diff options
author | Daniel Baumann <daniel.baumann@progress-linux.org> | 2024-04-16 19:23:18 +0000 |
---|---|---|
committer | Daniel Baumann <daniel.baumann@progress-linux.org> | 2024-04-16 19:23:18 +0000 |
commit | 43a123c1ae6613b3efeed291fa552ecd909d3acf (patch) | |
tree | fd92518b7024bc74031f78a1cf9e454b65e73665 /src/encoding/base32/base32.go | |
parent | Initial commit. (diff) | |
download | golang-1.20-43a123c1ae6613b3efeed291fa552ecd909d3acf.tar.xz golang-1.20-43a123c1ae6613b3efeed291fa552ecd909d3acf.zip |
Adding upstream version 1.20.14.upstream/1.20.14upstream
Signed-off-by: Daniel Baumann <daniel.baumann@progress-linux.org>
Diffstat (limited to 'src/encoding/base32/base32.go')
-rw-r--r-- | src/encoding/base32/base32.go | 549 |
1 files changed, 549 insertions, 0 deletions
diff --git a/src/encoding/base32/base32.go b/src/encoding/base32/base32.go new file mode 100644 index 0000000..41d343a --- /dev/null +++ b/src/encoding/base32/base32.go @@ -0,0 +1,549 @@ +// Copyright 2011 The Go Authors. All rights reserved. +// Use of this source code is governed by a BSD-style +// license that can be found in the LICENSE file. + +// Package base32 implements base32 encoding as specified by RFC 4648. +package base32 + +import ( + "io" + "strconv" +) + +/* + * Encodings + */ + +// An Encoding is a radix 32 encoding/decoding scheme, defined by a +// 32-character alphabet. The most common is the "base32" encoding +// introduced for SASL GSSAPI and standardized in RFC 4648. +// The alternate "base32hex" encoding is used in DNSSEC. +type Encoding struct { + encode [32]byte + decodeMap [256]byte + padChar rune +} + +const ( + StdPadding rune = '=' // Standard padding character + NoPadding rune = -1 // No padding + decodeMapInitialize = "" + + "\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff" + + "\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff" + + "\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff" + + "\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff" + + "\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff" + + "\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff" + + "\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff" + + "\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff" + + "\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff" + + "\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff" + + "\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff" + + "\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff" + + "\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff" + + "\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff" + + "\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff" + + "\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff" +) + +const encodeStd = "ABCDEFGHIJKLMNOPQRSTUVWXYZ234567" +const encodeHex = "0123456789ABCDEFGHIJKLMNOPQRSTUV" + +// NewEncoding returns a new Encoding defined by the given alphabet, +// which must be a 32-byte string. +func NewEncoding(encoder string) *Encoding { + if len(encoder) != 32 { + panic("encoding alphabet is not 32-bytes long") + } + + e := new(Encoding) + e.padChar = StdPadding + copy(e.encode[:], encoder) + copy(e.decodeMap[:], decodeMapInitialize) + + for i := 0; i < len(encoder); i++ { + e.decodeMap[encoder[i]] = byte(i) + } + return e +} + +// StdEncoding is the standard base32 encoding, as defined in +// RFC 4648. +var StdEncoding = NewEncoding(encodeStd) + +// HexEncoding is the “Extended Hex Alphabet” defined in RFC 4648. +// It is typically used in DNS. +var HexEncoding = NewEncoding(encodeHex) + +// WithPadding creates a new encoding identical to enc except +// with a specified padding character, or NoPadding to disable padding. +// The padding character must not be '\r' or '\n', must not +// be contained in the encoding's alphabet and must be a rune equal or +// below '\xff'. +func (enc Encoding) WithPadding(padding rune) *Encoding { + if padding == '\r' || padding == '\n' || padding > 0xff { + panic("invalid padding") + } + + for i := 0; i < len(enc.encode); i++ { + if rune(enc.encode[i]) == padding { + panic("padding contained in alphabet") + } + } + + enc.padChar = padding + return &enc +} + +/* + * Encoder + */ + +// Encode encodes src using the encoding enc, writing +// EncodedLen(len(src)) bytes to dst. +// +// The encoding pads the output to a multiple of 8 bytes, +// so Encode is not appropriate for use on individual blocks +// of a large data stream. Use NewEncoder() instead. +func (enc *Encoding) Encode(dst, src []byte) { + for len(src) > 0 { + var b [8]byte + + // Unpack 8x 5-bit source blocks into a 5 byte + // destination quantum + switch len(src) { + default: + b[7] = src[4] & 0x1F + b[6] = src[4] >> 5 + fallthrough + case 4: + b[6] |= (src[3] << 3) & 0x1F + b[5] = (src[3] >> 2) & 0x1F + b[4] = src[3] >> 7 + fallthrough + case 3: + b[4] |= (src[2] << 1) & 0x1F + b[3] = (src[2] >> 4) & 0x1F + fallthrough + case 2: + b[3] |= (src[1] << 4) & 0x1F + b[2] = (src[1] >> 1) & 0x1F + b[1] = (src[1] >> 6) & 0x1F + fallthrough + case 1: + b[1] |= (src[0] << 2) & 0x1F + b[0] = src[0] >> 3 + } + + // Encode 5-bit blocks using the base32 alphabet + size := len(dst) + if size >= 8 { + // Common case, unrolled for extra performance + dst[0] = enc.encode[b[0]&31] + dst[1] = enc.encode[b[1]&31] + dst[2] = enc.encode[b[2]&31] + dst[3] = enc.encode[b[3]&31] + dst[4] = enc.encode[b[4]&31] + dst[5] = enc.encode[b[5]&31] + dst[6] = enc.encode[b[6]&31] + dst[7] = enc.encode[b[7]&31] + } else { + for i := 0; i < size; i++ { + dst[i] = enc.encode[b[i]&31] + } + } + + // Pad the final quantum + if len(src) < 5 { + if enc.padChar == NoPadding { + break + } + + dst[7] = byte(enc.padChar) + if len(src) < 4 { + dst[6] = byte(enc.padChar) + dst[5] = byte(enc.padChar) + if len(src) < 3 { + dst[4] = byte(enc.padChar) + if len(src) < 2 { + dst[3] = byte(enc.padChar) + dst[2] = byte(enc.padChar) + } + } + } + + break + } + + src = src[5:] + dst = dst[8:] + } +} + +// EncodeToString returns the base32 encoding of src. +func (enc *Encoding) EncodeToString(src []byte) string { + buf := make([]byte, enc.EncodedLen(len(src))) + enc.Encode(buf, src) + return string(buf) +} + +type encoder struct { + err error + enc *Encoding + w io.Writer + buf [5]byte // buffered data waiting to be encoded + nbuf int // number of bytes in buf + out [1024]byte // output buffer +} + +func (e *encoder) Write(p []byte) (n int, err error) { + if e.err != nil { + return 0, e.err + } + + // Leading fringe. + if e.nbuf > 0 { + var i int + for i = 0; i < len(p) && e.nbuf < 5; i++ { + e.buf[e.nbuf] = p[i] + e.nbuf++ + } + n += i + p = p[i:] + if e.nbuf < 5 { + return + } + e.enc.Encode(e.out[0:], e.buf[0:]) + if _, e.err = e.w.Write(e.out[0:8]); e.err != nil { + return n, e.err + } + e.nbuf = 0 + } + + // Large interior chunks. + for len(p) >= 5 { + nn := len(e.out) / 8 * 5 + if nn > len(p) { + nn = len(p) + nn -= nn % 5 + } + e.enc.Encode(e.out[0:], p[0:nn]) + if _, e.err = e.w.Write(e.out[0 : nn/5*8]); e.err != nil { + return n, e.err + } + n += nn + p = p[nn:] + } + + // Trailing fringe. + copy(e.buf[:], p) + e.nbuf = len(p) + n += len(p) + return +} + +// Close flushes any pending output from the encoder. +// It is an error to call Write after calling Close. +func (e *encoder) Close() error { + // If there's anything left in the buffer, flush it out + if e.err == nil && e.nbuf > 0 { + e.enc.Encode(e.out[0:], e.buf[0:e.nbuf]) + encodedLen := e.enc.EncodedLen(e.nbuf) + e.nbuf = 0 + _, e.err = e.w.Write(e.out[0:encodedLen]) + } + return