diff options
author | Daniel Baumann <daniel.baumann@progress-linux.org> | 2024-04-16 19:23:18 +0000 |
---|---|---|
committer | Daniel Baumann <daniel.baumann@progress-linux.org> | 2024-04-16 19:23:18 +0000 |
commit | 43a123c1ae6613b3efeed291fa552ecd909d3acf (patch) | |
tree | fd92518b7024bc74031f78a1cf9e454b65e73665 /src/math/cmplx | |
parent | Initial commit. (diff) | |
download | golang-1.20-43a123c1ae6613b3efeed291fa552ecd909d3acf.tar.xz golang-1.20-43a123c1ae6613b3efeed291fa552ecd909d3acf.zip |
Adding upstream version 1.20.14.upstream/1.20.14upstream
Signed-off-by: Daniel Baumann <daniel.baumann@progress-linux.org>
Diffstat (limited to 'src/math/cmplx')
-rw-r--r-- | src/math/cmplx/abs.go | 13 | ||||
-rw-r--r-- | src/math/cmplx/asin.go | 221 | ||||
-rw-r--r-- | src/math/cmplx/cmath_test.go | 1589 | ||||
-rw-r--r-- | src/math/cmplx/conj.go | 8 | ||||
-rw-r--r-- | src/math/cmplx/example_test.go | 28 | ||||
-rw-r--r-- | src/math/cmplx/exp.go | 72 | ||||
-rw-r--r-- | src/math/cmplx/huge_test.go | 22 | ||||
-rw-r--r-- | src/math/cmplx/isinf.go | 21 | ||||
-rw-r--r-- | src/math/cmplx/isnan.go | 25 | ||||
-rw-r--r-- | src/math/cmplx/log.go | 65 | ||||
-rw-r--r-- | src/math/cmplx/phase.go | 11 | ||||
-rw-r--r-- | src/math/cmplx/polar.go | 12 | ||||
-rw-r--r-- | src/math/cmplx/pow.go | 82 | ||||
-rw-r--r-- | src/math/cmplx/rect.go | 13 | ||||
-rw-r--r-- | src/math/cmplx/sin.go | 184 | ||||
-rw-r--r-- | src/math/cmplx/sqrt.go | 107 | ||||
-rw-r--r-- | src/math/cmplx/tan.go | 297 |
17 files changed, 2770 insertions, 0 deletions
diff --git a/src/math/cmplx/abs.go b/src/math/cmplx/abs.go new file mode 100644 index 0000000..2f89d1b --- /dev/null +++ b/src/math/cmplx/abs.go @@ -0,0 +1,13 @@ +// Copyright 2010 The Go Authors. All rights reserved. +// Use of this source code is governed by a BSD-style +// license that can be found in the LICENSE file. + +// Package cmplx provides basic constants and mathematical functions for +// complex numbers. Special case handling conforms to the C99 standard +// Annex G IEC 60559-compatible complex arithmetic. +package cmplx + +import "math" + +// Abs returns the absolute value (also called the modulus) of x. +func Abs(x complex128) float64 { return math.Hypot(real(x), imag(x)) } diff --git a/src/math/cmplx/asin.go b/src/math/cmplx/asin.go new file mode 100644 index 0000000..30d019e --- /dev/null +++ b/src/math/cmplx/asin.go @@ -0,0 +1,221 @@ +// Copyright 2010 The Go Authors. All rights reserved. +// Use of this source code is governed by a BSD-style +// license that can be found in the LICENSE file. + +package cmplx + +import "math" + +// The original C code, the long comment, and the constants +// below are from http://netlib.sandia.gov/cephes/c9x-complex/clog.c. +// The go code is a simplified version of the original C. +// +// Cephes Math Library Release 2.8: June, 2000 +// Copyright 1984, 1987, 1989, 1992, 2000 by Stephen L. Moshier +// +// The readme file at http://netlib.sandia.gov/cephes/ says: +// Some software in this archive may be from the book _Methods and +// Programs for Mathematical Functions_ (Prentice-Hall or Simon & Schuster +// International, 1989) or from the Cephes Mathematical Library, a +// commercial product. In either event, it is copyrighted by the author. +// What you see here may be