(fgcc, "\t_cgo_release_context(_cgo_ctxt);\n") + if gccResult != "void" { + if len(fntype.Results.List) == 1 && len(fntype.Results.List[0].Names) <= 1 { + fmt.Fprintf(fgcc, "\treturn _cgo_a.r0;\n") + } else { + forFieldList(fntype.Results, + func(i int, aname string, atype ast.Expr) { + fmt.Fprintf(fgcc, "\tr.r%d = _cgo_a.r%d;\n", i, i) + }) + fmt.Fprintf(fgcc, "\treturn r;\n") + } + } + fmt.Fprintf(fgcc, "}\n") + + // In internal linking mode, the Go linker sees both + // the C wrapper written above and the Go wrapper it + // references. Hence, export the C wrapper (e.g., for + // if we're building a shared object). The Go linker + // will resolve the C wrapper's reference to the Go + // wrapper without a separate export. + fmt.Fprintf(fgo2, "//go:cgo_export_dynamic %s\n", exp.ExpName) + // cgo_export_static refers to a symbol by its linker + // name, so set the linker name of the Go wrapper. + fmt.Fprintf(fgo2, "//go:linkname _cgoexp%s_%s _cgoexp%s_%s\n", cPrefix, exp.ExpName, cPrefix, exp.ExpName) + // In external linking mode, the Go linker sees the Go + // wrapper, but not the C wrapper. For this case, + // export the Go wrapper so the host linker can + // resolve the reference from the C wrapper to the Go + // wrapper. + fmt.Fprintf(fgo2, "//go:cgo_export_static _cgoexp%s_%s\n", cPrefix, exp.ExpName) + + // Build the wrapper function compiled by cmd/compile. + // This unpacks the argument struct above and calls the Go function. + fmt.Fprintf(fgo2, "func _cgoexp%s_%s(a *%s) {\n", cPrefix, exp.ExpName, gotype) + + fmt.Fprintf(fm, "void _cgoexp%s_%s(void* p){}\n", cPrefix, exp.ExpName) + + fmt.Fprintf(fgo2, "\t") + + if gccResult != "void" { + // Write results back to frame. + forFieldList(fntype.Results, + func(i int, aname string, atype ast.Expr) { + if i > 0 { + fmt.Fprintf(fgo2, ", ") + } + fmt.Fprintf(fgo2, "a.r%d", i) + }) + fmt.Fprintf(fgo2, " = ") + } + if fn.Recv != nil { + fmt.Fprintf(fgo2, "a.recv.") + } + fmt.Fprintf(fgo2, "%s(", exp.Func.Name) + forFieldList(fntype.Params, + func(i int, aname string, atype ast.Expr) { + if i > 0 { + fmt.Fprint(fgo2, ", ") + } + fmt.Fprintf(fgo2, "a.p%d", i) + }) + fmt.Fprint(fgo2, ")\n") + if gccResult != "void" { + // Verify that any results don't contain any + // Go pointers. + forFieldList(fntype.Results, + func(i int, aname string, atype ast.Expr) { + if !p.hasPointer(nil, atype, false) { + return + } + fmt.Fprintf(fgo2, "\t_cgoCheckResult(a.r%d)\n", i) + }) + } + fmt.Fprint(fgo2, "}\n") + } + + fmt.Fprintf(fgcch, "%s", gccExportHeaderEpilog) +} + +// Write out the C header allowing C code to call exported gccgo functions. +func (p *Package) writeGccgoExports(fgo2, fm, fgcc, fgcch io.Writer) { + gccgoSymbolPrefix := p.gccgoSymbolPrefix() + + p.writeExportHeader(fgcch) + + fmt.Fprintf(fgcc, "/* Code generated by cmd/cgo; DO NOT EDIT. */\n\n") + fmt.Fprintf(fgcc, "#include \"_cgo_export.h\"\n") + + fmt.Fprintf(fgcc, "%s\n", gccgoExportFileProlog) + fmt.Fprintf(fgcc, "%s\n", tsanProlog) + fmt.Fprintf(fgcc, "%s\n", msanProlog) + + for _, exp := range p.ExpFunc { + fn := exp.Func + fntype := fn.Type + + cdeclBuf := new(strings.Builder) + resultCount := 0 + forFieldList(fntype.Results, + func(i int, aname string, atype ast.Expr) { resultCount++ }) + switch resultCount { + case 0: + fmt.Fprintf(cdeclBuf, "void") + case 1: + forFieldList(fntype.Results, + func(i int, aname string, atype ast.Expr) { + t := p.cgoType(atype) + fmt.Fprintf(cdeclBuf, "%s", t.C) + }) + default: + // Declare a result struct. + fmt.Fprintf(fgcch, "\n/* Return type for %s */\n", exp.ExpName) + fmt.Fprintf(fgcch, "struct %s_return {\n", exp.ExpName) + forFieldList(fntype.Results, + func(i int, aname string, atype ast.Expr) { + t := p.cgoType(atype) + fmt.Fprintf(fgcch, "\t%s r%d;", t.C, i) + if len(aname) > 0 { + fmt.Fprintf(fgcch, " /* %s */", aname) + } + fmt.Fprint(fgcch, "\n") + }) + fmt.Fprintf(fgcch, "};\n") + fmt.Fprintf(cdeclBuf, "struct %s_return", exp.ExpName) + } + + cRet := cdeclBuf.String() + + cdeclBuf = new(strings.Builder) + fmt.Fprintf(cdeclBuf, "(") + if fn.Recv != nil { + fmt.Fprintf(cdeclBuf, "%s recv", p.cgoType(fn.Recv.List[0].Type).C.String()) + } + // Function parameters. + forFieldList(fntype.Params, + func(i int, aname string, atype ast.Expr) { + if i > 0 || fn.Recv != nil { + fmt.Fprintf(cdeclBuf, ", ") + } + t := p.cgoType(atype) + fmt.Fprintf(cdeclBuf, "%s p%d", t.C, i) + }) + fmt.Fprintf(cdeclBuf, ")") + cParams := cdeclBuf.String() + + if len(exp.Doc) > 0 { + fmt.Fprintf(fgcch, "\n%s", exp.Doc) + } + + fmt.Fprintf(fgcch, "extern %s %s%s;\n", cRet, exp.ExpName, cParams) + + // We need to use a name that will be exported by the + // Go code; otherwise gccgo will make it static and we + // will not be able to link against it from the C + // code. + goName := "Cgoexp_" + exp.ExpName + fmt.Fprintf(fgcc, `extern %s %s %s __asm__("%s.%s");`, cRet, goName, cParams, gccgoSymbolPrefix, gccgoToSymbol(goName)) + fmt.Fprint(fgcc, "\n") + + fmt.Fprint(fgcc, "\nCGO_NO_SANITIZE_THREAD\n") + fmt.Fprintf(fgcc, "%s %s %s {\n", cRet, exp.ExpName, cParams) + if resultCount > 0 { + fmt.Fprintf(fgcc, "\t%s r;\n", cRet) + } + fmt.Fprintf(fgcc, "\tif(_cgo_wait_runtime_init_done)\n") + fmt.Fprintf(fgcc, "\t\t_cgo_wait_runtime_init_done();\n") + fmt.Fprintf(fgcc, "\t_cgo_tsan_release();\n") + fmt.Fprint(fgcc, "\t") + if resultCount > 0 { + fmt.Fprint(fgcc, "r = ") + } + fmt.Fprintf(fgcc, "%s(", goName) + if fn.Recv != nil { + fmt.Fprint(fgcc, "recv") + } + forFieldList(fntype.Params, + func(i int, aname string, atype ast.Expr) { + if i > 0 || fn.Recv != nil { + fmt.Fprintf(fgcc, ", ") + } + fmt.Fprintf(fgcc, "p%d", i) + }) + fmt.Fprint(fgcc, ");\n") + fmt.Fprintf(fgcc, "\t_cgo_tsan_acquire();\n") + if resultCount > 0 { + fmt.Fprint(fgcc, "\treturn r;\n") + } + fmt.Fprint(fgcc, "}\n") + + // Dummy declaration for _cgo_main.c + fmt.Fprintf(fm, `char %s[1] __asm__("%s.%s");`, goName, gccgoSymbolPrefix, gccgoToSymbol(goName)) + fmt.Fprint(fm, "\n") + + // For gccgo we use a wrapper function in Go, in order + // to call CgocallBack and CgocallBackDone. + + // This code uses printer.Fprint, not conf.Fprint, + // because we don't want //line comments in the middle + // of the function types. + fmt.Fprint(fgo2, "\n") + fmt.Fprintf(fgo2, "func %s(", goName) + if fn.Recv != nil { + fmt.Fprint(fgo2, "recv ") + printer.Fprint(fgo2, fset, fn.Recv.List[0].Type) + } + forFieldList(fntype.Params, + func(i int, aname string, atype ast.Expr) { + if i > 0 || fn.Recv != nil { + fmt.Fprintf(fgo2, ", ") + } + fmt.Fprintf(fgo2, "p%d ", i) + printer.Fprint(fgo2, fset, atype) + }) + fmt.Fprintf(fgo2, ")") + if resultCount > 0 { + fmt.Fprintf(fgo2, " (") + forFieldList(fntype.Results, + func(i int, aname string, atype ast.Expr) { + if i > 0 { + fmt.Fprint(fgo2, ", ") + } + printer.Fprint(fgo2, fset, atype) + }) + fmt.Fprint(fgo2, ")") + } + fmt.Fprint(fgo2, " {\n") + fmt.Fprint(fgo2, "\tsyscall.CgocallBack()\n") + fmt.Fprint(fgo2, "\tdefer syscall.CgocallBackDone()\n") + fmt.Fprint(fgo2, "\t") + if resultCount > 0 { + fmt.Fprint(fgo2, "return ") + } + if fn.Recv != nil { + fmt.Fprint(fgo2, "recv.") + } + fmt.Fprintf(fgo2, "%s(", exp.Func.Name) + forFieldList(fntype.Params, + func(i