summaryrefslogtreecommitdiffstats
path: root/src/math/big/ratconv.go
diff options
context:
space:
mode:
authorDaniel Baumann <daniel.baumann@progress-linux.org>2024-04-16 19:23:18 +0000
committerDaniel Baumann <daniel.baumann@progress-linux.org>2024-04-16 19:23:18 +0000
commit43a123c1ae6613b3efeed291fa552ecd909d3acf (patch)
treefd92518b7024bc74031f78a1cf9e454b65e73665 /src/math/big/ratconv.go
parentInitial commit. (diff)
downloadgolang-1.20-43a123c1ae6613b3efeed291fa552ecd909d3acf.tar.xz
golang-1.20-43a123c1ae6613b3efeed291fa552ecd909d3acf.zip
Adding upstream version 1.20.14.upstream/1.20.14upstream
Signed-off-by: Daniel Baumann <daniel.baumann@progress-linux.org>
Diffstat (limited to 'src/math/big/ratconv.go')
-rw-r--r--src/math/big/ratconv.go380
1 files changed, 380 insertions, 0 deletions
diff --git a/src/math/big/ratconv.go b/src/math/big/ratconv.go
new file mode 100644
index 0000000..8537a67
--- /dev/null
+++ b/src/math/big/ratconv.go
@@ -0,0 +1,380 @@
+// Copyright 2015 The Go Authors. All rights reserved.
+// Use of this source code is governed by a BSD-style
+// license that can be found in the LICENSE file.
+
+// This file implements rat-to-string conversion functions.
+
+package big
+
+import (
+ "errors"
+ "fmt"
+ "io"
+ "strconv"
+ "strings"
+)
+
+func ratTok(ch rune) bool {
+ return strings.ContainsRune("+-/0123456789.eE", ch)
+}
+
+var ratZero Rat
+var _ fmt.Scanner = &ratZero // *Rat must implement fmt.Scanner
+
+// Scan is a support routine for fmt.Scanner. It accepts the formats
+// 'e', 'E', 'f', 'F', 'g', 'G', and 'v'. All formats are equivalent.
+func (z *Rat) Scan(s fmt.ScanState, ch rune) error {
+ tok, err := s.Token(true, ratTok)
+ if err != nil {
+ return err
+ }
+ if !strings.ContainsRune("efgEFGv", ch) {
+ return errors.New("Rat.Scan: invalid verb")
+ }
+ if _, ok := z.SetString(string(tok)); !ok {
+ return errors.New("Rat.Scan: invalid syntax")
+ }
+ return nil
+}
+
+// SetString sets z to the value of s and returns z and a boolean indicating
+// success. s can be given as a (possibly signed) fraction "a/b", or as a
+// floating-point number optionally followed by an exponent.
+// If a fraction is provided, both the dividend and the divisor may be a
+// decimal integer or independently use a prefix of “0b”, “0” or “0o”,
+// or “0x” (or their upper-case variants) to denote a binary, octal, or
+// hexadecimal integer, respectively. The divisor may not be signed.
+// If a floating-point number is provided, it may be in decimal form or
+// use any of the same prefixes as above but for “0” to denote a non-decimal
+// mantissa. A leading “0” is considered a decimal leading 0; it does not
+// indicate octal representation in this case.
+// An optional base-10 “e” or base-2 “p” (or their upper-case variants)
+// exponent may be provided as well, except for hexadecimal floats which
+// only accept an (optional) “p” exponent (because an “e” or “E” cannot
+// be distinguished from a mantissa digit). If the exponent's absolute value
+// is too large, the operation may fail.
+// The entire string, not just a prefix, must be valid for success. If the
+// operation failed, the value of z is undefined but the returned value is nil.