used freely but it comes with no support or +// guarantee. +// +// The two known misprints in the book are repaired here in the +// source listings for the gamma function and the incomplete beta +// integral. +// +// Stephen L. Moshier +// moshier@na-net.ornl.gov + +// Complex circular arc sine +// +// DESCRIPTION: +// +// Inverse complex sine: +// 2 +// w = -i clog( iz + csqrt( 1 - z ) ). +// +// casin(z) = -i casinh(iz) +// +// ACCURACY: +// +// Relative error: +// arithmetic domain # trials peak rms +// DEC -10,+10 10100 2.1e-15 3.4e-16 +// IEEE -10,+10 30000 2.2e-14 2.7e-15 +// Larger relative error can be observed for z near zero. +// Also tested by csin(casin(z)) = z. + +// Asin returns the inverse sine of x. +func Asin(x complex128) complex128 { + switch re, im := real(x), imag(x); { + case im == 0 && math.Abs(re) <= 1: + return complex(math.Asin(re), im) + case re == 0 && math.Abs(im) <= 1: + return complex(re, math.Asinh(im)) + case math.IsNaN(im): + switch { + case re == 0: + return complex(re, math.NaN()) + case math.IsInf(re, 0): + return complex(math.NaN(), re) + default: + return NaN() + } + case math.IsInf(im, 0): + switch { + case math.IsNaN(re): + return x + case math.IsInf(re, 0): + return complex(math.Copysign(math.Pi/4, re), im) + default: + return complex(math.Copysign(0, re), im) + } + case math.IsInf(re, 0): + return complex(math.Copysign(math.Pi/2, re), math.Copysign(re, im)) + } + ct := complex(-imag(x), real(x)) // i * x + xx := x * x + x1 := complex(1-real(xx), -imag(xx)) // 1 - x*x + x2 := Sqrt(x1) // x2 = sqrt(1 - x*x) + w := Log(ct + x2) + return complex(imag(w), -real(w)) // -i * w +} + +// Asinh returns the inverse hyperbolic sine of x. +func Asinh(x complex128) complex128 { + switch re, im := real(x), imag(x); { + case im == 0 && math.Abs(re) <= 1: + return complex(math.Asinh(re), im) + case re == 0 && math.Abs(im) <= 1: + return complex(re, math.Asin(im)) + case math.IsInf(re, 0): + switch { + case math.IsInf(im, 0): + return complex(re, math.Copysign(math.Pi/4, im)) + case math.IsNaN(im): + return x + default: + return complex(re, math.Copysign(0.0, im)) + } + case math.IsNaN(re): + switch { + case im == 0: + return x + case math.IsInf(im, 0): + return complex(im, re) + default: + return NaN() + } + case math.IsInf(im, 0): + return complex(math.Copysign(im, re), math.Copysign(math.Pi/2, im)) + } + xx := x * x + x1 := complex(1+real(xx), imag(xx)) // 1 + x*x + return Log(x + Sqrt(x1)) // log(x + sqrt(1 + x*x)) +} + +// Complex circular arc cosine +// +// DESCRIPTION: +// +// w = arccos z = PI/2 - arcsin z. +// +// ACCURACY: +// +// Relative error: +// arithmetic domain # trials peak rms +// DEC -10,+10 5200 1.6e-15 2.8e-16 +// IEEE -10,+10 30000 1.8e-14 2.2e-15 + +// Acos returns the inverse cosine of x. +func Acos(x complex128) complex128 { + w := Asin(x) + return complex(math.Pi/2-real(w), -imag(w)) +} + +// Acosh returns the inverse hyperbolic cosine of x. +func Acosh(x complex128) complex128 { + if x == 0 { + return complex(0, math.Copysign(math.Pi/2, imag(x))) + } + w := Acos(x) + if imag(w) <= 0 { + return complex(-imag(w), real(w)) // i * w + } + return complex(imag(w), -real(w)) // -i * w +} + +// Complex circular arc tangent +// +// DESCRIPTION: +// +// If +// z = x + iy, +// +// then +// 1 ( 2x ) +// Re w = - arctan(-----------) + k PI +// 2 ( 2 2) +// (1 - x - y ) +// +// ( 2 2) +// 1 (x + (y+1) ) +// Im w = - log(------------) +// 4 ( 2 2) +// (x + (y-1) ) +// +// Where k is an arbitrary integer. +// +// catan(z) = -i catanh(iz). +// +// ACCURACY: +// +// Relative error: +// arithmetic domain # trials peak rms +// DEC -10,+10 5900 1.3e-16 7.8e-18 +// IEEE -10,+10 30000 2.3e-15 8.5e-17 +// The check catan( ctan(z) ) = z, with |x| and |y| < PI/2, +// had peak relative error 1.5e-16, rms relative error +// 2.9e-17. See also clog(). + +// Atan returns the inverse tangent of x. +func Atan(x complex128) complex128 { + switch re, im := real(x), imag(x); { + case im == 0: + return complex(math.Atan(re), im) + case re == 0 && math.Abs(im) <= 1: + return complex(re, math.Atanh(im)) + case math.IsInf(im, 0) || math.IsInf(re, 0): + if math.IsNaN(re) { + return complex(math.NaN(), math.Copysign(0, im)) + } + return complex(math.Copysign(math.Pi/2, re), math.Copysign(0, im)) + case math.IsNaN(re) || math.IsNaN(im): + return NaN() + } + x2 := real(x) * real(x) + a := 1 - x2 - imag(x)*imag(x) + if a == 0 { + return NaN() + } + t := 0.5 * math.Atan2(2*real(x), a) + w := reducePi(t) + + t = imag(x) - 1 + b := x2 + t*t + if b == 0 { + return NaN() + } + t = imag(x) + 1 + c := (x2 + t*t) / b + return complex(w, 0.25*math.Log(c)) +} + +// Atanh returns the inverse hyperbolic tangent of x. +func Atanh(x complex128) complex128 { + z := complex(-imag(x), real(x)) // z = i * x + z = Atan(z) + return complex(imag(z), -real(z)) // z = -i * z +} diff --git a/src/math/cmplx/cmath_test.go b/src/math/cmplx/cmath_test.go new file mode 100644 index 0000000..3011e83 --- /dev/null +++ b/src/math/cmplx/cmath_test.go @@ -0,0 +1,1589 @@ +// Copyright 2010 The Go Authors. All rights reserved. +// Use of this source code is governed by a BSD-style +// license that can be found in the LICENSE file. + +package cmplx + +import ( + "math" + "testing" +) + +// The higher-precision values in vc26 were used to derive the +// input arguments vc (see also comment below). For reference +// only (do not delete). +var vc26 = []complex128{ + (4.97901192488367350108546816 + 7.73887247457810456552351752i), + (7.73887247457810456552351752 - 0.27688005719200159404635997i), + (-0.27688005719200159404635997 - 5.01060361827107492160848778i), + (-5.01060361827107492160848778 + 9.63629370719841737980004837i), + (9.63629370719841737980004837 + 2.92637723924396464525443662i), + (2.92637723924396464525443662 + 5.22908343145930665230025625i), + (5.22908343145930665230025625 + 2.72793991043601025126008608i), + (2.72793991043601025126008608 + 1.82530809168085506044576505i), + (1.82530809168085506044576505 - 8.68592476857560136238589621i), + (-8.68592476857560136238589621 + 4.97901192488367350108546816i), +} + +var vc = []complex128{ + (4.9790119248836735e+00 + 7.7388724745781045e+00i), + (7.7388724745781045e+00 - 2.7688005719200159e-01i), + (-2.7688005719200159e-01 - 5.0106036182710749e+00i), + (-5.0106036182710749e+00 + 9.6362937071984173e+00i), + (9.6362937071984173e+00 + 2.9263772392439646e+00i), + (2.9263772392439646e+00 + 5.2290834314593066e+00i), + (5.2290834314593066e+00 + 2.7279399104360102e+00i), + (2.7279399104360102e+00 + 1.8253080916808550e+00i), + (1.8253080916808550e+00 - 