diff options
author | Daniel Baumann <daniel.baumann@progress-linux.org> | 2024-04-16 19:23:18 +0000 |
---|---|---|
committer | Daniel Baumann <daniel.baumann@progress-linux.org> | 2024-04-16 19:23:18 +0000 |
commit | 43a123c1ae6613b3efeed291fa552ecd909d3acf (patch) | |
tree | fd92518b7024bc74031f78a1cf9e454b65e73665 /src/crypto/internal/edwards25519/scalar.go | |
parent | Initial commit. (diff) | |
download | golang-1.20-43a123c1ae6613b3efeed291fa552ecd909d3acf.tar.xz golang-1.20-43a123c1ae6613b3efeed291fa552ecd909d3acf.zip |
Adding upstream version 1.20.14.upstream/1.20.14upstream
Signed-off-by: Daniel Baumann <daniel.baumann@progress-linux.org>
Diffstat (limited to 'src/crypto/internal/edwards25519/scalar.go')
-rw-r--r-- | src/crypto/internal/edwards25519/scalar.go | 343 |
1 files changed, 343 insertions, 0 deletions
diff --git a/src/crypto/internal/edwards25519/scalar.go b/src/crypto/internal/edwards25519/scalar.go new file mode 100644 index 0000000..d34ecea --- /dev/null +++ b/src/crypto/internal/edwards25519/scalar.go @@ -0,0 +1,343 @@ +// Copyright (c) 2016 The Go Authors. All rights reserved. +// Use of this source code is governed by a BSD-style +// license that can be found in the LICENSE file. + +package edwards25519 + +import ( + "encoding/binary" + "errors" +) + +// A Scalar is an integer modulo +// +// l = 2^252 + 27742317777372353535851937790883648493 +// +// which is the prime order of the edwards25519 group. +// +// This type works similarly to math/big.Int, and all arguments and +// receivers are allowed to alias. +// +// The zero value is a valid zero element. +type Scalar struct { + // s is the scalar in the Montgomery domain, in the format of the + // fiat-crypto implementation. + s fiatScalarMontgomeryDomainFieldElement +} + +// The field implementation in scalar_fiat.go is generated by the fiat-crypto +// project (https://github.com/mit-plv/fiat-crypto) at version v0.0.9 (23d2dbc) +// from a formally verified model. +// +// fiat-crypto code comes under the following license. +// +// Copyright (c) 2015-2020 The fiat-crypto Authors. All rights reserved. +// +// Redistribution and use in source and binary forms, with or without +// modification, are permitted provided that the following conditions are +// met: +// +// 1. Redistributions of source code must retain the above copyright +// notice, this list of conditions and the following disclaimer. +// +// THIS SOFTWARE IS PROVIDED BY the fiat-crypto authors "AS IS" +// AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, +// THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR +// PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL Berkeley Software Design, +// Inc. BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, +// EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, +// PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR +// PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF +// LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING +// NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS +// SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. +// + +// NewScalar returns a new zero Scalar. +func NewScalar() *Scalar { + return &Scalar{} +} + +// MultiplyAdd sets s = x * y + z mod l, and returns s. It is equivalent to +// using Multiply and then Add. +func (s *Scalar) MultiplyAdd(x, y, z *Scalar) *Scalar { + // Make a copy of z in case it aliases s. + zCopy := new(Scalar).Set(z) + return s.Multiply(x, y).Add(s, zCopy) +} + +// Add sets s = x + y mod l, and returns s. +func (s *Scalar) Add(x, y *Scalar) *Scalar { + // s = 1 * x + y mod l + fiatScalarAdd(&s.s, &x.s, &y.s) + return s +} + +// Subtract sets s = x - y mod l, and returns s. +func (s *Scalar) Subtract(x, y *Scalar) *Scalar { + // s = -1 * y + x mod l + fiatScalarSub(&s.s, &x.s, &y.s) + return s +} + +// Negate sets s = -x mod l, and returns s. +func (s *Scalar) Negate(x *Scalar) *Scalar { + // s = -1 * x + 0 mod l + fiatScalarOpp(&s.s, &x.s) + return s +} + +// Multiply sets s = x * y mod l, and returns s. +func (s *Scalar) Multiply(x, y *Scalar) *Scalar { + // s = x * y + 0 mod l + fiatScalarMul(&s.s, &x.s, &y.s) + return s +} + +// Set sets s = x, and returns s. +func (s *Scalar) Set(x *Scalar) *Scalar { + *s = *x + return s +} + +// SetUniformBytes sets s = x mod l, where x is a 64-byte little-endian integer. +// If x is not of the right length, SetUniformBytes returns nil and an error, +// and the receiver is unchanged. +// +// SetUniformBytes can be used to set s to an uniformly distributed value given +// 64 uniformly distributed random bytes. +func (s *Scalar) SetUniformBytes(x []byte) (*Scalar, error) { + if len(x) != 64 { + return nil, errors.New("edwards25519: invalid SetUniformBytes input length") + } + + // We have a value x of 512 bits, but our fiatScalarFromBytes function + // expects an input lower than l, which is a little over 252 bits. + // + // Instead of writing a reduction function that operates on wider inputs, we + // can interpret x as the sum of three shorter values a, b, and c. + // + // x = a + b * 2^168 + c * 2^336 mod l + // + // We then precompute 2^168 and 2^336 modulo l, and perform the reduction + // with two multiplications and two additions. + + s.setShortBytes(x[:21]) + t := new(Scalar).setShortBytes(x[21:42]) + s.Add(s, t.Multiply(t, scalarTwo168)) + t.setShortBytes(x[42:]) + s.Add(s, t.Multiply(t, scalarTwo336)) + + return s, nil +} + +// scalarTwo168 and scalarTwo336 are 2^168 and 2^336 modulo l, encoded as a +// fiatScalarMontgomeryDomainFieldElement, which is a little-endian 4-limb value +// in the 2^256 Montgomery domain. +var scalarTwo168 = &Scalar{s: [4]uint64{0x5b8ab432eac74798, 0x38afddd6de59d5d7, + 0xa2c131b399411b7c, 0x6329a7ed9ce5a30}} +var scalarTwo336 = &Scalar{s: [4]uint64{0xbd3d108e2b35ecc5, 0x5c3a3718bdf9c90b, + 0x63aa97a331b4f2ee, 0x3d217f5be65cb5c}} + +// setShortBytes sets s = x mod l, where x is a little-endian integer shorter +// than 32 bytes. +func (s *Scalar) setShortBytes(x []byte) *Scalar { + if len(x) >= 32 { + panic("edwards25519: internal error: setShortBytes called with a long string") + } + var buf [32]byte + copy(buf[:], x) + fiatScalarFromBytes((*[4]uint64)(&s.s), &buf) + fiatScalarToMontgomery(&s.s, (*fiatScalarNonMontgomeryDomainFieldElement)(&s.s)) + return s +} + +// SetCanonicalBytes sets s = x, where x is a 32-byte little-endian encoding of +// s, and returns s. If x is not a canonical encoding of s, SetCanonicalBytes +// returns nil and an error, and the receiver is unchanged. +func (s *Scalar) SetCanonicalBytes(x []byte) (*Scalar, error) { + if len(x) != 32 { + return nil, errors.New("invalid scalar length") + } + if !isReduced(x) { + return nil, errors.New("invalid scalar encoding") + } + + fiatScalarFromBytes((*[4]uint64)(&s.s), (*[32]byte)(x)) + fiatScalarToMontgomery(&s.s, (*fiatScalarNonMontgomeryDomainFieldElement)(&s.s)) + + return s, nil +} + +// scalarMinusOneBytes is l - 1 in little endian. +var scalarMinusOneBytes = [32]byte{236, 211, 245, 92, 26, 99, 18, 88, 214, 156, 247, 162, 222, 249, 222, 20, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 16} + +// isReduced returns whether the given scalar in 32-byte little endian encoded +// form is reduced modulo l. +func isReduced(s []byte) bool { + if len(s) != 32 { + return false + } + + for i := len(s) - 1; i >= 0; i-- { + switch { + case s[i] > scalarMinusOneBytes[i]: + return false + case s[i] < scalarMinusOneBytes[i]: + return true + } + } + return true +} + +// SetBytesWithClamping applies the buffer pruning described in RFC 8032, +// Section 5.1.5 (also known as clamping) and sets s to the result. The input +// must be 32 bytes, and it is not modified. If x is not of the right length, +// SetBytesWithClamping returns nil and an error, and the receiver is unchanged. +// +// Note that since Scalar values are always reduced modulo the prime order of +// the curve, the resulting value will not preserve any of the cofactor-clearing +// properties that clamping is meant to provide. It will however work as +// expected as long as it is applied to points on the prime order subgroup, like +// in Ed25519. In fact, it