summaryrefslogtreecommitdiffstats
path: root/src/crypto/ecdsa
diff options
context:
space:
mode:
authorDaniel Baumann <daniel.baumann@progress-linux.org>2024-04-16 19:23:18 +0000
committerDaniel Baumann <daniel.baumann@progress-linux.org>2024-04-16 19:23:18 +0000
commit43a123c1ae6613b3efeed291fa552ecd909d3acf (patch)
treefd92518b7024bc74031f78a1cf9e454b65e73665 /src/crypto/ecdsa
parentInitial commit. (diff)
downloadgolang-1.20-43a123c1ae6613b3efeed291fa552ecd909d3acf.tar.xz
golang-1.20-43a123c1ae6613b3efeed291fa552ecd909d3acf.zip
Adding upstream version 1.20.14.upstream/1.20.14upstream
Signed-off-by: Daniel Baumann <daniel.baumann@progress-linux.org>
Diffstat (limited to 'src/crypto/ecdsa')
-rw-r--r--src/crypto/ecdsa/boring.go106
-rw-r--r--src/crypto/ecdsa/ecdsa.go660
-rw-r--r--src/crypto/ecdsa/ecdsa_legacy.go188
-rw-r--r--src/crypto/ecdsa/ecdsa_noasm.go17
-rw-r--r--src/crypto/ecdsa/ecdsa_s390x.go177
-rw-r--r--src/crypto/ecdsa/ecdsa_s390x.s28
-rw-r--r--src/crypto/ecdsa/ecdsa_s390x_test.go32
-rw-r--r--src/crypto/ecdsa/ecdsa_test.go589
-rw-r--r--src/crypto/ecdsa/equal_test.go75
-rw-r--r--src/crypto/ecdsa/example_test.go32
-rw-r--r--src/crypto/ecdsa/notboring.go16
-rw-r--r--src/crypto/ecdsa/testdata/SigVer.rsp.bz2bin0 -> 95485 bytes
12 files changed, 1920 insertions, 0 deletions
diff --git a/src/crypto/ecdsa/boring.go b/src/crypto/ecdsa/boring.go
new file mode 100644
index 0000000..275c60b
--- /dev/null
+++ b/src/crypto/ecdsa/boring.go
@@ -0,0 +1,106 @@
+// Copyright 2017 The Go Authors. All rights reserved.
+// Use of this source code is governed by a BSD-style
+// license that can be found in the LICENSE file.
+
+//go:build boringcrypto
+
+package ecdsa
+
+import (
+ "crypto/internal/boring"
+ "crypto/internal/boring/bbig"
+ "crypto/internal/boring/bcache"
+ "math/big"
+)
+
+// Cached conversions from Go PublicKey/PrivateKey to BoringCrypto.
+//
+// The first operation on a PublicKey or PrivateKey makes a parallel
+// BoringCrypto key and saves it in pubCache or privCache.
+//
+// We could just assume that once used in a Sign or Verify operation,
+// a particular key is never again modified, but that has not been a
+// stated assumption before. Just in case there is any existing code that
+// does modify the key between operations, we save the original values
+// alongside the cached BoringCrypto key and check that the real key
+// still matches before using the cached key. The theory is that the real
+// operations are significantly more expensive than the comparison.
+
+var pubCache bcache.Cache[PublicKey, boringPub]
+var privCache bcache.Cache[PrivateKey, boringPriv]
+
+func init() {
+ pubCache.Register()
+ privCache.Register()
+}
+
+type boringPub struct {
+ key *boring.PublicKeyECDSA
+ orig PublicKey
+}
+
+func boringPublicKey(pub *PublicKey) (*boring.PublicKeyECDSA, error) {
+ b := pubCache.Get(pub)
+ if b != nil && publicKeyEqual(&b.orig, pub) {
+ return b.key, nil
+ }
+
+ b = new(boringPub)
+ b.orig = copyPublicKey(pub)
+ key, err := boring.NewPublicKeyECDSA(b.orig.Curve.Params().Name, bbig.Enc(b.orig.X), bbig.Enc(b.orig.Y))
+ if err != nil {
+ return nil, err
+ }
+ b.key = key
+ pubCache.Put(pub, b)
+ return key, nil
+}
+
+type boringPriv struct {
+ key *boring.PrivateKeyECDSA
+ orig PrivateKey
+}
+
+func boringPrivateKey(priv *PrivateKey) (*boring.PrivateKeyECDSA, error) {
+ b := privCache.Get(priv)
+ if b != nil && privateKeyEqual(&b.orig, priv) {
+ return b.key, nil
+ }
+
+ b = new(boringPriv)
+ b.orig = copyPrivateKey(priv)
+ key, err := boring.NewPrivateKeyECDSA(b.orig.Curve.Params().Name, bbig.Enc(b.orig.X), bbig.Enc(b.orig.Y), bbig.Enc(b.orig.D))
+ if err != nil {
+ return nil, err
+ }
+ b.key = key
+ privCache.Put(priv, b)
+ return key, nil
+}
+
+func publicKeyEqual(k1, k2 *PublicKey) bool {
+ return k1.X != nil &&
+ k1.Curve.Params() == k2.Curve.Params() &&
+ k1.X.Cmp(k2.X) == 0 &&
+ k1.Y.Cmp(k2.Y) == 0
+}
+
+func privateKeyEqual(k1, k2 *PrivateKey) bool {
+ return publicKeyEqual(&k1.PublicKey, &k2.PublicKey) &&
+ k1.D.Cmp(k2.D) == 0
+}
+
+func copyPublicKey(k *PublicKey) PublicKey {
+ return PublicKey{
+ Curve: k.Curve,
+ X: new(big.Int).Set(k.X),
+ Y: new(big.Int).Set(k.Y),
+ }
+}
+
+func copyPrivateKey(k *PrivateKey) PrivateKey {
+ return PrivateKey{
+ PublicKey: copyPublicKey(&k.PublicKey),
+ D: new(big.Int).Set(k.D),
+ }
+}
diff --git a/src/crypto/ecdsa/ecdsa.go b/src/crypto/ecdsa/ecdsa.go
new file mode 100644
index 0000000..03a9a72
--- /dev/null
+++ b/src/crypto/ecdsa/ecdsa.go
@@ -0,0 +1,660 @@
+// Copyright 2011 The Go Authors. All rights reserved.
+// Use of this source code is governed by a BSD-style
+// license that can be found in the LICENSE file.
+
+// Package ecdsa implements the Elliptic Curve Digital Signature Algorithm, as
+// defined in FIPS 186-4 and SEC 1, Version 2.0.
+//
+// Signatures generated by this package are not deterministic, but entropy is
+// mixed with the private key and the message, achieving the same level of
+// security in case of randomness source failure.
+package ecdsa
+
+// [FIPS 186-4] references ANSI X9.62-2005 for the bulk of the ECDSA algorithm.
+// That standard is not freely available, which is a problem in an open source
+// implementation, because not only the implementer, but also any maintainer,
+// contributor, reviewer, auditor, and learner needs access to it. Instead, this
+// package references and follows the equivalent [SEC 1, Version 2.0].
+//
+// [FIPS 186-4]: https://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.186-4.pdf
+// [SEC 1, Version 2.0]: https://www.secg.org/sec1-v2.pdf
+
+import (
+ "bytes"
+ "crypto"
+ "crypto/aes"
+ "crypto/cipher"
+ "crypto/ecdh"
+ "crypto/elliptic"
+ "crypto/internal/bigmod"
+ "crypto/internal/boring"
+ "crypto/internal/boring/bbig"
+ "crypto/internal/nistec"
+ "crypto/internal/randutil"
+ "crypto/sha512"
+ "crypto/subtle"
+ "errors"
+ "io"
+ "math/big"
+ "sync"
+
+ "golang.org/x/crypto/cryptobyte"
+ "golang.org/x/crypto/cryptobyte/asn1"
+)
+
+// PublicKey represents an ECDSA public key.
+type PublicKey struct {
+ elliptic.Curve
+ X, Y *big.Int
+}
+
+// Any methods implemented on PublicKey might need to also be implemented on
+// PrivateKey, as the latter embeds the former and will expose its methods.
+
+// ECDH returns k as a [ecdh.PublicKey]. It returns an error if the key is
+// invalid according to the definition of [ecdh.Curve.NewPublicKey], or if the
+// Curve is not supported by crypto/ecdh.
+func (k *PublicKey) ECDH() (*ecdh.PublicKey, error) {
+ c := curveToECDH(k.Curve)
+ if c == nil {
+ return nil, errors.New("ecdsa: unsupported curve by crypto/ecdh")
+ }
+ if !k.Curve.IsOnCurve(k.X, k.Y) {
+ return nil, errors.New("ecdsa: invalid public key")
+ }
+ return c.NewPublicKey(elliptic.Marshal(k.Curve, k.X, k.Y))
+}
+
+// Equal reports whether pub and x have the same value.
+//
+// Two keys are only considered to have the same value if they have the same Curve value.
+// Note that for example elliptic.P256() and elliptic.P256().Params() are different
+// values, as the latter is a generic not constant time implementation.