int, aname string, atype ast.Expr) { + if i > 0 { + fmt.Fprint(fgo2, ", ") + } + fmt.Fprintf(fgo2, "p%d", i) + }) + fmt.Fprint(fgo2, ")\n") + fmt.Fprint(fgo2, "}\n") + } + + fmt.Fprintf(fgcch, "%s", gccExportHeaderEpilog) +} + +// writeExportHeader writes out the start of the _cgo_export.h file. +func (p *Package) writeExportHeader(fgcch io.Writer) { + fmt.Fprintf(fgcch, "/* Code generated by cmd/cgo; DO NOT EDIT. */\n\n") + pkg := *importPath + if pkg == "" { + pkg = p.PackagePath + } + fmt.Fprintf(fgcch, "/* package %s */\n\n", pkg) + fmt.Fprintf(fgcch, "%s\n", builtinExportProlog) + + // Remove absolute paths from #line comments in the preamble. + // They aren't useful for people using the header file, + // and they mean that the header files change based on the + // exact location of GOPATH. + re := regexp.MustCompile(`(?m)^(#line\s+\d+\s+")[^"]*[/\\]([^"]*")`) + preamble := re.ReplaceAllString(p.Preamble, "$1$2") + + fmt.Fprintf(fgcch, "/* Start of preamble from import \"C\" comments. */\n\n") + fmt.Fprintf(fgcch, "%s\n", preamble) + fmt.Fprintf(fgcch, "\n/* End of preamble from import \"C\" comments. */\n\n") + + fmt.Fprintf(fgcch, "%s\n", p.gccExportHeaderProlog()) +} + +// gccgoToSymbol converts a name to a mangled symbol for gccgo. +func gccgoToSymbol(ppath string) string { + if gccgoMangler == nil { + var err error + cmd := os.Getenv("GCCGO") + if cmd == "" { + cmd, err = exec.LookPath("gccgo") + if err != nil { + fatalf("unable to locate gccgo: %v", err) + } + } + gccgoMangler, err = pkgpath.ToSymbolFunc(cmd, *objDir) + if err != nil { + fatalf("%v", err) + } + } + return gccgoMangler(ppath) +} + +// Return the package prefix when using gccgo. +func (p *Package) gccgoSymbolPrefix() string { + if !*gccgo { + return "" + } + + if *gccgopkgpath != "" { + return gccgoToSymbol(*gccgopkgpath) + } + if *gccgoprefix == "" && p.PackageName == "main" { + return "main" + } + prefix := gccgoToSymbol(*gccgoprefix) + if prefix == "" { + prefix = "go" + } + return prefix + "." + p.PackageName +} + +// Call a function for each entry in an ast.FieldList, passing the +// index into the list, the name if any, and the type. +func forFieldList(fl *ast.FieldList, fn func(int, string, ast.Expr)) { + if fl == nil { + return + } + i := 0 + for _, r := range fl.List { + if r.Names == nil { + fn(i, "", r.Type) + i++ + } else { + for _, n := range r.Names { + fn(i, n.Name, r.Type) + i++ + } + } + } +} + +func c(repr string, args ...interface{}) *TypeRepr { + return &TypeRepr{repr, args} +} + +// Map predeclared Go types to Type. +var goTypes = map[string]*Type{ + "bool": {Size: 1, Align: 1, C: c("GoUint8")}, + "byte": {Size: 1, Align: 1, C: c("GoUint8")}, + "int": {Size: 0, Align: 0, C: c("GoInt")}, + "uint": {Size: 0, Align: 0, C: c("GoUint")}, + "rune": {Size: 4, Align: 4, C: c("GoInt32")}, + "int8": {Size: 1, Align: 1, C: c("GoInt8")}, + "uint8": {Size: 1, Align: 1, C: c("GoUint8")}, + "int16": {Size: 2, Align: 2, C: c("GoInt16")}, + "uint16": {Size: 2, Align: 2, C: c("GoUint16")}, + "int32": {Size: 4, Align: 4, C: c("GoInt32")}, + "uint32": {Size: 4, Align: 4, C: c("GoUint32")}, + "int64": {Size: 8, Align: 8, C: c("GoInt64")}, + "uint64": {Size: 8, Align: 8, C: c("GoUint64")}, + "float32": {Size: 4, Align: 4, C: c("GoFloat32")}, + "float64": {Size: 8, Align: 8, C: c("GoFloat64")}, + "complex64": {Size: 8, Align: 4, C: c("GoComplex64")}, + "complex128": {Size: 16, Align: 8, C: c("GoComplex128")}, +} + +// Map an ast type to a Type. +func (p *Package) cgoType(e ast.Expr) *Type { + switch t := e.