e.err +} + +// NewEncoder returns a new base32 stream encoder. Data written to +// the returned writer will be encoded using enc and then written to w. +// Base32 encodings operate in 5-byte blocks; when finished +// writing, the caller must Close the returned encoder to flush any +// partially written blocks. +func NewEncoder(enc *Encoding, w io.Writer) io.WriteCloser { + return &encoder{enc: enc, w: w} +} + +// EncodedLen returns the length in bytes of the base32 encoding +// of an input buffer of length n. +func (enc *Encoding) EncodedLen(n int) int { + if enc.padChar == NoPadding { + return (n*8 + 4) / 5 + } + return (n + 4) / 5 * 8 +} + +/* + * Decoder + */ + +type CorruptInputError int64 + +func (e CorruptInputError) Error() string { + return "illegal base32 data at input byte " + strconv.FormatInt(int64(e), 10) +} + +// decode is like Decode but returns an additional 'end' value, which +// indicates if end-of-message padding was encountered and thus any +// additional data is an error. This method assumes that src has been +// stripped of all supported whitespace ('\r' and '\n'). +func (enc *Encoding) decode(dst, src []byte) (n int, end bool, err error) { + // Lift the nil check outside of the loop. + _ = enc.decodeMap + + dsti := 0 + olen := len(src) + + for len(src) > 0 && !end { + // Decode quantum using the base32 alphabet + var dbuf [8]byte + dlen := 8 + + for j := 0; j < 8; { + + if len(src) == 0 { + if enc.padChar != NoPadding { + // We have reached the end and are missing padding + return n, false, CorruptInputError(olen - len(src) - j) + } + // We have reached the end and are not expecting any padding + dlen, end = j, true + break + } + in := src[0] + src = src[1:] + if in == byte(enc.padChar) && j >= 2 && len(src) < 8 { + // We've reached the end and there's padding + if len(src)+j < 8-1 { + // not enough padding + return n, false, CorruptInputError(olen) + } + for k := 0; k < 8-1-j; k++ { + if len(src) > k && src[k] != byte(enc.padChar) { + // incorrect padding + return n, false, CorruptInputError(olen - len(src) + k - 1) + } + } + dlen, end = j, true + // 7, 5 and 2 are not valid padding lengths, and so 1, 3 and 6 are not + // valid dlen values. See RFC 4648 Section 6 "Base 32 Encoding" listing + // the five valid padding lengths, and Section 9 "Illustrations and + // Examples" for an illustration for how the 1st, 3rd and 6th base32 + // src bytes do not yield enough information to decode a dst byte. + if dlen == 1 || dlen == 3 || dlen == 6 { + return n, false, CorruptInputError(olen - len(src) - 1) + } + break + } + dbuf[j] = enc.decodeMap[in] + if dbuf[j] == 0xFF { + return n, false, CorruptInputError(olen - len(src) - 1) + } + j++ + } + + // Pack 8x 5-bit source blocks into 5 byte destination + // quantum + switch dlen { + case 8: + dst[dsti+4] = dbuf[6]<<5 | dbuf[7] + n++ + fallthrough + case 7: + dst[dsti+3] = dbuf[4]<<7 | dbuf[5]<<2 | dbuf[6]>>3 + n++ + fallthrough + case 5: + dst[dsti+2] = dbuf[3]<<4 | dbuf[4]>>1 + n++ + fallthrough + case 4: + dst[dsti+1] = dbuf[1]<<6 | dbuf[2]<<1 | dbuf[3]>>4 + n++ + fallthrough + case 2: + dst[dsti+0] = dbuf[0]<<3 | dbuf[1]>>2 + n++ + } + dsti += 5 + } + return n, end, nil +} + +// Decode decodes src using the encoding enc. It writes at most +// DecodedLen(len(src)) bytes to dst and returns the number of bytes +// written. If src contains invalid base32 data, it will return the +// number of bytes successfully written and CorruptInputError. +// New line characters (\r and \n) are ignored. +func (enc *Encoding) Decode(dst, src []byte) (n int, err error) { + buf := make([]byte, len(src)) + l := stripNewlines(buf, src) + n, _, err = enc.decode(dst, buf[:l]) + return +} + +// DecodeString returns the bytes represented by the base32 