+func (z *Rat) SetString(s string) (*Rat, bool) {
+ if len(s) == 0 {
+ return nil, false
+ }
+ // len(s) > 0
+
+ // parse fraction a/b, if any
+ if sep := strings.Index(s, "/"); sep >= 0 {
+ if _, ok := z.a.SetString(s[:sep], 0); !ok {
+ return nil, false
+ }
+ r := strings.NewReader(s[sep+1:])
+ var err error
+ if z.b.abs, _, _, err = z.b.abs.scan(r, 0, false); err != nil {
+ return nil, false
+ }
+ // entire string must have been consumed
+ if _, err = r.ReadByte(); err != io.EOF {
+ return nil, false
+ }
+ if len(z.b.abs) == 0 {
+ return nil, false
+ }
+ return z.norm(), true
+ }
+
+ // parse floating-point number
+ r := strings.NewReader(s)
+
+ // sign
+ neg, err := scanSign(r)
+ if err != nil {
+ return nil, false
+ }
+
+ // mantissa
+ var base int
+ var fcount int // fractional digit count; valid if <= 0
+ z.a.abs, base, fcount, err = z.a.abs.scan(r, 0, true)
+ if err != nil {
+ return nil, false
+ }
+
+ // exponent
+ var exp int64
+ var ebase int
+ exp, ebase, err = scanExponent(r, true, true)
+ if err != nil {
+ return nil, false
+ }
+
+ // there should be no unread characters left
+ if _, err = r.ReadByte(); err != io.EOF {
+ return nil, false
+ }
+
+ // special-case 0 (see also issue #16176)
+ if len(z.a.abs) == 0 {
+ return z.norm(), true
+ }
+ // len(z.a.abs) > 0
+
+ // The mantissa may have a radix point (fcount <= 0) and there
+ // may be a nonzero exponent exp. The radix point amounts to a
+ // division by base**(-fcount), which equals a multiplication by
+ // base**fcount. An exponent means multiplication by ebase**exp.
+ // Multiplications are commutative, so we can apply them in any
+ // order. We only have powers of 2 and 10, and we split powers
+ // of 10 into the product of the same powers of 2 and 5. This
+ // may reduce the size of shift/multiplication factors or
+ // divisors required to create the final fraction, depending
+ // on the actual floating-point value.
+
+ // determine binary or decimal exponent contribution of radix point
+ var exp2, exp5 int64
+ if fcount < 0 {
+ // The mantissa has a radix point ddd.dddd; and
+ // -fcount is the number of digits to the right
+ // of '.'. Adjust relevant exponent accordingly.
+ d := int64(fcount)
+ switch base {
+ case 10:
+ exp5 = d
+ fallthrough // 10**e == 5**e * 2**e
+ case 2:
+ exp2 = d
+ case 8:
+ exp2 = d * 3 // octal digits are 3 bits each
+ case 16:
+ exp2 = d * 4 // hexadecimal digits are 4 bits each
+ default:
+ panic("unexpected mantissa base")
+ }
+ // fcount consumed - not needed anymore
+ }
+
+ // take actual exponent into account
+ switch ebase {
+ case 10:
+ exp5 += exp
+ fallthrough // see fallthrough above
+ case 2:
+ exp2 += exp
+ default:
+ panic("unexpected exponent base")
+ }
+ // exp consumed - not needed anymore
+
+ // apply exp5 contributions
+ // (start with exp5 so the numbers to multiply are smaller)
+ if exp5 != 0 {
+ n := exp5
+ if n < 0 {
+ n = -n
+ if n < 0 {
+ // This can occur if -n overflows. -(-1 << 63) would become
+ // -1 << 63, which is still negative.
+ return nil, false
+ }
+ }
+ if n > 1e6 {
+ return nil, false // avoid excessively large exponents
+ }
+ pow5 := z.b.abs.expNN(natFive, nat(nil).setWord(Word(n)), nil, false) // use underlying array of z.b.abs
+ if exp5 > 0 {
+ z.a.abs = z.a.abs.mul(z.a.abs, pow5)
+ z.b.abs = z.b.abs.setWord(1)
+ } else {
+ z.b.abs = pow5
+ }
+ } else {
+ z.b.abs = z.b.abs.setWord(1)
+ }
+
+ // apply exp2 contributions
+ if exp2 < -1e7 || exp2 > 1e7 {
+ return nil, false // avoid excessively large exponents
+ }
+ if exp2 > 0 {
+ z.a.abs = z.a.abs.shl(z.a.abs, uint(exp2))
+ } else if exp2 < 0 {
+ z.b.abs = z.b.abs.shl(z.b.abs, uint(-exp2))
+ }
+
+ z.a.neg = neg && len(z.a.abs) > 0 // 0 has no sign
+
+ return z.norm(), true
+}
+
+// scanExponent scans the longest possible prefix of r representing a base 10
+// (“e”, “E”) or a base 2 (“p”, “P”) exponent, if any. It returns the
+// exponent, the exponent base (10 or 2), or a read or syntax error, if any.
+//
+// If sepOk is set, an underscore character “_” may appear between successive
+// exponent digits; such underscores do not change the value of the exponent.
+// Incorrect placement of underscores is reported as an error if there are no
+// other errors. If sepOk is not set, underscores are not recognized and thus
+// terminate scanning like any other character that is not a valid digit.
+//
+// exponent = ( "e" | "E" | "p" | "P" ) [ sign ] digits .
+// sign = "+" | "-" .
+// digits = digit { [ '_' ] digit } .