(type) { + case *ast.StarExpr: + x := p.cgoType(t.X) + return &Type{Size: p.PtrSize, Align: p.PtrSize, C: c("%s*", x.C)} + case *ast.ArrayType: + if t.Len == nil { + // Slice: pointer, len, cap. + return &Type{Size: p.PtrSize * 3, Align: p.PtrSize, C: c("GoSlice")} + } + // Non-slice array types are not supported. + case *ast.StructType: + // Not supported. + case *ast.FuncType: + return &Type{Size: p.PtrSize, Align: p.PtrSize, C: c("void*")} + case *ast.InterfaceType: + return &Type{Size: 2 * p.PtrSize, Align: p.PtrSize, C: c("GoInterface")} + case *ast.MapType: + return &Type{Size: p.PtrSize, Align: p.PtrSize, C: c("GoMap")} + case *ast.ChanType: + return &Type{Size: p.PtrSize, Align: p.PtrSize, C: c("GoChan")} + case *ast.Ident: + goTypesFixup := func(r *Type) *Type { + if r.Size == 0 { // int or uint + rr := new(Type) + *rr = *r + rr.Size = p.IntSize + rr.Align = p.IntSize + r = rr + } + if r.Align > p.PtrSize { + r.Align = p.PtrSize + } + return r + } + // Look up the type in the top level declarations. + // TODO: Handle types defined within a function. + for _, d := range p.Decl { + gd, ok := d.(*ast.GenDecl) + if !ok || gd.Tok != token.TYPE { + continue + } + for _, spec := range gd.Specs { + ts, ok := spec.(*ast.TypeSpec) + if !ok { + continue + } + if ts.Name.Name == t.Name { + return p.cgoType(ts.Type) + } + } + } + if def := typedef[t.Name]; def != nil { + if defgo, ok := def.Go.(*ast.Ident); ok { + switch defgo.Name { + case "complex64", "complex128": + // MSVC does not support the _Complex keyword + // nor the complex macro. + // Use GoComplex64 and GoComplex128 instead, + // which are typedef-ed to a compatible type. + // See go.dev/issues/36233. + return goTypesFixup(goTypes[defgo.Name]) + } + } + return def + } + if t.Name == "uintptr" { + return &Type{Size: p.PtrSize, Align: p.PtrSize, C: c("GoUintptr")} + } + if t.Name == "string" { + // The string data is 1 pointer + 1 (pointer-sized) int. + return &Type{Size: 2 * p.PtrSize, Align: p.PtrSize, C: c("GoString")} + } + if t.Name == "error" { + return &Type{Size: 2 * p.PtrSize, Align: p.PtrSize, C: c("GoInterface")} + } + if r, ok := goTypes[t.Name]; ok { + return goTypesFixup(r) + } + error_(e.Pos(), "unrecognized Go type %s", t.Name) + return &Type{Size: 4, Align: 4, C: c("int")} + case *ast.SelectorExpr: + id, ok := t.X.(*ast.Ident) + if ok && id.Name == "unsafe" && t.Sel.Name == "Pointer" { + return &Type{Size: p.PtrSize, Align: p.PtrSize, C: c("void*")} + } + } + error_(e.Pos(), "Go type not supported in export: %s", gofmt(e)) + return &Type{Size: 4, Align: 4, C: c("int")} +} + +const gccProlog = ` +#line 1 "cgo-gcc-prolog" +/* + If x and y are not equal, the type will be invalid + (have a negative array count) and an inscrutable error will come + out of the compiler and hopefully mention "name". +*/ +#define __cgo_compile_assert_eq(x, y, name) typedef char name[(x-y)*(x-y)*-2UL+1UL]; + +/* Check at compile time that the sizes we use match our expectations. */ +#define __cgo_size_assert(t, n) __cgo_compile_assert_eq(sizeof(t), (size_t)n, _cgo_sizeof_##t##_is_not_##n) + +__cgo_size_assert(char, 1) +__cgo_size_assert(short, 2) +__cgo_size_assert(int, 4) +typedef long long __cgo_long_long; +__cgo_size_assert(__cgo_long_long, 8) +__cgo_size_assert(float, 4) +__cgo_size_assert(double, 8) + +extern char* _cgo_topofstack(void); + +/* + We use packed structs, but they are always aligned. + The pragmas and address-of-packed-member are only recognized as warning + groups in clang 4.0+, so ignore unknown pragmas first. +*/ +#pragma GCC diagnostic ignored "-Wunknown-pragmas" +#pragma GCC diagnostic