string s. +func (enc *Encoding) DecodeString(s string) ([]byte, error) { + buf := []byte(s) + l := stripNewlines(buf, buf) + n, _, err := enc.decode(buf, buf[:l]) + return buf[:n], err +} + +type decoder struct { + err error + enc *Encoding + r io.Reader + end bool // saw end of message + buf [1024]byte // leftover input + nbuf int + out []byte // leftover decoded output + outbuf [1024 / 8 * 5]byte +} + +func readEncodedData(r io.Reader, buf []byte, min int, expectsPadding bool) (n int, err error) { + for n < min && err == nil { + var nn int + nn, err = r.Read(buf[n:]) + n += nn + } + // data was read, less than min bytes could be read + if n < min && n > 0 && err == io.EOF { + err = io.ErrUnexpectedEOF + } + // no data was read, the buffer already contains some data + // when padding is disabled this is not an error, as the message can be of + // any length + if expectsPadding && min < 8 && n == 0 && err == io.EOF { + err = io.ErrUnexpectedEOF + } + return +} + +func (d *decoder) Read(p []byte) (n int, err error) { + // Use leftover decoded output from last read. + if len(d.out) > 0 { + n = copy(p, d.out) + d.out = d.out[n:] + if len(d.out) == 0 { + return n, d.err + } + return n, nil + } + + if d.err != nil { + return 0, d.err + } + + // Read a chunk. + nn := len(p) / 5 * 8 + if nn < 8 { + nn = 8 + } + if nn > len(d.buf) { + nn = len(d.buf) + } + + // Minimum amount of bytes that needs to be read each cycle + var min int + var expectsPadding bool + if d.enc.padChar == NoPadding { + min = 1 + expectsPadding = false + } else { + min = 8 - d.nbuf + expectsPadding = true + } + + nn, d.err = readEncodedData(d.r, d.buf[d.nbuf:nn], min, expectsPadding) + d.nbuf += nn + if d.nbuf < min { + return 0, d.err + } + if nn > 0 && d.end { + return 0, CorruptInputError(0) + } + + // Decode chunk into p, or d.out and then p if p is too small. + var nr int + if d.enc.padChar == NoPadding { + nr = d.nbuf + } else { + nr = d.nbuf / 8 * 8 + } + nw := d.enc.DecodedLen(d.nbuf) + + if nw > len(p) { + nw, d.end, err = d.enc.decode(d.outbuf[0:], d.buf[0:nr]) + d.out = d.outbuf[0:nw] + n = copy(p, d.out) + d.out = d.out[n:] + } else { + n, d.end, err = d.enc.decode(p, d.buf[0:nr]) + } + d.nbuf -= nr + for i := 0; i < d.nbuf; i++ { + d.buf[i] = d.buf[i+nr] + } + + if err != nil && (d.err == nil || d.err == io.EOF) { + d.err = err + } + + if len(d.out) > 0 { + // We cannot return all the decoded bytes to the caller in this + // invocation of Read, so we return a nil error to ensure that Read + // will be called again. The error stored in d.err, if any, will be + // returned with the last set of decoded bytes. + return n, nil + } + + return n, d.err +} + +type newlineFilteringReader struct { + wrapped io.Reader +} + +// stripNewlines removes newline characters and returns the number +// of non-newline characters copied to dst. +func stripNewlines(dst, src []byte) int { + offset := 0 + for _, b := range src { + if b == '\r' || b == '\n' { + continue + } + dst[offset] = b + offset++ + } + return offset +} + +func (r *newlineFilteringReader) Read(p []byte) (int, error) { + n, err := r.wrapped.Read(p) + for n > 0 { + s := p[0:n] + offset := stripNewlines(s, s) + if err != nil || offset > 0 { + return offset, err + } + // Previous buffer entirely whitespace, read again + n, err = r.wrapped.Read(p) + } + return n, err +} + +// NewDecoder constructs a new base32 stream decoder. +func NewDecoder(enc *Encoding, r io.Reader) io.Reader { + return &decoder{enc: enc, r: &newlineFilteringReader{r}} +} + +// DecodedLen returns the maximum length in bytes of the decoded data +// corresponding to n bytes of base32-encoded data. +func (enc *Encoding) DecodedLen(n int) int { + if enc.padChar == NoPadding { + return n * 5 / 8 + } + + return n / 8 * 5 +} |