8.6859247685756013e+00i), + (-8.6859247685756013e+00 + 4.9790119248836735e+00i), +} + +// The expected results below were computed by the high precision calculators +// at https://keisan.casio.com/. More exact input values (array vc[], above) +// were obtained by printing them with "%.26f". The answers were calculated +// to 26 digits (by using the "Digit number" drop-down control of each +// calculator). + +var abs = []float64{ + 9.2022120669932650313380972e+00, + 7.7438239742296106616261394e+00, + 5.0182478202557746902556648e+00, + 1.0861137372799545160704002e+01, + 1.0070841084922199607011905e+01, + 5.9922447613166942183705192e+00, + 5.8978784056736762299945176e+00, + 3.2822866700678709020367184e+00, + 8.8756430028990417290744307e+00, + 1.0011785496777731986390856e+01, +} + +var acos = []complex128{ + (1.0017679804707456328694569 - 2.9138232718554953784519807i), + (0.03606427612041407369636057 + 2.7358584434576260925091256i), + (1.6249365462333796703711823 + 2.3159537454335901187730929i), + (2.0485650849650740120660391 - 3.0795576791204117911123886i), + (0.29621132089073067282488147 - 3.0007392508200622519398814i), + (1.0664555914934156601503632 - 2.4872865024796011364747111i), + (0.48681307452231387690013905 - 2.463655912283054555225301i), + (0.6116977071277574248407752 - 1.8734458851737055262693056i), + (1.3649311280370181331184214 + 2.8793528632328795424123832i), + (2.6189310485682988308904501 - 2.9956543302898767795858704i), +} +var acosh = []complex128{ + (2.9138232718554953784519807 + 1.0017679804707456328694569i), + (2.7358584434576260925091256 - 0.03606427612041407369636057i), + (2.3159537454335901187730929 - 1.6249365462333796703711823i), + (3.0795576791204117911123886 + 2.0485650849650740120660391i), + (3.0007392508200622519398814 + 0.29621132089073067282488147i), + (2.4872865024796011364747111 + 1.0664555914934156601503632i), + (2.463655912283054555225301 + 0.48681307452231387690013905i), + (1.8734458851737055262693056 + 0.6116977071277574248407752i), + (2.8793528632328795424123832 - 1.3649311280370181331184214i), + (2.9956543302898767795858704 + 2.6189310485682988308904501i), +} +var asin = []complex128{ + (0.56902834632415098636186476 + 2.9138232718554953784519807i), + (1.5347320506744825455349611 - 2.7358584434576260925091256i), + (-0.054140219438483051139860579 - 2.3159537454335901187730929i), + (-0.47776875817017739283471738 + 3.0795576791204117911123886i), + (1.2745850059041659464064402 + 3.0007392508200622519398814i), + (0.50434073530148095908095852 + 2.4872865024796011364747111i), + (1.0839832522725827423311826 + 2.463655912283054555225301i), + (0.9590986196671391943905465 + 1.8734458851737055262693056i), + (0.20586519875787848611290031 - 2.8793528632328795424123832i), + (-1.0481347217734022116591284 + 2.9956543302898767795858704i), +} +var asinh = []complex128{ + (2.9113760469415295679342185 + 0.99639459545704326759805893i), + (2.7441755423994259061579029 - 0.035468308789000500601119392i), + (-2.2962136462520690506126678 - 1.5144663565690151885726707i), + (-3.0771233459295725965402455 + 1.0895577967194013849422294i), + (3.0048366100923647417557027 + 0.29346979169819220036454168i), + (2.4800059370795363157364643 + 1.0545868606049165710424232i), + (2.4718773838309585611141821 + 0.47502344364250803363708842i), + (1.8910743588080159144378396 + 0.56882925572563602341139174i), + (2.8735426423367341878069406 - 1.362376149648891420997548i), + (-2.9981750586172477217567878 + 0.5183571985225367505624207i), +} +var atan = []complex128{ + (1.5115747079332741358607654 + 0.091324403603954494382276776i), + (1.4424504323482602560806727 - 0.0045416132642803911503770933i), + (-1.5593488703630532674484026 - 0.20163295409248362456446431i), + (-1.5280619472445889867794105 + 0.081721556230672003746956324i), + (1.4759909163240799678221039 + 0.028602969320691644358773586i), + (1.4877353772046548932715555 + 0.14566877153207281663773599i), + (1.4206983927779191889826 + 0.076830486127880702249439993i), + (1.3162236060498933364869556 + 0.16031313000467530644933363i), + (1.5473450684303703578810093 - 0.11064907507939082484935782i), + (-1.4841462340185253987375812 + 0.049341850305024399493142411i), +} +var atanh = []complex128{ + (0.058375027938968509064640438 + 1.4793488495105334458167782i), + (0.12977343497790381229915667 - 1.5661009410463561327262499i), + (-0.010576456067347252072200088 - 1.3743698658402284549750563i), + (-0.042218595678688358882784918 + 1.4891433968166405606692604i), + (0.095218997991316722061828397 + 1.5416884098777110330499698i), + (0.079965459366890323857556487 + 1.4252510353873192700350435i), + (0.15051245471980726221708301 + 1.4907432533016303804884461i), + (0.25082072933993987714470373 + 1.392057665392187516442986i), + (0.022896108815797135846276662 - 1.4609224989282864208963021i), + (-0.08665624101841876130537396 + 1.5207902036935093480142159i), +} +var conj = []complex128{ + (4.9790119248836735e+00 - 7.7388724745781045e+00i), + (7.7388724745781045e+00 + 2.7688005719200159e-01i), + (-2.7688005719200159e-01 + 5.0106036182710749e+00i), + (-5.0106036182710749e+00 - 9.6362937071984173e+00i), + (9.6362937071984173e+00 - 2.9263772392439646e+00i), + (2.9263772392439646e+00 - 5.2290834314593066e+00i), + (5.2290834314593066e+00 - 2.7279399104360102e+00i), + (2.7279399104360102e+00 - 1.8253080916808550e+00i), + (1.8253080916808550e+00 + 8.6859247685756013e+00i), + (-8.6859247685756013e+00 - 4.9790119248836735e+00i), +} +var cos = []complex128{ + (3.024540920601483938336569e+02 + 1.1073797572517071650045357e+03i), + (1.192858682649064973252758e-01 + 2.7857554122333065540970207e-01i), + (7.2144394304528306603857962e+01 - 2.0500129667076044169954205e+01i), + (2.24921952538403984190541e+03 - 7.317363745602773587049329e+03i), + (-9.148222970032421760015498e+00 + 1.953124661113563541862227e+00i), + (-9.116081175857732248227078e+01 - 1.992669213569952232487371e+01i), + (3.795639179042704640002918e+00 + 6.623513350981458399309662e+00i), + (-2.9144840732498869560679084e+00 - 1.214620271628002917638748e+00i), + (-7.45123482501299743872481e+02 + 2.8641692314488080814066734e+03i), + (-5.371977967039319076416747e+01 + 4.893348341339375830564624e+01i), +} +var cosh = []complex128{ + (8.34638383523018249366948e+00 + 7.2181057886425846415112064e+01i), + (1.10421967379919366952251e+03 - 3.1379638689277575379469861e+02i), + (3.051485206773701584738512e-01 - 2.6805384730105297848044485e-01i), + (-7.33294728684187933370938e+01 + 1.574445942284918251038144e+01i), + (-7.478643293945957535757355e+03 + 1.6348382209913353929473321e+03i), + (4.622316522966235701630926e+00 - 