ignored "-Wpragmas" +#pragma GCC diagnostic ignored "-Waddress-of-packed-member" + +#include <errno.h> +#include <string.h> +` + +// Prologue defining TSAN functions in C. +const noTsanProlog = ` +#define CGO_NO_SANITIZE_THREAD +#define _cgo_tsan_acquire() +#define _cgo_tsan_release() +` + +// This must match the TSAN code in runtime/cgo/libcgo.h. +// This is used when the code is built with the C/C++ Thread SANitizer, +// which is not the same as the Go race detector. +// __tsan_acquire tells TSAN that we are acquiring a lock on a variable, +// in this case _cgo_sync. __tsan_release releases the lock. +// (There is no actual lock, we are just telling TSAN that there is.) +// +// When we call from Go to C we call _cgo_tsan_acquire. +// When the C function returns we call _cgo_tsan_release. +// Similarly, when C calls back into Go we call _cgo_tsan_release +// and then call _cgo_tsan_acquire when we return to C. +// These calls tell TSAN that there is a serialization point at the C call. +// +// This is necessary because TSAN, which is a C/C++ tool, can not see +// the synchronization in the Go code. Without these calls, when +// multiple goroutines call into C code, TSAN does not understand +// that the calls are properly synchronized on the Go side. +// +// To be clear, if the calls are not properly synchronized on the Go side, +// we will be hiding races. But when using TSAN on mixed Go C/C++ code +// it is more important to avoid false positives, which reduce confidence +// in the tool, than to avoid false negatives. +const yesTsanProlog = ` +#line 1 "cgo-tsan-prolog" +#define CGO_NO_SANITIZE_THREAD __attribute__ ((no_sanitize_thread)) + +long long _cgo_sync __attribute__ ((common)); + +extern void __tsan_acquire(void*); +extern void __tsan_release(void*); + +__attribute__ ((unused)) +static void _cgo_tsan_acquire() { + __tsan_acquire(&_cgo_sync); +} + +__attribute__ ((unused)) +static void _cgo_tsan_release() { + __tsan_release(&_cgo_sync); +} +` + +// Set to yesTsanProlog if we see -fsanitize=thread in the flags for gcc. +var tsanProlog = noTsanProlog + +// noMsanProlog is a prologue defining an MSAN function in C. +// This is used when not compiling with -fsanitize=memory. +const noMsanProlog = ` +#define _cgo_msan_write(addr, sz) +` + +// yesMsanProlog is a prologue defining an MSAN function in C. +// This is used when compiling with -fsanitize=memory. +// See the comment above where _cgo_msan_write is called. +const yesMsanProlog = ` +extern void __msan_unpoison(const volatile void *, size_t); + +#define _cgo_msan_write(addr, sz) __msan_unpoison((addr), (sz)) +` + +// msanProlog is set to yesMsanProlog if we see -fsanitize=memory in the flags +// for the C compiler. +var msanProlog = noMsanProlog + +const builtinProlog = ` +#line 1 "cgo-builtin-prolog" +#include <stddef.h> + +/* Define intgo when compiling with GCC. */ +typedef ptrdiff_t intgo; + +#define GO_CGO_GOSTRING_TYPEDEF +typedef struct { const char *p; intgo n; } _GoString_; +typedef struct { char *p; intgo n; intgo c; } _GoBytes_; +_GoString_ GoString(char *p); +_GoString_ GoStringN(char *p, int l); +_GoBytes_ GoBytes(void *p, int n); +char *CString(_GoString_); +void *CBytes(_GoBytes_); +void *_CMalloc(size_t); + +__attribute__ ((unused)) +static size_t _GoStringLen(_GoString_ s) { return (size_t)s.n; } + +__attribute__ ((unused)) +static const char *_GoStringPtr(_GoString_ s) { return s.p; } +` + +const goProlog = ` +//go:linkname _cgo_runtime_cgocall runtime.cgocall +func _cgo_runtime_cgocall(unsafe.Pointer, uintptr) int32 + +//go:linkname _cgoCheckPointer