+func (pub *PublicKey) Equal(x crypto.PublicKey) bool {
+ xx, ok := x.(*PublicKey)
+ if !ok {
+ return false
+ }
+ return bigIntEqual(pub.X, xx.X) && bigIntEqual(pub.Y, xx.Y) &&
+ // Standard library Curve implementations are singletons, so this check
+ // will work for those. Other Curves might be equivalent even if not
+ // singletons, but there is no definitive way to check for that, and
+ // better to err on the side of safety.
+ pub.Curve == xx.Curve
+}
+
+// PrivateKey represents an ECDSA private key.
+type PrivateKey struct {
+ PublicKey
+ D *big.Int
+}
+
+// ECDH returns k as a [ecdh.PrivateKey]. It returns an error if the key is
+// invalid according to the definition of [ecdh.Curve.NewPrivateKey], or if the
+// Curve is not supported by crypto/ecdh.
+func (k *PrivateKey) ECDH() (*ecdh.PrivateKey, error) {
+ c := curveToECDH(k.Curve)
+ if c == nil {
+ return nil, errors.New("ecdsa: unsupported curve by crypto/ecdh")
+ }
+ size := (k.Curve.Params().N.BitLen() + 7) / 8
+ if k.D.BitLen() > size*8 {
+ return nil, errors.New("ecdsa: invalid private key")
+ }
+ return c.NewPrivateKey(k.D.FillBytes(make([]byte, size)))
+}
+
+func curveToECDH(c elliptic.Curve) ecdh.Curve {
+ switch c {
+ case elliptic.P256():
+ return ecdh.P256()
+ case elliptic.P384():
+ return ecdh.P384()
+ case elliptic.P521():
+ return ecdh.P521()
+ default:
+ return nil
+ }
+}
+
+// Public returns the public key corresponding to priv.
+func (priv *PrivateKey) Public() crypto.PublicKey {
+ return &priv.PublicKey
+}
+
+// Equal reports whether priv and x have the same value.
+//
+// See PublicKey.Equal for details on how Curve is compared.
+func (priv *PrivateKey) Equal(x crypto.PrivateKey) bool {
+ xx, ok := x.(*PrivateKey)
+ if !ok {
+ return false
+ }
+ return priv.PublicKey.Equal(&xx.PublicKey) && bigIntEqual(priv.D, xx.D)
+}
+
+// bigIntEqual reports whether a and b are equal leaking only their bit length
+// through timing side-channels.
+func bigIntEqual(a, b *big.Int) bool {
+ return subtle.ConstantTimeCompare(a.Bytes(), b.Bytes()) == 1
+}
+
+// Sign signs digest with priv, reading randomness from rand. The opts argument
+// is not currently used but, in keeping with the crypto.Signer interface,
+// should be the hash function used to digest the message.
+//
+// This method implements crypto.Signer, which is an interface to support keys
+// where the private part is kept in, for example, a hardware module. Common
+// uses can use the SignASN1 function in this package directly.
+func (priv *PrivateKey) Sign(rand io.Reader, digest []byte, opts crypto.SignerOpts) ([]byte, error) {
+ return SignASN1(rand, priv, digest)
+}
+
+// GenerateKey generates a public and private key pair.
+func GenerateKey(c elliptic.Curve, rand io.Reader) (*PrivateKey, error) {
+ randutil.MaybeReadByte(rand)
+
+ if boring.Enabled && rand == boring.RandReader {
+ x, y, d, err := boring.GenerateKeyECDSA(c.Params().Name)
+ if err != nil {
+ return nil, err
+ }
+ return &PrivateKey{PublicKey: PublicKey{Curve: c, X: bbig.Dec(x), Y: bbig.Dec(y)}, D: bbig.Dec(d)}, nil
+ }
+ boring.UnreachableExceptTests()
+
+ switch c.Params() {
+ case elliptic.P224().Params():
+ return generateNISTEC(p224(), rand)
+ case elliptic.P256().Params():
+ return generateNISTEC(p256(), rand)
+ case elliptic.P384().Params():
+ return generateNISTEC(p384(), rand)
+ case elliptic.P521().Params():
+ return generateNISTEC(p521(), rand)
+ default:
+ return generateLegacy(c, rand)
+ }
+}
+
+func generateNISTEC[Point nistPoint[Point]](c *nistCurve[Point], rand io.Reader) (*PrivateKey, error) {
+ k, Q, err := randomPoint(c, rand)
+ if err != nil {
+ return nil, err
+ }
+
+ priv := new(PrivateKey)
+ priv.PublicKey.Curve = c.curve
+ priv.D = new(big.Int).SetBytes(k.Bytes(c.N))
+ priv.PublicKey.X, priv.PublicKey.Y, err = c.pointToAffine(Q)
+ if err != nil {
+ return nil, err
+ }
+ return priv, nil
+}
+
+// randomPoint returns a random scalar and the corresponding point using the
+// procedure given in FIPS 186-4, Appendix B.5.2 (rejection sampling).
+func randomPoint[Point nistPoint[Point]](c *nistCurve[Point], rand io.Reader) (k *bigmod.Nat, p Point, err error) {
+ k = bigmod.NewNat()
+ for {
+ b := make([]byte, c.N.Size())
+ if _, err = io.ReadFull(rand, b); err != nil {
+ return
+ }
+
+ // Mask off any excess bits to increase the chance of hitting a value in
+ // (0, N). These are the most dangerous lines in the package and maybe in
+ // the library: a single bit of bias in the selection of nonces would likely
+ // lead to key recovery, but no tests would fail. Look but DO NOT TOUCH.
+ if excess := len(b)*8 - c.N.BitLen(); excess > 0 {
+ // Just to be safe, assert that this only happens for the one curve that
+ // doesn't have a round number of bits.
+ if excess != 0 && c.curve.Params().Name != "P-521" {
+ panic("ecdsa: internal error: unexpectedly masking off bits")
+ }
+ b[0] >>= excess
+ }
+
+ // FIPS 186-4 makes us check k <= N - 2 and then add one.
+ // Checking 0 < k <= N - 1 is strictly equivalent.
+ // None of this matters anyway because the chance of selecting
+ // zero is cryptographically negligible.
+ if _, err = k.SetBytes(b, c.N); err == nil && k.IsZero() == 0 {
+ break
+ }
+
+ if testingOnlyRejectionSamplingLooped != nil {
+ testingOnlyRejectionSamplingLooped()
+ }
+ }
+
+ p, err = c.newPoint().ScalarBaseMult(k.Bytes(c.N))
+ return
+}
+
+// testingOnlyRejectionSamplingLooped is called when rejection sampling in
+// randomPoint rejects a candidate for being higher than the modulus.
+var testingOnlyRejectionSamplingLooped func()
+
+// errNoAsm is returned by signAsm and verifyAsm when the assembly
+// implementation is not available.
+var errNoAsm = errors.New("no assembly implementation available")
+
+// SignASN1 signs a hash (which should be the result of hashing a larger message)
+// using the private key, priv. If the hash is longer than the bit-length of the
+// private key's curve order, the hash will be truncated to that length. It
+// returns the ASN.1 encoded signature.
+func SignASN1(rand io.Reader, priv *PrivateKey, hash []byte) ([]byte, error) {
+ randutil.MaybeReadByte(rand)
+
+ if boring.Enabled && rand == boring.RandReader {
+ b, err := boringPrivateKey(priv)
+ if err != nil {
+ return nil, err
+ }
+ return boring.SignMarshalECDSA(b, hash)
+ }
+ boring.UnreachableExceptTests()
+
+ csprng, err := mixedCSPRNG(rand, priv, hash)
+ if err != nil {
+ return nil, err
+ }
+
+ if sig, err := signAsm(priv, csprng, hash); err != errNoAsm {
+ return sig, err
+ }
+
+ switch priv.Curve.Params() {
+ case elliptic.P224().Params():
+ return signNISTEC(p224(), priv, csprng, hash)
+ case elliptic.P256().Params():
+ return signNISTEC(p256(), priv, csprng, hash)
+ case elliptic.P384().Params():
+ return signNISTEC(p384(), priv, csprng, hash)
+ case elliptic.P521().Params():
+ return signNISTEC(p521(), priv, csprng, hash)
+ default:
+ return signLegacy(priv, csprng, hash)
+ }
+}
+
+func signNISTEC[Point nistPoint[Point]](c *nistCurve[Point], priv *PrivateKey, csprng io.Reader, hash []byte) (sig []byte, err error) {
+ // SEC 1, Version 2.0, Section 4.1.3
+
+ k, R, err := randomPoint(c, csprng)
+ if err != nil {
+ return nil, err
+ }
+
+ // kInv = k⁻¹
+ kInv := bigmod.NewNat()
+ inverse(c, kInv, k)
+
+ Rx, err := R.BytesX()
+ if err != nil {
+ return nil, err
+ }
+ r, err := bigmod.NewNat().SetOverflowingBytes(Rx, c.N)
+ if err != nil {
+ return nil, err
+ }
+
+ // The spec wants us to retry here, but the chance of hitting this condition
+ // on a large prime-order group like the NIST curves we support is
+ // cryptographically negligible. If we hit it, something is awfully wrong.