8.088695185566375256093098e+00i), + (-8.544333183278877406197712e+01 + 3.7505836120128166455231717e+01i), + (-1.934457815021493925115198e+00 + 7.3725859611767228178358673e+00i), + (-2.352958770061749348353548e+00 - 2.034982010440878358915409e+00i), + (7.79756457532134748165069e+02 + 2.8549350716819176560377717e+03i), +} +var exp = []complex128{ + (1.669197736864670815125146e+01 + 1.4436895109507663689174096e+02i), + (2.2084389286252583447276212e+03 - 6.2759289284909211238261917e+02i), + (2.227538273122775173434327e-01 + 7.2468284028334191250470034e-01i), + (-6.5182985958153548997881627e-03 - 1.39965837915193860879044e-03i), + (-1.4957286524084015746110777e+04 + 3.269676455931135688988042e+03i), + (9.218158701983105935659273e+00 - 1.6223985291084956009304582e+01i), + (-1.7088175716853040841444505e+02 + 7.501382609870410713795546e+01i), + (-3.852461315830959613132505e+00 + 1.4808420423156073221970892e+01i), + (-4.586775503301407379786695e+00 - 4.178501081246873415144744e+00i), + (4.451337963005453491095747e-05 - 1.62977574205442915935263e-04i), +} +var log = []complex128{ + (2.2194438972179194425697051e+00 + 9.9909115046919291062461269e-01i), + (2.0468956191154167256337289e+00 - 3.5762575021856971295156489e-02i), + (1.6130808329853860438751244e+00 - 1.6259990074019058442232221e+00i), + (2.3851910394823008710032651e+00 + 2.0502936359659111755031062e+00i), + (2.3096442270679923004800651e+00 + 2.9483213155446756211881774e-01i), + (1.7904660933974656106951860e+00 + 1.0605860367252556281902109e+00i), + (1.7745926939841751666177512e+00 + 4.8084556083358307819310911e-01i), + (1.1885403350045342425648780e+00 + 5.8969634164776659423195222e-01i), + (2.1833107837679082586772505e+00 - 1.3636647724582455028314573e+00i), + (2.3037629487273259170991671e+00 + 2.6210913895386013290915234e+00i), +} +var log10 = []complex128{ + (9.6389223745559042474184943e-01 + 4.338997735671419492599631e-01i), + (8.8895547241376579493490892e-01 - 1.5531488990643548254864806e-02i), + (7.0055210462945412305244578e-01 - 7.0616239649481243222248404e-01i), + (1.0358753067322445311676952e+00 + 8.9043121238134980156490909e-01i), + (1.003065742975330237172029e+00 + 1.2804396782187887479857811e-01i), + (7.7758954439739162532085157e-01 + 4.6060666333341810869055108e-01i), + (7.7069581462315327037689152e-01 + 2.0882857371769952195512475e-01i), + (5.1617650901191156135137239e-01 + 2.5610186717615977620363299e-01i), + (9.4819982567026639742663212e-01 - 5.9223208584446952284914289e-01i), + (1.0005115362454417135973429e+00 + 1.1383255270407412817250921e+00i), +} + +type ff struct { + r, theta float64 +} + +var polar = []ff{ + {9.2022120669932650313380972e+00, 9.9909115046919291062461269e-01}, + {7.7438239742296106616261394e+00, -3.5762575021856971295156489e-02}, + {5.0182478202557746902556648e+00, -1.6259990074019058442232221e+00}, + {1.0861137372799545160704002e+01, 2.0502936359659111755031062e+00}, + {1.0070841084922199607011905e+01, 2.9483213155446756211881774e-01}, + {5.9922447613166942183705192e+00, 1.0605860367252556281902109e+00}, + {5.8978784056736762299945176e+00, 4.8084556083358307819310911e-01}, + {3.2822866700678709020367184e+00, 5.8969634164776659423195222e-01}, + {8.8756430028990417290744307e+00, -1.3636647724582455028314573e+00}, + {1.0011785496777731986390856e+01, 2.6210913895386013290915234e+00}, +} +var