+// digit = "0" ... "9" .
+//
+// A base 2 exponent is only permitted if base2ok is set.
+func scanExponent(r io.ByteScanner, base2ok, sepOk bool) (exp int64, base int, err error) {
+ // one char look-ahead
+ ch, err := r.ReadByte()
+ if err != nil {
+ if err == io.EOF {
+ err = nil
+ }
+ return 0, 10, err
+ }
+
+ // exponent char
+ switch ch {
+ case 'e', 'E':
+ base = 10
+ case 'p', 'P':
+ if base2ok {
+ base = 2
+ break // ok
+ }
+ fallthrough // binary exponent not permitted
+ default:
+ r.UnreadByte() // ch does not belong to exponent anymore
+ return 0, 10, nil
+ }
+
+ // sign
+ var digits []byte
+ ch, err = r.ReadByte()
+ if err == nil && (ch == '+' || ch == '-') {
+ if ch == '-' {
+ digits = append(digits, '-')
+ }
+ ch, err = r.ReadByte()
+ }
+
+ // prev encodes the previously seen char: it is one
+ // of '_', '0' (a digit), or '.' (anything else). A
+ // valid separator '_' may only occur after a digit.
+ prev := '.'
+ invalSep := false
+
+ // exponent value
+ hasDigits := false
+ for err == nil {
+ if '0' <= ch && ch <= '9' {
+ digits = append(digits, ch)
+ prev = '0'
+ hasDigits = true
+ } else if ch == '_' && sepOk {
+ if prev != '0' {
+ invalSep = true
+ }
+ prev = '_'
+ } else {
+ r.UnreadByte() // ch does not belong to number anymore
+ break
+ }
+ ch, err = r.ReadByte()
+ }
+
+ if err == io.EOF {
+ err = nil
+ }
+ if err == nil && !hasDigits {
+ err = errNoDigits
+ }
+ if err == nil {
+ exp, err = strconv.ParseInt(string(digits), 10, 64)
+ }
+ // other errors take precedence over invalid separators
+ if err == nil && (invalSep || prev == '_') {
+ err = errInvalSep
+ }
+
+ return
+}
+
+// String returns a string representation of x in the form "a/b" (even if b == 1).
+func (x *Rat) String() string {
+ return string(x.marshal())
+}
+
+// marshal implements String returning a slice of bytes
+func (x *Rat) marshal() []byte {
+ var buf []byte
+ buf = x.a.Append(buf, 10)
+ buf = append(buf, '/')
+ if len(x.b.abs) != 0 {
+ buf = x.b.Append(buf, 10)
+ } else {
+ buf = append(buf, '1')
+ }
+ return buf
+}
+
+// RatString returns a string representation of x in the form "a/b" if b != 1,
+// and in the form "a" if b == 1.
+func (x *Rat) RatString() string {
+ if x.IsInt() {
+ return x.a.String()
+ }
+ return x.String()
+}
+
+// FloatString returns a string representation of x in decimal form with prec
+// digits of precision after the radix point. The last digit is rounded to
+// nearest, with halves rounded away from zero.
+func (x *Rat) FloatString(prec int) string {
+ var buf []byte
+
+ if x.IsInt() {
+ buf = x.a.Append(buf, 10)
+ if prec > 0 {
+ buf = append(buf, '.')
+ for i := prec; i > 0; i-- {
+ buf = append(buf, '0')
+ }
+ }
+ return string(buf)
+ }
+ // x.b.abs != 0
+
+ q, r := nat(nil).div(nat(nil), x.a.abs, x.b.abs)
+
+ p := natOne
+ if prec > 0 {
+ p = nat(nil).expNN(natTen, nat(nil).setUint64(uint64(prec)), nil, false)
+ }
+
+ r = r.mul(r, p)
+ r, r2 := r.div(nat(nil), r, x.b.abs)
+
+ // see if we need to round up
+ r2 = r2.add(r2, r2)
+ if x.b.abs.cmp(r2) <= 0 {
+ r = r.add(r, natOne)
+ if r.cmp(p) >= 0 {
+ q = nat(nil).add(q, natOne)
+ r = nat(nil).sub(r, p)
+ }
+ }
+
+ if x.a.neg {
+ buf = append(buf, '-')
+ }
+ buf = append(buf, q.utoa(10)...) // itoa ignores sign if q == 0
+
+ if prec > 0 {
+ buf = append(buf, '.')
+ rs := r.utoa(10)
+ for i := prec - len(rs); i > 0; i-- {
+ buf = append(buf, '0')
+ }
+ buf = append(buf, rs...)
+ }
+
+ return string(buf)
+}