+ if r.IsZero() == 1 {
+ return nil, errors.New("ecdsa: internal error: r is zero")
+ }
+
+ e := bigmod.NewNat()
+ hashToNat(c, e, hash)
+
+ s, err := bigmod.NewNat().SetBytes(priv.D.Bytes(), c.N)
+ if err != nil {
+ return nil, err
+ }
+ s.Mul(r, c.N)
+ s.Add(e, c.N)
+ s.Mul(kInv, c.N)
+
+ // Again, the chance of this happening is cryptographically negligible.
+ if s.IsZero() == 1 {
+ return nil, errors.New("ecdsa: internal error: s is zero")
+ }
+
+ return encodeSignature(r.Bytes(c.N), s.Bytes(c.N))
+}
+
+func encodeSignature(r, s []byte) ([]byte, error) {
+ var b cryptobyte.Builder
+ b.AddASN1(asn1.SEQUENCE, func(b *cryptobyte.Builder) {
+ addASN1IntBytes(b, r)
+ addASN1IntBytes(b, s)
+ })
+ return b.Bytes()
+}
+
+// addASN1IntBytes encodes in ASN.1 a positive integer represented as
+// a big-endian byte slice with zero or more leading zeroes.
+func addASN1IntBytes(b *cryptobyte.Builder, bytes []byte) {
+ for len(bytes) > 0 && bytes[0] == 0 {
+ bytes = bytes[1:]
+ }
+ if len(bytes) == 0 {
+ b.SetError(errors.New("invalid integer"))
+ return
+ }
+ b.AddASN1(asn1.INTEGER, func(c *cryptobyte.Builder) {
+ if bytes[0]&0x80 != 0 {
+ c.AddUint8(0)
+ }
+ c.AddBytes(bytes)
+ })
+}
+
+// inverse sets kInv to the inverse of k modulo the order of the curve.
+func inverse[Point nistPoint[Point]](c *nistCurve[Point], kInv, k *bigmod.Nat) {
+ if c.curve.Params().Name == "P-256" {
+ kBytes, err := nistec.P256OrdInverse(k.Bytes(c.N))
+ // Some platforms don't implement P256OrdInverse, and always return an error.
+ if err == nil {
+ _, err := kInv.SetBytes(kBytes, c.N)
+ if err != nil {
+ panic("ecdsa: internal error: P256OrdInverse produced an invalid value")
+ }
+ return
+ }
+ }
+
+ // Calculate the inverse of s in GF(N) using Fermat's method
+ // (exponentiation modulo P - 2, per Euler's theorem)
+ kInv.Exp(k, c.nMinus2, c.N)
+}
+
+// hashToNat sets e to the left-most bits of hash, according to
+// SEC 1, Section 4.1.3, point 5 and Section 4.1.4, point 3.
+func hashToNat[Point nistPoint[Point]](c *nistCurve[Point], e *bigmod.Nat, hash []byte) {
+ // ECDSA asks us to take the left-most log2(N) bits of hash, and use them as
+ // an integer modulo N. This is the absolute worst of all worlds: we still
+ // have to reduce, because the result might still overflow N, but to take
+ // the left-most bits for P-521 we have to do a right shift.
+ if size := c.N.Size(); len(hash) >= size {
+ hash = hash[:size]
+ if excess := len(hash)*8 - c.N.BitLen(); excess > 0 {
+ hash = bytes.Clone(hash)
+ for i := len(hash) - 1; i >= 0; i-- {
+ hash[i] >>= excess
+ if i > 0 {
+ hash[i] |= hash[i-1] << (8 - excess)
+ }
+ }
+ }
+ }
+ _, err := e.SetOverflowingBytes(hash, c.N)
+ if err != nil {
+ panic("ecdsa: internal error: truncated hash is too long")
+ }
+}
+
+// mixedCSPRNG returns a CSPRNG that mixes entropy from rand with the message
+// and the private key, to protect the key in case rand fails. This is
+// equivalent in security to RFC 6979 deterministic nonce generation, but still
+// produces randomized signatures.
+func mixedCSPRNG(rand io.Reader, priv *PrivateKey, hash []byte) (io.Reader, error) {
+ // This implementation derives the nonce from an AES-CTR CSPRNG keyed by:
+ //
+ // SHA2-512(priv.D || entropy || hash)[:32]
+ //
+ // The CSPRNG key is indifferentiable from a random oracle as shown in
+ // [Coron], the AES-CTR stream is indifferentiable from a random oracle
+ // under standard cryptographic assumptions (see [Larsson] for examples).
+ //
+ // [Coron]: https://cs.nyu.edu/~dodis/ps/merkle.pdf
+ // [Larsson]: https://web.archive.org/web/20040719170906/https://www.nada.kth.se/kurser/kth/2D1441/semteo03/lecturenotes/assump.pdf
+
+ // Get 256 bits of entropy from rand.
+ entropy := make([]byte, 32)
+ if _, err := io.ReadFull(rand, entropy); err != nil {
+ return nil, err
+ }
+
+ // Initialize an SHA-512 hash context; digest...
+ md := sha512.New()
+ md.Write(priv.D.Bytes()) // the private key,
+ md.Write(entropy) // the entropy,
+ md.Write(hash) // and the input hash;
+ key := md.Sum(nil)[:32] // and compute ChopMD-256(SHA-512),
+ // which is an indifferentiable MAC.
+
+ // Create an AES-CTR instance to use as a CSPRNG.
+ block, err := aes.NewCipher(key)
+ if err != nil {
+ return nil, err
+ }
+
+ // Create a CSPRNG that xors a stream of zeros with
+ // the output of the AES-CTR instance.
+ const aesIV = "IV for ECDSA CTR"
+ return &cipher.StreamReader{
+ R: zeroReader,
+ S: cipher.NewCTR(block, []byte(aesIV)),
+ }, nil
+}
+
+type zr struct{}
+
+var zeroReader = zr{}
+
+// Read replaces the contents of dst with zeros. It is safe for concurrent use.
+func (zr) Read(dst []byte) (n int, err error) {
+ for i := range dst {
+ dst[i] = 0
+ }
+ return len(dst), nil
+}
+
+// VerifyASN1 verifies the ASN.1 encoded signature, sig, of hash using the
+// public key, pub. Its return value records whether the signature is valid.
+func VerifyASN1(pub *PublicKey, hash, sig []byte) bool {
+ if boring.Enabled {
+ key, err := boringPublicKey(pub)
+ if err != nil {
+ return false
+ }
+ return boring.VerifyECDSA(key, hash, sig)
+ }
+ boring.UnreachableExceptTests()
+
+ if err := verifyAsm(pub, hash, sig); err != errNoAsm {
+ return err == nil
+ }
+
+ switch pub.Curve.Params() {
+ case elliptic.P224().Params():
+ return verifyNISTEC(p224(), pub, hash, sig)
+ case elliptic.P256().Params():
+ return verifyNISTEC(p256(), pub, hash, sig)
+ case elliptic.P384().Params():
+ return verifyNISTEC(p384(), pub, hash, sig)
+ case elliptic.P521().Params():
+ return verifyNISTEC(p521(), pub, hash, sig)
+ default:
+ return verifyLegacy(pub, hash, sig)
+ }
+}
+
+func verifyNISTEC[Point nistPoint[Point]](c *nistCurve[Point], pub *PublicKey, hash, sig []byte) bool {
+ rBytes, sBytes, err := parseSignature(sig)
+ if err != nil {
+ return false
+ }
+
+ Q, err := c.pointFromAffine(pub.X, pub.Y)
+ if err != nil {
+ return false
+ }
+
+ // SEC 1, Version 2.0, Section 4.1.4
+
+ r, err := bigmod.NewNat().SetBytes(rBytes, c.N)
+ if err != nil || r.IsZero() == 1 {
+ return false
+ }
+ s, err := bigmod.NewNat().SetBytes(sBytes, c.N)
+ if err != nil || s.IsZero() == 1 {
+ return false
+ }
+
+ e := bigmod.NewNat()
+ hashToNat(c, e, hash)
+
+ // w = s⁻¹
+ w := bigmod.NewNat()
+ inverse(c, w, s)
+
+ // p₁ = [e * s⁻¹]G
+ p1, err := c.newPoint().ScalarBaseMult(e.Mul(w, c.N).Bytes(c.N))
+ if err != nil {
+ return false
+ }
+ // p₂ = [r * s⁻¹]Q
+ p2, err := Q.ScalarMult(Q, w.Mul(r, c.N).Bytes(c.N))
+ if err != nil {
+ return false
+ }
+ // BytesX returns an error for the point at infinity.
+ Rx, err := p1.Add(p1, p2).BytesX()
+ if err != nil {
+ return false
+ }
+
+ v, err := bigmod.NewNat().SetOverflowingBytes(Rx, c.N)
+ if err != nil {
+ return false
+ }
+
+ return v.Equal(r) == 1
+}
+
+func parseSignature(sig []byte) (r, s []byte, err error) {
+ var inner cryptobyte.String
+ input := cryptobyte.String(sig)
+ if !input.ReadASN1(&inner, asn1.SEQUENCE) ||
+ !input.Empty() ||
+ !inner.ReadASN1Integer(&r) ||
+ !inner.ReadASN1Integer(&s) ||
+ !inner.Empty() {
+ return nil, nil, errors.New("invalid ASN.1")
+ }
+ return r, s, nil
+}
+
+type nistCurve[Point nistPoint[Point]] struct {
+ newPoint func() Point
+ curve elliptic.Curve
+ N *bigmod.Modulus
+ nMinus2 []byte
+}
+
+// nistPoint is a generic constraint for the nistec Point types.