runtime.cgoCheckPointer +func _cgoCheckPointer(interface{}, interface{}) + +//go:linkname _cgoCheckResult runtime.cgoCheckResult +func _cgoCheckResult(interface{}) +` + +const gccgoGoProlog = ` +func _cgoCheckPointer(interface{}, interface{}) + +func _cgoCheckResult(interface{}) +` + +const goStringDef = ` +//go:linkname _cgo_runtime_gostring runtime.gostring +func _cgo_runtime_gostring(*_Ctype_char) string + +// GoString converts the C string p into a Go string. +func _Cfunc_GoString(p *_Ctype_char) string { + return _cgo_runtime_gostring(p) +} +` + +const goStringNDef = ` +//go:linkname _cgo_runtime_gostringn runtime.gostringn +func _cgo_runtime_gostringn(*_Ctype_char, int) string + +// GoStringN converts the C data p with explicit length l to a Go string. +func _Cfunc_GoStringN(p *_Ctype_char, l _Ctype_int) string { + return _cgo_runtime_gostringn(p, int(l)) +} +` + +const goBytesDef = ` +//go:linkname _cgo_runtime_gobytes runtime.gobytes +func _cgo_runtime_gobytes(unsafe.Pointer, int) []byte + +// GoBytes converts the C data p with explicit length l to a Go []byte. +func _Cfunc_GoBytes(p unsafe.Pointer, l _Ctype_int) []byte { + return _cgo_runtime_gobytes(p, int(l)) +} +` + +const cStringDef = ` +// CString converts the Go string s to a C string. +// +// The C string is allocated in the C heap using malloc. +// It is the caller's responsibility to arrange for it to be +// freed, such as by calling C.free (be sure to include stdlib.h +// if C.free is needed). +func _Cfunc_CString(s string) *_Ctype_char { + if len(s)+1 <= 0 { + panic("string too large") + } + p := _cgo_cmalloc(uint64(len(s)+1)) + sliceHeader := struct { + p unsafe.Pointer + len int + cap int + }{p, len(s)+1, len(s)+1} + b := *(*[]byte)(unsafe.Pointer(&sliceHeader)) + copy(b, s) + b[len(s)] = 0 + return (*_Ctype_char)(p) +} +` + +const cBytesDef = ` +// CBytes converts the Go []byte slice b to a C array. +// +// The C array is allocated in the C heap using malloc. +// It is the caller's responsibility to arrange for it to be +// freed, such as by calling C.free (be sure to include stdlib.h +// if C.free is needed). +func _Cfunc_CBytes(b []byte) unsafe.Pointer { + p := _cgo_cmalloc(uint64(len(b))) + sliceHeader := struct { + p unsafe.Pointer + len int + cap int + }{p, len(b), len(b)} + s := *(*[]byte)(unsafe.Pointer(&sliceHeader)) + copy(s, b) + return p +} +` + +const cMallocDef = ` +func _Cfunc__CMalloc(n _Ctype_size_t) unsafe.Pointer { + return _cgo_cmalloc(uint64(n)) +} +` + +var builtinDefs = map[string]string{ + "GoString": goStringDef, + "GoStringN": goStringNDef, + "GoBytes": goBytesDef, + "CString": cStringDef, + "CBytes": cBytesDef, + "_CMalloc": cMallocDef, +} + +// Definitions for C.malloc in Go and in C. We define it ourselves +// since we call it from functions we define, such as C.CString. +// Also, we have historically ensured that C.malloc does not return +// nil even for an allocation of 0. + +const cMallocDefGo = ` +//go:cgo_import_static _cgoPREFIX_Cfunc__Cmalloc +//go:linkname __cgofn__cgoPREFIX_Cfunc__Cmalloc _cgoPREFIX_Cfunc__Cmalloc +var __cgofn__cgoPREFIX_Cfunc__Cmalloc byte +var _cgoPREFIX_Cfunc__Cmalloc = unsafe.Pointer(&__cgofn__cgoPREFIX_Cfunc__Cmalloc) + +//go:linkname runtime_throw runtime.throw +func runtime_throw(string) + +//go:cgo_unsafe_args +func _cgo_cmalloc(p0 uint64) (r1 unsafe.Pointer) { + _cgo_runtime_cgocall(_cgoPREFIX_Cfunc__Cmalloc, uintptr(unsafe.Pointer(&p0))) + if r1 == nil { + runtime_throw("runtime: C malloc failed") + } + return +} +` + +// cMallocDefC defines the C version of C.malloc for the gc compiler. +// It