is lost to history why RFC 8032 adopted the +// irrelevant RFC 7748 clamping, but it is now required for compatibility. +func (s *Scalar) SetBytesWithClamping(x []byte) (*Scalar, error) { + // The description above omits the purpose of the high bits of the clamping + // for brevity, but those are also lost to reductions, and are also + // irrelevant to edwards25519 as they protect against a specific + // implementation bug that was once observed in a generic Montgomery ladder. + if len(x) != 32 { + return nil, errors.New("edwards25519: invalid SetBytesWithClamping input length") + } + + // We need to use the wide reduction from SetUniformBytes, since clamping + // sets the 2^254 bit, making the value higher than the order. + var wideBytes [64]byte + copy(wideBytes[:], x[:]) + wideBytes[0] &= 248 + wideBytes[31] &= 63 + wideBytes[31] |= 64 + return s.SetUniformBytes(wideBytes[:]) +} + +// Bytes returns the canonical 32-byte little-endian encoding of s. +func (s *Scalar) Bytes() []byte { + // This function is outlined to make the allocations inline in the caller + // rather than happen on the heap. + var encoded [32]byte + return s.bytes(&encoded) +} + +func (s *Scalar) bytes(out *[32]byte) []byte { + var ss fiatScalarNonMontgomeryDomainFieldElement + fiatScalarFromMontgomery(&ss, &s.s) + fiatScalarToBytes(out, (*[4]uint64)(&ss)) + return out[:] +} + +// Equal returns 1 if s and t are equal, and 0 otherwise. +func (s *Scalar) Equal(t *Scalar) int { + var diff fiatScalarMontgomeryDomainFieldElement + fiatScalarSub(&diff, &s.s, &t.s) + var nonzero uint64 + fiatScalarNonzero(&nonzero, (*[4]uint64)(&diff)) + nonzero |= nonzero >> 32 + nonzero |= nonzero >> 16 + nonzero |= nonzero >> 8 + nonzero |= nonzero >> 4 + nonzero |= nonzero >> 2 + nonzero |= nonzero >> 1 + return int(^nonzero) & 1 +} + +// nonAdjacentForm computes a width-w non-adjacent form for this scalar. +// +// w must be between 2 and 8, or nonAdjacentForm will panic. +func (s *Scalar) nonAdjacentForm(w uint) [256]int8 { + // This implementation is adapted from the one + // in curve25519-dalek and is documented there: + // https://github.com/dalek-cryptography/curve25519-dalek/blob/f630041af28e9a405255f98a8a93adca18e4315b/src/scalar.rs#L800-L871 + b := s.Bytes() + if b[31] > 127 { + panic("scalar has high bit set illegally") + } + if w < 2 { + panic("w must be at least 2 by the definition of NAF") + } else if w > 8 { + panic("NAF digits must fit in int8") + } + + var naf [256]int8 + var digits [5]uint64 + + for i := 0; i < 4; i++ { + digits[i] = binary.LittleEndian.Uint64(b[i*8:]) + } + + width := uint64(1 << w) + windowMask := uint64(width - 1) + + pos := uint(0) + carry := uint64(0) + for pos < 256 { + indexU64 := pos / 64 + indexBit := pos % 64 + var bitBuf uint64 + if indexBit < 64-w { + // This window's bits are contained in a single u64 + bitBuf = digits[indexU64] >> indexBit + } else { + // Combine the current 64 bits with bits from the next 64 + bitBuf = (digits[indexU64] >> indexBit) | (digits[1+indexU64] << (64 - indexBit)) + } + + // Add carry into the current window + window := carry + (bitBuf & windowMask) + + if window&1 == 0 { + // If the window value is even, preserve the carry and continue. + // Why is the carry preserved? + // If carry == 0 and window & 1 == 0, + // then the next carry should be 0 + // If carry == 1 and window & 1 == 0, + // then bit_buf & 1 == 1 so the next carry should be 1 + pos += 1 + continue + } + + if window < width/2 { + carry = 0 + naf[pos] = int8(window) + } else { + carry = 1 + naf[pos] = int8(window) - int8(width) + } + + pos += w + } + return naf +} + +func (s *Scalar) signedRadix16() [64]int8 { + b := s.Bytes() + if b[31] > 127 { + panic("scalar has high bit set illegally") + } + + var digits [64]int8 + + // Compute unsigned radix-16 digits: + for i := 0; i < 32; i++ { + digits[2*i] = int8(b[i] & 15) + digits[2*i+1] = int8((b[i] >> 4) & 15) + } + + // Recenter coefficients: + for i := 0; i < 63; i++ { + carry := (digits[i] + 8) >> 4 + digits[i] -= carry << 4 + digits[i+1] += carry + } + + return digits +} |