+type nistPoint[T any] interface {
+ Bytes() []byte
+ BytesX() ([]byte, error)
+ SetBytes([]byte) (T, error)
+ Add(T, T) T
+ ScalarMult(T, []byte) (T, error)
+ ScalarBaseMult([]byte) (T, error)
+}
+
+// pointFromAffine is used to convert the PublicKey to a nistec Point.
+func (curve *nistCurve[Point]) pointFromAffine(x, y *big.Int) (p Point, err error) {
+ bitSize := curve.curve.Params().BitSize
+ // Reject values that would not get correctly encoded.
+ if x.Sign() < 0 || y.Sign() < 0 {
+ return p, errors.New("negative coordinate")
+ }
+ if x.BitLen() > bitSize || y.BitLen() > bitSize {
+ return p, errors.New("overflowing coordinate")
+ }
+ // Encode the coordinates and let SetBytes reject invalid points.
+ byteLen := (bitSize + 7) / 8
+ buf := make([]byte, 1+2*byteLen)
+ buf[0] = 4 // uncompressed point
+ x.FillBytes(buf[1 : 1+byteLen])
+ y.FillBytes(buf[1+byteLen : 1+2*byteLen])
+ return curve.newPoint().SetBytes(buf)
+}
+
+// pointToAffine is used to convert a nistec Point to a PublicKey.
+func (curve *nistCurve[Point]) pointToAffine(p Point) (x, y *big.Int, err error) {
+ out := p.Bytes()
+ if len(out) == 1 && out[0] == 0 {
+ // This is the encoding of the point at infinity.
+ return nil, nil, errors.New("ecdsa: public key point is the infinity")
+ }
+ byteLen := (curve.curve.Params().BitSize + 7) / 8
+ x = new(big.Int).SetBytes(out[1 : 1+byteLen])
+ y = new(big.Int).SetBytes(out[1+byteLen:])
+ return x, y, nil
+}
+
+var p224Once sync.Once
+var _p224 *nistCurve[*nistec.P224Point]
+
+func p224() *nistCurve[*nistec.P224Point] {
+ p224Once.Do(func() {
+ _p224 = &nistCurve[*nistec.P224Point]{
+ newPoint: func() *nistec.P224Point { return nistec.NewP224Point() },
+ }
+ precomputeParams(_p224, elliptic.P224())
+ })
+ return _p224
+}
+
+var p256Once sync.Once
+var _p256 *nistCurve[*nistec.P256Point]
+
+func p256() *nistCurve[*nistec.P256Point] {
+ p256Once.Do(func() {
+ _p256 = &nistCurve[*nistec.P256Point]{
+ newPoint: func() *nistec.P256Point { return nistec.NewP256Point() },
+ }
+ precomputeParams(_p256, elliptic.P256())
+ })
+ return _p256
+}
+
+var p384Once sync.Once
+var _p384 *nistCurve[*nistec.P384Point]
+
+func p384() *nistCurve[*nistec.P384Point] {
+ p384Once.Do(func() {
+ _p384 = &nistCurve[*nistec.P384Point]{
+ newPoint: func() *nistec.P384Point { return nistec.NewP384Point() },
+ }
+ precomputeParams(_p384, elliptic.P384())
+ })
+ return _p384
+}
+
+var p521Once sync.Once
+var _p521 *nistCurve[*nistec.P521Point]
+
+func p521() *nistCurve[*nistec.P521Point] {
+ p521Once.Do(func() {
+ _p521 = &nistCurve[*nistec.P521Point]{
+ newPoint: func() *nistec.P521Point { return nistec.NewP521Point() },
+ }
+ precomputeParams(_p521, elliptic.P521())
+ })
+ return _p521
+}
+
+func precomputeParams[Point nistPoint[Point]](c *nistCurve[Point], curve elliptic.Curve) {
+ params := curve.Params()
+ c.curve = curve
+ c.N = bigmod.NewModulusFromBig(params.N)
+ c.nMinus2 = new(big.Int).Sub(params.N, big.NewInt(2)).Bytes()
+}
diff --git a/src/crypto/ecdsa/ecdsa_legacy.go b/src/crypto/ecdsa/ecdsa_legacy.go
new file mode 100644
index 0000000..12a40e4
--- /dev/null
+++ b/src/crypto/ecdsa/ecdsa_legacy.go
@@ -0,0 +1,188 @@
+// Copyright 2022 The Go Authors. All rights reserved.
+// Use of this source code is governed by a BSD-style
+// license that can be found in the LICENSE file.
+
+package ecdsa
+
+import (
+ "crypto/elliptic"
+ "errors"
+ "io"
+ "math/big"
+
+ "golang.org/x/crypto/cryptobyte"
+ "golang.org/x/crypto/cryptobyte/asn1"
+)
+
+// This file contains a math/big implementation of ECDSA that is only used for
+// deprecated custom curves.
+
+func generateLegacy(c elliptic.Curve, rand io.Reader) (*PrivateKey, error) {
+ k, err := randFieldElement(c, rand)
+ if err != nil {
+ return nil, err
+ }
+
+ priv := new(PrivateKey)
+ priv.PublicKey.Curve = c
+ priv.D = k
+ priv.PublicKey.X, priv.PublicKey.Y = c.ScalarBaseMult(k.Bytes())
+ return priv, nil
+}
+
+// hashToInt converts a hash value to an integer. Per FIPS 186-4, Section 6.4,
+// we use the left-most bits of the hash to match the bit-length of the order of
+// the curve. This also performs Step 5 of SEC 1, Version 2.0, Section 4.1.3.
+func hashToInt(hash []byte, c elliptic.Curve) *big.Int {
+ orderBits := c.Params().N.BitLen()
+ orderBytes := (orderBits + 7) / 8
+ if len(hash) > orderBytes {
+ hash = hash[:orderBytes]
+ }
+
+ ret := new(big.Int).SetBytes(hash)
+ excess := len(hash)*8 - orderBits
+ if excess > 0 {
+ ret.Rsh(ret, uint(excess))
+ }
+ return ret
+}
+
+var errZeroParam = errors.New("zero parameter")
+
+// Sign signs a hash (which should be the result of hashing a larger message)
+// using the private key, priv. If the hash is longer than the bit-length of the
+// private key's curve order, the hash will be truncated to that length. It
+// returns the signature as a pair of integers. Most applications should use
+// SignASN1 instead of dealing directly with r, s.
+func Sign(rand io.Reader, priv *PrivateKey, hash []byte) (r, s *big.Int, err error) {
+ sig, err := SignASN1(rand, priv, hash)
+ if err != nil {
+ return nil, nil, err
+ }
+
+ r, s = new(big.Int), new(big.Int)
+ var inner cryptobyte.String
+ input := cryptobyte.String(sig)
+ if !input.ReadASN1(&inner, asn1.SEQUENCE) ||
+ !input.Empty() ||
+ !inner.ReadASN1Integer(r) ||
+ !inner.ReadASN1Integer(s) ||
+ !inner.Empty() {
+ return nil, nil, errors.New("invalid ASN.1 from SignASN1")
+ }
+ return r, s, nil
+}
+
+func signLegacy(priv *PrivateKey, csprng io.Reader, hash []byte) (sig []byte, err error) {
+ c := priv.Curve
+
+ // SEC 1, Version 2.0, Section 4.1.3
+ N := c.Params().N
+ if N.Sign() == 0 {
+ return nil, errZeroParam
+ }
+ var k, kInv, r, s *big.Int
+ for {
+ for {
+ k, err = randFieldElement(c, csprng)
+ if err != nil {
+ return nil, err
+ }
+
+ kInv = new(big.Int).ModInverse(k, N)
+
+ r, _ = c.ScalarBaseMult(k.Bytes())
+ r.Mod(r, N)
+ if r.Sign() != 0 {
+ break
+ }
+ }
+
+ e := hashToInt(hash, c)
+ s = new(big.Int).Mul(priv.D, r)
+ s.Add(s, e)
+ s.Mul(s, kInv)
+ s.Mod(s, N) // N != 0
+ if s.Sign() != 0 {
+ break
+ }
+ }
+
+ return encodeSignature(r.Bytes(), s.Bytes())
+}
+
+// Verify verifies the signature in r, s of hash using the public key, pub. Its
+// return value records whether the signature is valid. Most applications should
+// use VerifyASN1 instead of dealing directly with r, s.