is defined here because C.CString and friends need a definition. +// We define it by hand, rather than simply inventing a reference to +// C.malloc, because <stdlib.h> may not have been included. +// This is approximately what writeOutputFunc would generate, but +// skips the cgo_topofstack code (which is only needed if the C code +// calls back into Go). This also avoids returning nil for an +// allocation of 0 bytes. +const cMallocDefC = ` +CGO_NO_SANITIZE_THREAD +void _cgoPREFIX_Cfunc__Cmalloc(void *v) { + struct { + unsigned long long p0; + void *r1; + } PACKED *a = v; + void *ret; + _cgo_tsan_acquire(); + ret = malloc(a->p0); + if (ret == 0 && a->p0 == 0) { + ret = malloc(1); + } + a->r1 = ret; + _cgo_tsan_release(); +} +` + +func (p *Package) cPrologGccgo() string { + r := strings.NewReplacer( + "PREFIX", cPrefix, + "GCCGOSYMBOLPREF", p.gccgoSymbolPrefix(), + "_cgoCheckPointer", gccgoToSymbol("_cgoCheckPointer"), + "_cgoCheckResult", gccgoToSymbol("_cgoCheckResult")) + return r.Replace(cPrologGccgo) +} + +const cPrologGccgo = ` +#line 1 "cgo-c-prolog-gccgo" +#include <stdint.h> +#include <stdlib.h> +#include <string.h> + +typedef unsigned char byte; +typedef intptr_t intgo; + +struct __go_string { + const unsigned char *__data; + intgo __length; +}; + +typedef struct __go_open_array { + void* __values; + intgo __count; + intgo __capacity; +} Slice; + +struct __go_string __go_byte_array_to_string(const void* p, intgo len); +struct __go_open_array __go_string_to_byte_array (struct __go_string str); + +extern void runtime_throw(const char *); + +const char *_cgoPREFIX_Cfunc_CString(struct __go_string s) { + char *p = malloc(s.__length+1); + if(p == NULL) + runtime_throw("runtime: C malloc failed"); + memmove(p, s.__data, s.__length); + p[s.__length] = 0; + return p; +} + +void *_cgoPREFIX_Cfunc_CBytes(struct __go_open_array b) { + char *p = malloc(b.__count); + if(p == NULL) + runtime_throw("runtime: C malloc failed"); + memmove(p, b.__values, b.__count); + return p; +} + +struct __go_string _cgoPREFIX_Cfunc_GoString(char *p) { + intgo len = (p != NULL) ? strlen(p) : 0; + return __go_byte_array_to_string(p, len); +} + +struct __go_string _cgoPREFIX_Cfunc_GoStringN(char *p, int32_t n) { + return __go_byte_array_to_string(p, n); +} + +Slice _cgoPREFIX_Cfunc_GoBytes(char *p, int32_t n) { + struct __go_string s = { (const unsigned char *)p, n }; + return __go_string_to_byte_array(s); +} + +void *_cgoPREFIX_Cfunc__CMalloc(size_t n) { + void *p = malloc(n); + if(p == NULL && n == 0) + p = malloc(1); + if(p == NULL) + runtime_throw("runtime: C malloc failed"); + return p; +} + +struct __go_type_descriptor; +typedef struct __go_empty_interface { + const struct __go_type_descriptor *__type_descriptor; + void *__object; +} Eface; + +extern void runtimeCgoCheckPointer(Eface, Eface) + __asm__("runtime.cgoCheckPointer") + __attribute__((weak)); + +extern void localCgoCheckPointer(Eface, Eface) + __asm__("GCCGOSYMBOLPREF._cgoCheckPointer"); + +void localCgoCheckPointer(Eface ptr, Eface arg) { + if(runtimeCgoCheckPointer) { + runtimeCgoCheckPointer(ptr, arg); + } +} + +extern void runtimeCgoCheckResult(Eface) + __asm__("runtime.cgoCheckResult") + __attribute__((weak)); + +extern void localCgoCheckResult(Eface) + __asm__("GCCGOSYMBOLPREF._cgoCheckResult"); + +void localCgoCheckResult(Eface val) { + if(runtimeCgoCheckResult) { + runtimeCgoCheckResult(val); + } +} +` + +// builtinExportProlog is a shorter version of builtinProlog, +// to be put into the _cgo_export.h file. +// For historical reasons we can't use builtinProlog in _cgo_export.h, +// because _cgo_export.h defines GoString as a struct while builtinProlog +// defines it as a function. We don't change this to avoid unnecessarily +// breaking existing code. +// The test of GO_CGO_GOSTRING_TYPEDEF avoids a duplicate definition +// error if a Go file with a cgo comment #include's the export header +// generated by a different package. +const builtinExportProlog = ` +#line 1 "cgo-builtin-export-prolog" + +#include <stddef.h> + +#ifndef GO_CGO_EXPORT_PROLOGUE_H +#define GO_CGO_EXPORT_PROLOGUE_H + +#ifndef GO_CGO_GOSTRING_TYPEDEF +typedef struct { const char *p; ptrdiff_t n; } _GoString_; +#endif + +#endif +` + +func (p *Package) gccExportHeaderProlog() string { + return strings.Replace(gccExportHeaderProlog, "GOINTBITS", fmt.Sprint(8*p.IntSize), -1) +} + +// gccExportHeaderProlog is written to the exported header, after the +// import "C" comment preamble but before the generated declarations +// of exported functions. This permits the generated declarations to +// use the type names that appear in goTypes, above. +// +// The test of GO_CGO_GOSTRING_TYPEDEF avoids a duplicate definition +// error if a Go file with a cgo comment #include's the export header +// generated by a different package. Unfortunately GoString means two +// different things: in this prolog it means a C name for the Go type, +// while in the prolog written into the start of the C code generated +// from a cgo-using Go file it means the C.GoString function. There is +// no way to resolve this conflict, but it also doesn't make much +// difference, as Go code never wants to refer to the latter meaning. +const gccExportHeaderProlog = ` +/* Start of boilerplate cgo prologue. */ +#line 1 "cgo-gcc-export-header-prolog" + +#ifndef GO_CGO_PROLOGUE_H +#define GO_CGO_PROLOGUE_H + +typedef signed char GoInt8; +typedef unsigned char GoUint8; +typedef short GoInt16; +typedef unsigned short GoUint16; +typedef int GoInt32; +typedef unsigned int GoUint32; +typedef long long GoInt64; +typedef unsigned long long GoUint64; +typedef GoIntGOINTBITS GoInt; +typedef GoUintGOINTBITS GoUint; +typedef size_t GoUintptr; +typedef float GoFloat32; +typedef double GoFloat64; +#ifdef _MSC_VER +#include <complex.h> +typedef _Fcomplex GoComplex64; +typedef _Dcomplex GoComplex128; +#else +typedef float _Complex GoComplex64; +typedef double _Complex GoComplex128; +#endif + +/* + static assertion to make sure the file is being used on architecture + at least with matching size of GoInt. +*/ +typedef char _check_for_GOINTBITS_bit_pointer_matching_GoInt[sizeof(void*)==GOINTBITS/8 ? 1:-1]; + +#ifndef GO_CGO_GOSTRING_TYPEDEF +typedef _GoString_ GoString; +#endif +typedef void *GoMap; +typedef void *GoChan; +typedef struct { void *t; void *v; } GoInterface; +typedef struct { void *data; GoInt len; GoInt cap; } GoSlice; + +#endif + +/* End of boilerplate cgo prologue. */ + +#ifdef __cplusplus +extern "C" { +#endif +` + +// gccExportHeaderEpilog goes at the end of the generated header file. +const gccExportHeaderEpilog = ` +#ifdef __cplusplus +} +#endif +` + +// gccgoExportFileProlog is written to the _cgo_export.c file when +// using gccgo. +// We use weak declarations, and test the addresses, so that this code +// works with older versions of gccgo. +const gccgoExportFileProlog = ` +#line 1 "cgo-gccgo-export-file-prolog" +extern _Bool runtime_iscgo __attribute__ ((weak)); + +static void GoInit(void) __attribute__ ((constructor)); +static void GoInit(void) { + if(&runtime_iscgo) + runtime_iscgo = 1; +} + +extern size_t _cgo_wait_runtime_init_done(void) __attribute__ ((weak)); +` |