+func Verify(pub *PublicKey, hash []byte, r, s *big.Int) bool {
+ if r.Sign() <= 0 || s.Sign() <= 0 {
+ return false
+ }
+ sig, err := encodeSignature(r.Bytes(), s.Bytes())
+ if err != nil {
+ return false
+ }
+ return VerifyASN1(pub, hash, sig)
+}
+
+func verifyLegacy(pub *PublicKey, hash []byte, sig []byte) bool {
+ rBytes, sBytes, err := parseSignature(sig)
+ if err != nil {
+ return false
+ }
+ r, s := new(big.Int).SetBytes(rBytes), new(big.Int).SetBytes(sBytes)
+
+ c := pub.Curve
+ N := c.Params().N
+
+ if r.Sign() <= 0 || s.Sign() <= 0 {
+ return false
+ }
+ if r.Cmp(N) >= 0 || s.Cmp(N) >= 0 {
+ return false
+ }
+
+ // SEC 1, Version 2.0, Section 4.1.4
+ e := hashToInt(hash, c)
+ w := new(big.Int).ModInverse(s, N)
+
+ u1 := e.Mul(e, w)
+ u1.Mod(u1, N)
+ u2 := w.Mul(r, w)
+ u2.Mod(u2, N)
+
+ x1, y1 := c.ScalarBaseMult(u1.Bytes())
+ x2, y2 := c.ScalarMult(pub.X, pub.Y, u2.Bytes())
+ x, y := c.Add(x1, y1, x2, y2)
+
+ if x.Sign() == 0 && y.Sign() == 0 {
+ return false
+ }
+ x.Mod(x, N)
+ return x.Cmp(r) == 0
+}
+
+var one = new(big.Int).SetInt64(1)
+
+// randFieldElement returns a random element of the order of the given
+// curve using the procedure given in FIPS 186-4, Appendix B.5.2.
+func randFieldElement(c elliptic.Curve, rand io.Reader) (k *big.Int, err error) {
+ // See randomPoint for notes on the algorithm. This has to match, or s390x
+ // signatures will come out different from other architectures, which will
+ // break TLS recorded tests.
+ for {
+ N := c.Params().N
+ b := make([]byte, (N.BitLen()+7)/8)
+ if _, err = io.ReadFull(rand, b); err != nil {
+ return
+ }
+ if excess := len(b)*8 - N.BitLen(); excess > 0 {
+ b[0] >>= excess
+ }
+ k = new(big.Int).SetBytes(b)
+ if k.Sign() != 0 && k.Cmp(N) < 0 {
+ return
+ }
+ }
+}
diff --git a/src/crypto/ecdsa/ecdsa_noasm.go b/src/crypto/ecdsa/ecdsa_noasm.go
new file mode 100644
index 0000000..a72aa4b
--- /dev/null
+++ b/src/crypto/ecdsa/ecdsa_noasm.go
@@ -0,0 +1,17 @@
+// Copyright 2020 The Go Authors. All rights reserved.
+// Use of this source code is governed by a BSD-style
+// license that can be found in the LICENSE file.
+
+//go:build !s390x
+
+package ecdsa
+
+import "io"
+
+func verifyAsm(pub *PublicKey, hash []byte, sig []byte) error {
+ return errNoAsm
+}
+
+func signAsm(priv *PrivateKey, csprng io.Reader, hash []byte) (sig []byte, err error) {
+ return nil, errNoAsm
+}
diff --git a/src/crypto/ecdsa/ecdsa_s390x.go b/src/crypto/ecdsa/ecdsa_s390x.go
new file mode 100644
index 0000000..49f645a
--- /dev/null
+++ b/src/crypto/ecdsa/ecdsa_s390x.go
@@ -0,0 +1,177 @@
+// Copyright 2020 The Go Authors. All rights reserved.
+// Use of this source code is governed by a BSD-style
+// license that can be found in the LICENSE file.
+
+package ecdsa
+
+import (
+ "crypto/elliptic"
+ "errors"
+ "internal/cpu"
+ "io"
+ "math/big"
+)
+
+// kdsa invokes the "compute digital signature authentication"
+// instruction with the given function code and 4096 byte
+// parameter block.
+//
+// The return value corresponds to the condition code set by the
+// instruction. Interrupted invocations are handled by the
+// function.
+//
+//go:noescape
+func kdsa(fc uint64, params *[4096]byte) (errn uint64)
+
+// testingDisableKDSA forces the generic fallback path. It must only be set in tests.
+var testingDisableKDSA bool
+
+// canUseKDSA checks if KDSA instruction is available, and if it is, it checks
+// the name of the curve to see if it matches the curves supported(P-256, P-384, P-521).
+// Then, based on the curve name, a function code and a block size will be assigned.
+// If KDSA instruction is not available or if the curve is not supported, canUseKDSA
+// will set ok to false.
+func canUseKDSA(c elliptic.Curve) (functionCode uint64, blockSize int, ok bool) {
+ if testingDisableKDSA {
+ return 0, 0, false
+ }
+ if !cpu.S390X.HasECDSA {
+ return 0, 0, false
+ }
+ switch c.Params().Name {
+ case "P-256":
+ return 1, 32, true
+ case "P-384":
+ return 2, 48, true
+ case "P-521":
+ return 3, 80, true
+ }
+ return 0, 0, false // A mismatch
+}
+
+func hashToBytes(dst, hash []byte, c elliptic.Curve) {
+ l := len(dst)
+ if n := c.Params().N.BitLen(); n == l*8 {
+ // allocation free path for curves with a length that is a whole number of bytes
+ if len(hash) >= l {
+ // truncate hash
+ copy(dst, hash[:l])
+ return
+ }
+ // pad hash with leading zeros
+ p := l - len(hash)
+ for i := 0; i < p; i++ {
+ dst[i] = 0
+ }
+ copy(dst[p:], hash)
+ return
+ }
+ // TODO(mundaym): avoid hashToInt call here
+ hashToInt(hash, c).FillBytes(dst)
+}
+
+func signAsm(priv *PrivateKey, csprng io.Reader, hash []byte) (sig []byte, err error) {
+ c := priv.Curve
+ functionCode, blockSize, ok := canUseKDSA(c)
+ if !ok {
+ return nil, errNoAsm
+ }
+ for {
+ var k *big.Int
+ k, err = randFieldElement(c, csprng)
+ if err != nil {
+ return nil, err
+ }
+
+ // The parameter block looks like the following for sign.
+ // +---------------------+
+ // | Signature(R) |
+ // +---------------------+
+ // | Signature(S) |
+ // +---------------------+
+ // | Hashed Message |
+ // +---------------------+
+ // | Private Key |
+ // +---------------------+
+ // | Random Number |
+ // +---------------------+
+ // | |
+ // | ... |
+ // | |
+ // +---------------------+
+ // The common components(signatureR, signatureS, hashedMessage, privateKey and
+ // random number) each takes block size of bytes. The block size is different for
+ // different curves and is set by canUseKDSA function.
+ var params [4096]byte
+
+ // Copy content into the parameter block. In the sign case,
+ // we copy hashed message, private key and random number into
+ // the parameter block.
+ hashToBytes(params[2*blockSize:3*blockSize], hash, c)
+ priv.D.FillBytes(params[3*blockSize : 4*blockSize])
+ k.FillBytes(params[4*blockSize : 5*blockSize])
+ // Convert verify function code into a sign function code by adding 8.
+ // We also need to set the 'deterministic' bit in the function code, by
+ // adding 128, in order to stop the instruction using its own random number
+ // generator in addition to the random number we supply.
+ switch kdsa(functionCode+136, &params) {
+ case 0: // success
+ return encodeSignature(params[:blockSize], params[blockSize:2*blockSize])
+ case 1: // error
+ return nil, errZeroParam
+ case 2: // retry
+ continue
+ }
+ panic("unreachable")
+ }
+}
+
+func verifyAsm(pub *PublicKey, hash []byte, sig []byte) error {
+ c := pub.Curve
+ functionCode, blockSize, ok := canUseKDSA(c)
+ if !ok {
+ return errNoAsm
+ }
+
+ r, s, err := parseSignature(sig)
+ if err != nil {
+ return err
+ }
+ if len(r) > blockSize || len(s) > blockSize {
+ return errors.New("invalid signature")
+ }
+
+ // The parameter block looks like the following for verify:
+ // +---------------------+
+ // | Signature(R) |
+ // +---------------------+
+ // | Signature(S) |
+ // +---------------------+
+ // | Hashed Message |
+ // +---------------------+
+ // | Public Key X |
+ // +---------------------+
+ // | Public Key Y |
+ // +---------------------+
+ // | |
+ // | ... |
+ // | |
+ // +---------------------+
+ // The common components(signatureR, signatureS, hashed message, public key X,
+ // and public key Y) each takes block size of bytes. The block size is different for
+ // different curves and is set by canUseKDSA function.
+ var params [4096]byte
+
+ // Copy content into the parameter block. In the verify case,
+ // we copy signature (r), signature(s), hashed message, public key x component,
+ // and public key y component into the parameter block.
+ copy(params[0*blockSize+blockSize-len(r):], r)
+ copy(params[1*blockSize+blockSize-len(s):], s)
+ hashToBytes(params[2*blockSize:3*blockSize], hash, c)
+ pub.X.FillBytes(params[3*blockSize : 4*blockSize])
+ pub.Y.FillBytes(params[4*blockSize : 5*blockSize])
+ if kdsa(functionCode, &params) != 0 {
+ return errors.New("invalid signature")
+ }
+ return nil
+}
diff --git a/src/crypto/ecdsa/ecdsa_s390x.s b/src/crypto/ecdsa/ecdsa_s390x.s
new file mode 100644
index 0000000..ba5b3bf
--- /dev/null
+++ b/src/crypto/ecdsa/ecdsa_s390x.s
@@ -0,0 +1,28 @@
+// Copyright 2020 The Go Authors. All rights reserved.
+// Use of this source code is governed by a BSD-style
+// license that can be found in the LICENSE file.
+
+#include "textflag.h"
+
+// func kdsa(fc uint64, params *[4096]byte) (errn uint64)
+TEXT ·kdsa(SB), NOSPLIT|NOFRAME, $0-24
+ MOVD fc+0(FP), R0 // function code
+ MOVD params+8(FP), R1 // address parameter block
+
+loop:
+ WORD $0xB93A0008 // compute digital signature authentication
+ BVS loop // branch back if interrupted
+ BGT retry // signing unsuccessful, but retry with new CSPRN
+ BLT error // condition code of 1 indicates a failure
+
+success:
+ MOVD $0, errn+16(FP) // return 0 - sign/verify was successful
+ RET
+
+error:
+ MOVD $1, errn+16(FP) // return 1 - sign/verify failed
+ RET
+
+retry:
+ MOVD $2, errn+16(FP) // return 2 - sign/verify was unsuccessful -- if sign, retry with new RN
+ RET
diff --git a/src/crypto/ecdsa/ecdsa_s390x_test.go b/src/crypto/ecdsa/ecdsa_s390x_test.go
new file mode 100644
index 0000000..fd1dc7c
--- /dev/null
+++ b/src/crypto/ecdsa/ecdsa_s390x_test.go
@@ -0,0 +1,32 @@
+// Copyright 2020 The Go Authors. All rights reserved.
+// Use of this source code is governed by a BSD-style
+// license that can be found in the LICENSE file.
+
+//go:build s390x
+
+package ecdsa
+
+import (
+ "crypto/elliptic"
+ "testing"
+)
+
+func TestNoAsm(t *testing.T) {
+ testingDisableKDSA = true
+ defer func() { testingDisableKDSA = false }()
+
+ curves := [...]elliptic.Curve{
+ elliptic.P256(),
+ elliptic.P384(),
+ elliptic.P521(),
+ }
+
+ for _, curve := range curves {
+ name := curve.Params().Name
+ t.Run(name, func(t *testing.T) { testKeyGeneration(t, curve) })
+ t.Run(name, func(t *testing.T) { testSignAndVerify(t, curve) })
+ t.Run(name, func(t *testing.T) { testNonceSafety(t, curve) })
+ t.Run(name, func(t *testing.T) { testINDCCA(t, curve) })
+ t.Run(name, func(t *testing.T) { testNegativeInputs(t, curve) })
+ }
+}
diff --git a/src/crypto/ecdsa/ecdsa_test.go b/src/crypto/ecdsa/ecdsa_test.go
new file mode 100644
index 0000000..08a0903
--- /dev/null
+++ b/src/crypto/ecdsa/ecdsa_test.go
@@ -0,0 +1,589 @@
+// Copyright 2011 The Go Authors. All rights reserved.
+// Use of this source code is governed by a BSD-style
+// license that can be found in the LICENSE file.
+
+package ecdsa
+
+import (
+ "bufio"
+ "bytes"
+ "compress/bzip2"
+ "crypto/elliptic"
+ "crypto/internal/bigmod"
+ "crypto/rand"
+ "crypto/sha1"
+ "crypto/sha256"
+ "crypto/sha512"
+ "encoding/hex"
+ "hash"
+ "io"
+ "math/big"
+ "os"
+ "strings"
+ "testing"
+)
+
+func testAllCurves(t *testing.T, f func(*testing.T, elliptic.Curve)) {
+ tests := []struct {
+ name string
+ curve elliptic.Curve
+ }{
+ {"P256", elliptic.P256()},
+ {"P224", elliptic.P224()},
+ {"P384", elliptic.P384()},
+ {"P521", elliptic.P521()},
+ {"P256/Generic", genericParamsForCurve(elliptic.P256())},
+ }
+ if testing.Short() {
+ tests = tests[:1]
+ }
+ for _, test := range tests {
+ curve := test.curve
+ t.Run(test.name, func(t *testing.T) {
+ t.Parallel()
+ f(t, curve)
+ })
+ }
+}
+
+// genericParamsForCurve returns the dereferenced CurveParams for
+// the specified curve. This is used to avoid the logic for
+// upgrading a curve to its specific implementation, forcing
+// usage of the generic implementation.
+func genericParamsForCurve(c elliptic.Curve) *elliptic.CurveParams {
+ d := *(c.Params())
+ return &d
+}
+
+func TestKeyGeneration(t *testing.T) {
+ testAllCurves(t, testKeyGeneration)
+}
+
+func testKeyGeneration(t *testing.T, c elliptic.Curve) {
+ priv, err := GenerateKey(c, rand.Reader)
+ if err != nil {
+ t.Fatal(err)
+ }
+ if !c.IsOnCurve(priv.PublicKey.X, priv.PublicKey.Y) {
+ t.Errorf("public key invalid: %s", err)
+ }
+}
+
+func TestSignAndVerify(t *testing.T) {
+ testAllCurves(t, testSignAndVerify)
+}
+
+func testSignAndVerify(t *testing.T, c elliptic.Curve) {
+ priv, _ := GenerateKey(c, rand.Reader)
+
+ hashed := []byte("testing")
+ r, s, err := Sign(rand.Reader, priv, hashed)
+ if err != nil {
+ t.Errorf("error signing: %s", err)
+ return
+ }
+
+ if !Verify(&priv.PublicKey, hashed, r, s) {
+ t.Errorf("Verify failed")
+ }
+
+ hashed[0] ^= 0xff
+ if Verify(&priv.PublicKey, hashed, r, s) {
+ t.Errorf("Verify always works!")
+ }
+}
+
+func TestSignAndVerifyASN1(t *testing.T) {
+ testAllCurves(t, testSignAndVerifyASN1)
+}
+
+func testSignAndVerifyASN1(t *testing.T, c elliptic.Curve) {
+ priv, _ := GenerateKey(c, rand.Reader)
+
+ hashed := []byte("testing")
+ sig, err := SignASN1(rand.Reader, priv, hashed)
+ if err != nil {
+ t.Errorf("error signing: %s", err)
+ return
+ }
+
+ if !VerifyASN1(&priv.PublicKey, hashed, sig) {
+ t.Errorf("VerifyASN1 failed")
+ }
+
+ hashed[0] ^= 0xff
+ if VerifyASN1(&priv.PublicKey, hashed, sig) {
+ t.Errorf("VerifyASN1 always works!")
+ }
+}
+
+func TestNonceSafety(t *testing.T) {
+ testAllCurves(t, testNonceSafety)
+}
+
+func testNonceSafety(t *testing.T, c elliptic.Curve) {
+ priv, _ := GenerateKey(c, rand.Reader)
+
+ hashed := []byte("testing")
+ r0, s0, err := Sign(zeroReader, priv, hashed)
+ if err != nil {
+ t.Errorf("error signing: %s", err)
+ return
+ }
+
+ hashed = []byte("testing...")
+ r1, s1, err := Sign(zeroReader, priv, hashed)
+ if err != nil {
+ t.Errorf("error signing: %s", err)
+ return
+ }
+
+ if s0.Cmp(s1) == 0 {
+ // This should never happen.
+ t.Errorf("the signatures on two different messages were the same")
+ }
+
+ if r0.Cmp(r1) == 0 {
+ t.Errorf("the nonce used for two different messages was the same")
+ }
+}
+
+func TestINDCCA(t *testing.T) {
+ testAllCurves(t, testINDCCA)
+}
+
+func testINDCCA(t *testing.T, c elliptic.Curve) {
+ priv, _ := GenerateKey(c, rand.Reader)
+
+ hashed := []byte("testing")
+ r0, s0, err := Sign(rand.Reader, priv, hashed)
+ if err != nil {
+ t.Errorf("error signing: %s", err)
+ return
+ }
+
+ r1, s1, err := Sign(rand.Reader, priv, hashed)
+ if err != nil {
+ t.Errorf("error signing: %s", err)
+ return
+ }
+
+ if s0.Cmp(s1) == 0 {
+ t.Errorf("two signatures of the same message produced the same result")
+ }
+
+ if r0.Cmp(r1) == 0 {
+ t.Errorf("two signatures of the same message produced the same nonce")
+ }
+}
+
+func fromHex(s string) *big.Int {
+ r, ok := new(big.Int).SetString(s, 16)
+ if !ok {
+ panic("bad hex")
+ }
+ return r
+}
+
+func TestVectors(t *testing.T) {
+ // This test runs the full set of NIST test vectors from
+ // https://csrc.nist.gov/groups/STM/cavp/documents/dss/186-3ecdsatestvectors.zip
+ //
+ // The SigVer.rsp file has been edited to remove test vectors for
+ // unsupported algorithms and has been compressed.
+
+ if testing.Short() {
+ return
+ }
+
+ f, err := os.Open("testdata/SigVer.rsp.bz2")
+ if err != nil {
+ t.Fatal(err)
+ }
+
+ buf := bufio.NewReader(bzip2.NewReader(f))
+
+ lineNo := 1
+ var h hash.Hash
+ var msg []byte
+ var hashed []byte
+ var r, s *big.Int
+ pub := new(PublicKey)
+
+ for {
+ line, err := buf.ReadString('\n')
+ if len(line) == 0 {
+ if err == io.EOF {
+ break
+ }
+ t.Fatalf("error reading from input: %s", err)
+ }
+ lineNo++
+ // Need to remove \r\n from the end of the line.
+ if !strings.HasSuffix(line, "\r\n") {
+ t.Fatalf("bad line ending (expected \\r\\n) on line %d", lineNo)
+ }
+ line = line[:len(line)-2]
+
+ if len(line) == 0 || line[0] == '#' {
+ continue
+ }
+
+ if line[0] == '[' {
+ line = line[1 : len(line)-1]
+ curve, hash, _ := strings.Cut(line, ",")
+
+ switch curve {
+ case "P-224":
+ pub.Curve = elliptic.P224()
+ case "P-256":
+ pub.Curve = elliptic.P256()
+ case "P-384":
+ pub.Curve = elliptic.P384()
+ case "P-521":
+ pub.Curve = elliptic.P521()
+ default:
+ pub.Curve = nil
+ }
+
+ switch hash {
+ case "SHA-1":
+ h = sha1.New()
+ case "SHA-224":
+ h = sha256.New224()
+ case "SHA-256":
+ h = sha256.New()
+ case "SHA-384":
+ h = sha512.New384()
+ case "SHA-512":
+ h = sha512.New()
+ default:
+ h = nil
+ }
+
+ continue
+ }
+
+ if h == nil || pub.Curve == nil {
+ continue
+ }
+
+ switch {
+ case strings.HasPrefix(line, "Msg = "):
+ if msg, err = hex.DecodeString(line[6:]); err != nil {
+ t.Fatalf("failed to decode message on line %d: %s", lineNo, err)
+ }
+ case strings.HasPrefix(line, "Qx = "):
+ pub.X = fromHex(line[5:])
+ case strings.HasPrefix(line, "Qy = "):
+ pub.Y = fromHex(line[5:])
+ case strings.HasPrefix(line, "R = "):
+ r = fromHex(line[4:])
+ case strings.HasPrefix(line, "S = "):
+ s = fromHex(line[4:])
+ case strings.HasPrefix(line, "Result = "):
+ expected := line[9] == 'P'
+ h.Reset()
+ h.Write(msg)
+ hashed := h.Sum(hashed[:0])
+ if Verify(pub, hashed, r, s) != expected {
+ t.Fatalf("incorrect result on line %d", lineNo)
+ }
+ default:
+ t.Fatalf("unknown variable on line %d: %s", lineNo, line)
+ }
+ }
+}
+
+func TestNegativeInputs(t *testing.T) {
+ testAllCurves(t, testNegativeInputs)
+}
+
+func testNegativeInputs(t *testing.T, curve elliptic.Curve) {
+ key, err := GenerateKey(curve, rand.Reader)
+ if err != nil {
+ t.Errorf("failed to generate key")
+ }
+
+ var hash [32]byte
+ r := new(big.Int).SetInt64(1)
+ r.Lsh(r, 550 /* larger than any supported curve */)
+ r.Neg(r)
+
+ if Verify(&key.PublicKey, hash[:], r, r) {
+ t.Errorf("bogus signature accepted")
+ }
+}
+
+func TestZeroHashSignature(t *testing.T) {
+ testAllCurves(t, testZeroHashSignature)
+}
+
+func testZeroHashSignature(t *testing.T, curve elliptic.Curve) {
+ zeroHash := make([]byte, 64)
+
+ privKey, err := GenerateKey(curve, rand.Reader)
+ if err != nil {
+ panic(err)
+ }
+
+ // Sign a hash consisting of all zeros.
+ r, s, err := Sign(rand.Reader, privKey, zeroHash)
+ if err != nil {
+ panic(err)
+ }
+
+ // Confirm that it can be verified.
+ if !Verify(&privKey.PublicKey, zeroHash, r, s) {
+ t.Errorf("zero hash signature verify failed for %T", curve)
+ }
+}
+
+func TestRandomPoint(t *testing.T) {
+ t.Run("P-224", func(t *testing.T) { testRandomPoint(t, p224()) })
+ t.Run("P-256", func(t *testing.T) { testRandomPoint(t, p256()) })
+ t.Run("P-384", func(t *testing.T) { testRandomPoint(t, p384()) })
+ t.Run("P-521", func(t *testing.T) { testRandomPoint(t, p521()) })
+}
+
+func testRandomPoint[Point nistPoint[Point]](t *testing.T, c *nistCurve[Point]) {
+ t.Cleanup(func() { testingOnlyRejectionSamplingLooped = nil })
+ var loopCount int
+ testingOnlyRejectionSamplingLooped = func() { loopCount++ }
+
+ // A sequence of all ones will generate 2^N-1, which should be rejected.
+ // (Unless, for example, we are masking too many bits.)
+ r := io.MultiReader(bytes.NewReader(bytes.Repeat([]byte{0xff}, 100)), rand.Reader)
+ if k, p, err := randomPoint(c, r); err != nil {
+ t.Fatal(err)
+ } else if k.IsZero() == 1 {
+ t.Error("k is zero")
+ } else if p.Bytes()[0] != 4 {
+ t.Error("p is infinity")
+ }
+ if loopCount == 0 {
+ t.Error("overflow was not rejected")
+ }
+ loopCount = 0
+
+ // A sequence of all zeroes will generate zero, which should be rejected.
+ r = io.MultiReader(bytes.NewReader(bytes.Repeat([]byte{0}, 100)), rand.Reader)
+ if k, p, err := randomPoint(c, r); err != nil {
+ t.Fatal(err)
+ } else if k.IsZero() == 1 {
+ t.Error("k is zero")
+ } else if p.Bytes()[0] != 4 {
+ t.Error("p is infinity")
+ }
+ if loopCount == 0 {
+ t.Error("zero was not rejected")
+ }
+ loopCount = 0
+
+ // P-256 has a 2⁻³² chance or randomly hitting a rejection. For P-224 it's
+ // 2⁻¹¹², for P-384 it's 2⁻¹⁹⁴, and for P-521 it's 2⁻²⁶², so if we hit in
+ // tests, something is horribly wrong. (For example, we are masking the
+ // wrong bits.)
+ if c.curve == elliptic.P256() {
+ return
+ }
+ if k, p, err := randomPoint(c, rand.Reader); err != nil {
+ t.Fatal(err)
+ } else if k.IsZero() == 1 {
+ t.Error("k is zero")
+ } else if p.Bytes()[0] != 4 {
+ t.Error("p is infinity")
+ }
+ if loopCount > 0 {
+ t.Error("unexpected rejection")
+ }
+}
+
+func TestHashToNat(t *testing.T) {
+ t.Run("P-224", func(t *testing.T) { testHashToNat(t, p224()) })
+ t.Run("P-256", func(t *testing.T) { testHashToNat(t, p256()) })
+ t.Run("P-384", func(t *testing.T) { testHashToNat(t, p384()) })
+ t.Run("P-521", func(t *testing.T) { testHashToNat(t, p521()) })
+}
+
+func testHashToNat[Point nistPoint[Point]](t *testing.T, c *nistCurve[Point]) {
+ for l := 0; l < 600; l++ {
+ h := bytes.Repeat([]byte{0xff}, l)
+ hashToNat(c, bigmod.NewNat(), h)
+ }
+}
+
+func TestZeroSignature(t *testing.T) {
+ testAllCurves(t, testZeroSignature)
+}
+
+func testZeroSignature(t *testing.T, curve elliptic.Curve) {
+ privKey, err := GenerateKey(curve, rand.Reader)
+ if err != nil {
+ panic(err)
+ }
+
+ if Verify(&privKey.PublicKey, make([]byte, 64), big.NewInt(0), big.NewInt(0)) {
+ t.Errorf("Verify with r,s=0 succeeded: %T", curve)
+ }
+}
+
+func TestNegtativeSignature(t *testing.T) {
+ testAllCurves(t, testNegativeSignature)
+}
+
+func testNegativeSignature(t *testing.T, curve elliptic.Curve) {
+ zeroHash := make([]byte, 64)
+
+ privKey, err := GenerateKey(curve, rand.Reader)
+ if err != nil {
+ panic(err)
+ }
+ r, s, err := Sign(rand.Reader, privKey, zeroHash)
+ if err != nil {
+ panic(err)
+ }
+
+ r = r.Neg(r)
+ if Verify(&privKey.PublicKey, zeroHash, r, s) {
+ t.Errorf("Verify with r=-r succeeded: %T", curve)
+ }
+}
+
+func TestRPlusNSignature(t *testing.T) {
+ testAllCurves(t, testRPlusNSignature)
+}
+
+func testRPlusNSignature(t *testing.T, curve elliptic.Curve) {
+ zeroHash := make([]byte, 64)
+
+ privKey, err := GenerateKey(curve, rand.Reader)
+ if err != nil {
+ panic(err)
+ }
+ r, s, err := Sign(rand.Reader, privKey, zeroHash)
+ if err != nil {
+ panic(err)
+ }
+
+ r = r.Add(r, curve.Params().N)
+ if Verify(&privKey.PublicKey, zeroHash, r, s) {
+ t.Errorf("Verify with r=r+n succeeded: %T", curve)
+ }
+}
+
+func TestRMinusNSignature(t *testing.T) {
+ testAllCurves(t, testRMinusNSignature)
+}
+
+func testRMinusNSignature(t *testing.T, curve elliptic.Curve) {
+ zeroHash := make([]byte, 64)
+
+ privKey, err := GenerateKey(curve, rand.Reader)
+ if err != nil {
+ panic(err)
+ }
+ r, s, err := Sign(rand.Reader, privKey, zeroHash)
+ if err != nil {
+ panic(err)
+ }
+
+ r = r.Sub(r, curve.Params().N)
+ if Verify(&privKey.PublicKey, zeroHash, r, s) {
+ t.Errorf("Verify with r=r-n succeeded: %T", curve)
+ }
+}
+
+func randomPointForCurve(curve elliptic.Curve, rand io.Reader) error {
+ switch curve.Params() {
+ case elliptic.P224().Params():
+ _, _, err := randomPoint(p224(), rand)
+ return err
+ case elliptic.P256().Params():
+ _, _, err := randomPoint(p256(), rand)
+ return err
+ case elliptic.P384().Params():
+ _, _, err := randomPoint(p384(), rand)
+ return err
+ case elliptic.P521().Params():
+ _, _, err := randomPoint(p521(), rand)
+ return err
+ default:
+ panic("unknown curve")
+ }
+}
+
+func benchmarkAllCurves(b *testing.B, f func(*testing.B, elliptic.Curve)) {
+ tests := []struct {
+ name string
+ curve elliptic.Curve
+ }{
+ {"P256", elliptic.P256()},
+ {"P384", elliptic.P384()},
+ {"P521", elliptic.P521()},
+ }
+ for _, test := range tests {
+ curve := test.curve
+ b.Run(test.name, func(b *testing.B) {
+ f(b, curve)
+ })
+ }
+}
+
+func BenchmarkSign(b *testing.B) {
+ benchmarkAllCurves(b, func(b *testing.B, curve elliptic.Curve) {
+ r := bufio.NewReaderSize(rand.Reader, 1<<15)
+ priv, err := GenerateKey(curve, r)
+ if err != nil {
+ b.Fatal(err)
+ }
+ hashed := []byte("testing")
+
+ b.ReportAllocs()
+ b.ResetTimer()
+ for i := 0; i < b.N; i++ {
+ sig, err := SignASN1(r, priv, hashed)
+ if err != nil {
+ b.Fatal(err)
+ }
+ // Prevent the compiler from optimizing out the operation.
+ hashed[0] = sig[0]
+ }
+ })
+}
+
+func BenchmarkVerify(b *testing.B) {
+ benchmarkAllCurves(b, func(b *testing.B, curve elliptic.Curve) {
+ r := bufio.NewReaderSize(rand.Reader, 1<<15)
+ priv, err := GenerateKey(curve, r)
+ if err != nil {
+ b.Fatal(err)
+ }
+ hashed := []byte("testing")
+ sig, err := SignASN1(r, priv, hashed)
+ if err != nil {
+ b.Fatal(err)
+ }
+
+ b.ReportAllocs()
+ b.ResetTimer()
+ for i := 0; i < b.N; i++ {
+ if !VerifyASN1(&priv.PublicKey, hashed, sig) {
+ b.Fatal("verify failed")
+ }
+ }
+ })
+}
+
+func BenchmarkGenerateKey(b *testing.B) {
+ benchmarkAllCurves(b, func(b *testing.B, curve elliptic.Curve) {
+ r := bufio.NewReaderSize(rand.Reader, 1<<15)
+ b.ReportAllocs()
+ b.ResetTimer()
+ for i := 0; i < b.N; i++ {
+ if _, err := GenerateKey(curve, r); err != nil {
+ b.Fatal(err)
+ }
+ }
+ })
+}
diff --git a/src/crypto/ecdsa/equal_test.go b/src/crypto/ecdsa/equal_test.go
new file mode 100644
index 0000000..53ac850
--- /dev/null
+++ b/src/crypto/ecdsa/equal_test.go
@@ -0,0 +1,75 @@
+// Copyright 2020 The Go Authors. All rights reserved.
+// Use of this source code is governed by a BSD-style
+// license that can be found in the LICENSE file.
+
+package ecdsa_test
+
+import (
+ "crypto"
+ "crypto/ecdsa"
+ "crypto/elliptic"
+ "crypto/rand"
+ "crypto/x509"
+ "testing"
+)
+
+func testEqual(t *testing.T, c elliptic.Curve) {
+ private, _ := ecdsa.GenerateKey(c, rand.Reader)
+ public := &private.PublicKey
+
+ if !public.Equal(public) {
+ t.Errorf("public key is not equal to itself: %v", public)
+ }
+ if !public.Equal(crypto.Signer(private).Public().(*ecdsa.PublicKey)) {
+ t.Errorf("private.Public() is not Equal to public: %q", public)
+ }
+ if !private.Equal(private) {
+ t.Errorf("private key is not equal to itself: %v", private)
+ }
+
+ enc, err := x509.MarshalPKCS8PrivateKey(private)
+ if err != nil {
+ t.Fatal(err)
+ }
+ decoded, err := x509.ParsePKCS8PrivateKey(enc)
+ if err != nil {
+ t.Fatal(err)
+ }
+ if !public.Equal(decoded.(crypto.Signer).Public()) {
+ t.Errorf("public key is not equal to itself after decoding: %v", public)
+ }
+ if !private.Equal(decoded) {
+ t.Errorf("private key is not equal to itself after decoding: %v", private)
+ }
+
+ other, _ := ecdsa.GenerateKey(c, rand.Reader)
+ if public.Equal(other.Public()) {
+ t.Errorf("different public keys are Equal")
+ }
+ if private.Equal(other) {
+ t.Errorf("different private keys are Equal")
+ }
+
+ // Ensure that keys with the same coordinates but on different curves
+ // aren't considered Equal.
+ differentCurve := &ecdsa.PublicKey{}
+ *differentCurve = *public // make a copy of the public key
+ if differentCurve.Curve == elliptic.P256() {
+ differentCurve.Curve = elliptic.P224()
+ } else {
+ differentCurve.Curve = elliptic.P256()
+ }
+ if public.Equal(differentCurve) {
+ t.Errorf("public keys with different curves are Equal")
+ }
+}
+
+func TestEqual(t *testing.T) {
+ t.Run("P224", func(t *testing.T) { testEqual(t, elliptic.P224()) })
+ if testing.Short() {
+ return
+ }
+ t.Run("P256", func(t *testing.T) { testEqual(t, elliptic.P256()) })
+ t.Run("P384", func(t *testing.T) { testEqual(t, elliptic.P384()) })
+ t.Run("P521", func(t *testing.T) { testEqual(t, elliptic.P521()) })
+}
diff --git a/src/crypto/ecdsa/example_test.go b/src/crypto/ecdsa/example_test.go
new file mode 100644
index 0000000..652c165
--- /dev/null
+++ b/src/crypto/ecdsa/example_test.go
@@ -0,0 +1,32 @@
+// Copyright 2018 The Go Authors. All rights reserved.
+// Use of this source code is governed by a BSD-style
+// license that can be found in the LICENSE file.
+
+package ecdsa_test
+
+import (
+ "crypto/ecdsa"
+ "crypto/elliptic"
+ "crypto/rand"
+ "crypto/sha256"
+ "fmt"
+)
+
+func Example() {
+ privateKey, err := ecdsa.GenerateKey(elliptic.P256(), rand.Reader)
+ if err != nil {
+ panic(err)
+ }
+
+ msg := "hello, world"
+ hash := sha256.Sum256([]byte(msg))
+
+ sig, err := ecdsa.SignASN1(rand.Reader, privateKey, hash[:])
+ if err != nil {
+ panic(err)
+ }
+ fmt.Printf("signature: %x\n", sig)
+
+ valid := ecdsa.VerifyASN1(&privateKey.PublicKey, hash[:], sig)
+ fmt.Println("signature verified:", valid)
+}
diff --git a/src/crypto/ecdsa/notboring.go b/src/crypto/ecdsa/notboring.go
new file mode 100644
index 0000000..039bd82
--- /dev/null
+++ b/src/crypto/ecdsa/notboring.go
@@ -0,0 +1,16 @@
+// Copyright 2022 The Go Authors. All rights reserved.
+// Use of this source code is governed by a BSD-style
+// license that can be found in the LICENSE file.
+
+//go:build !boringcrypto
+
+package ecdsa
+
+import "crypto/internal/boring"
+
+func boringPublicKey(*PublicKey) (*boring.PublicKeyECDSA, error) {
+ panic("boringcrypto: not available")
+}
+func boringPrivateKey(*PrivateKey) (*boring.PrivateKeyECDSA, error) {
+ panic("boringcrypto: not available")
+}
diff --git a/src/crypto/ecdsa/testdata/SigVer.rsp.bz2 b/src/crypto/ecdsa/testdata/SigVer.rsp.bz2
new file mode 100644
index 0000000..09fe2b4
--- /dev/null
+++ b/src/crypto/ecdsa/testdata/SigVer.rsp.bz2
Binary files differ