pow = []complex128{ + (-2.499956739197529585028819e+00 + 1.759751724335650228957144e+00i), + (7.357094338218116311191939e+04 - 5.089973412479151648145882e+04i), + (1.320777296067768517259592e+01 - 3.165621914333901498921986e+01i), + (-3.123287828297300934072149e-07 - 1.9849567521490553032502223e-7i), + (8.0622651468477229614813e+04 - 7.80028727944573092944363e+04i), + (-1.0268824572103165858577141e+00 - 4.716844738244989776610672e-01i), + (-4.35953819012244175753187e+01 + 2.2036445974645306917648585e+02i), + (8.3556092283250594950239e-01 - 1.2261571947167240272593282e+01i), + (1.582292972120769306069625e+03 + 1.273564263524278244782512e+04i), + (6.592208301642122149025369e-08 + 2.584887236651661903526389e-08i), +} +var sin = []complex128{ + (-1.1073801774240233539648544e+03 + 3.024539773002502192425231e+02i), + (1.0317037521400759359744682e+00 - 3.2208979799929570242818e-02i), + (-2.0501952097271429804261058e+01 - 7.2137981348240798841800967e+01i), + (7.3173638080346338642193078e+03 + 2.249219506193664342566248e+03i), + (-1.964375633631808177565226e+00 - 9.0958264713870404464159683e+00i), + (1.992783647158514838337674e+01 - 9.11555769410191350416942e+01i), + (-6.680335650741921444300349e+00 + 3.763353833142432513086117e+00i), + (1.2794028166657459148245993e+00 - 2.7669092099795781155109602e+00i), + (2.8641693949535259594188879e+03 + 7.451234399649871202841615e+02i), + (-4.893811726244659135553033e+01 - 5.371469305562194635957655e+01i), +} +var sinh = []complex128{ + (8.34559353341652565758198e+00 + 7.2187893208650790476628899e+01i), + (1.1042192548260646752051112e+03 - 3.1379650595631635858792056e+02i), + (-8.239469336509264113041849e-02 + 9.9273668758439489098514519e-01i), + (7.332295456982297798219401e+01 - 1.574585908122833444899023e+01i), + (-7.4786432301380582103534216e+03 + 1.63483823493980029604071e+03i), + (4.595842179016870234028347e+00 - 8.135290105518580753211484e+00i), + (-8.543842533574163435246793e+01 + 3.750798997857594068272375e+01i), + (-1.918003500809465688017307e+00 + 7.4358344619793504041350251e+00i), + (-2.233816733239658031433147e+00 - 2.143519070805995056229335e+00i), + (-7.797564130187551181105341e+02 - 2.8549352346594918614806877e+03i), +} +var sqrt = []complex128{ + (2.6628203086086130543813948e+00 + 1.4531345674282185229796902e+00i), + (2.7823278427251986247149295e+00 - 4.9756907317005224529115567e-02i), + (1.5397025302089642757361015e+00 - 1.6271336573016637535695727e+00i), + (1.7103411581506875260277898e+00 + 2.8170677122737589676157029e+00i), + (3.1390392472953103383607947e+00 + 4.6612625849858653248980849e-01i), + (2.1117080764822417640789287e+00 + 1.2381170223514273234967850e+00i), + (2.3587032281672256703926939e+00 + 5.7827111903257349935720172e-01i), + (1.7335262588873410476661577e+00 + 5.2647258220721269141550382e-01i), + (2.3131094974708716531499282e+00 - 1.8775429304303785570775490e+00i), + (8.1420535745048086240947359e-01 + 3.0575897587277248522656113e+00i), +} +var tan = []complex128{ + (-1.928757919086441129134525e-07 + 1.0000003267499169073251826e+00i), + (1.242412685364183792138948e+00 - 3.17149693883133370106696e+00i), + (-4.6745126251587795225571826e-05 - 9.9992439225263959286114298e-01i), + (4.792363401193648192887116e-09 + 1.0000000070589333451557723e+00i), + (2.345740824080089140287315e-03 + 9.947733046570988661022763e-01i), + (-2.396030789494815566088809e-05 + 9.9994781345418591429826779e-01i), + (-7.370204836644931340905303e-03 + 1.0043553413417138987717748e+00i), + (-3.691803847992048527007457e-02 + 9.6475071993469548066328894e-01i), + (-2.781955256713729368401878e-08 - 1.000000049848910609006646e+00i), + (9.4281590064030478879791249e-05 + 9.9999119340863718183758545e-01i), +} +var tanh = []complex128{ + (1.0000921981225144748819918e+00 + 2.160986245871518020231507e-05i), + (9.9999967727531993209562591e-01 - 1.9953763222959658873657676e-07i), + (-1.765485739548037260789686e+00 + 1.7024216325552852445168471e+00i), + (-9.999189442732736452807108e-01 + 3.64906070494473701938098e-05i), + (9.9999999224622333738729767e-01 - 3.560088949517914774813046e-09i), + (1.0029324933367326862499343e+00 - 4.948790309797102353137528e-03i), + (9.9996113064788012488693567e-01 - 4.226995742097032481451259e-05i), + (1.0074784189316340029873945e+00 - 4.194050814891697808029407e-03i), + (9.9385534229718327109131502e-01 + 5.144217985914355502713437e-02i), + (-1.0000000491604982429364892e+00 - 2.901873195374433112227349e-08i), +} + +// huge values along the real axis for testing reducePi in Tan +var hugeIn = []complex128{ + 1 << 28, + 1 << 29, + 1 << 30, + 1 << 35, + -1 << 120, + 1 << 240, + 1 << 300, + -1 << 480, + 1234567891234567 << 180, + -1234567891234567 << 300, +} + +// Results for tanHuge[i] calculated with https://github.com/robpike/ivy +// using 4096 bits of working precision. +var tanHuge = []complex128{ + 5.95641897939639421, + -0.34551069233430392, + -0.78469661331920043, + 0.84276385870875983, + 0.40806638884180424, + -0.37603456702698076, + 4.60901287677810962, + 3.39135965054779932, + -6.76813854009065030, + -0.76417695016604922, +} + +// special cases conform to C99 standard appendix G.6 Complex arithmetic +var inf, nan = math.Inf(1), math.NaN() + +var vcAbsSC = []complex128{ + NaN(), +} +var absSC = []float64{ + math.NaN(), +} +var acosSC = []struct { + in, + want complex128 +}{ + // G.6.1.1 + {complex(zero, zero), + complex(math.Pi/2, -zero)}, + {complex(-zero, zero), + complex(math.Pi/2, -zero)}, + {complex(zero, nan), + complex(math.Pi/2, nan)}, + {complex(-zero, nan), + complex(math.Pi/2, nan)}, + {complex(1.0, inf), + complex(math.Pi/2, -inf)}, + {complex(1.0, nan), + NaN()}, + {complex(-inf, 1.0), + complex(math.Pi, -inf)}, + {complex(inf, 1.0), + complex(0.0, -inf)}, + {complex(-inf, inf), + complex(3*math.Pi/4, -inf)}, + {complex(inf, inf), + complex(math.Pi/4, -inf)}, + {complex(inf, nan), + complex(nan, -inf)}, // imaginary sign unspecified + {complex(-inf, nan), + complex(nan, inf)}, // imaginary sign unspecified + {complex(nan, 1.0), + NaN()}, + {complex(nan, inf), + complex(nan, -inf)}, + {NaN(), + NaN()}, +} +var acoshSC = []struct { + in, + want complex128 +}{ + // G.6.2.1 + {complex(zero, zero), + complex(zero, math.Pi/2)}, + {complex(-zero, zero), + complex(zero, math.Pi/2)}, + {complex(1.0, inf), + complex(inf, math.Pi/2)}, + {complex(1.0, nan), + NaN()}, + {complex(-inf, 1.0), + complex(inf, math.Pi)}, + {complex(inf, 1.0), + complex(inf, zero)}, + {complex(-inf, inf), + complex(inf, 3*math.Pi/4)}, + {complex(inf, inf), + complex(inf, math.Pi/4)}, + {complex(inf, nan), + complex(inf, nan)}, + {complex(-inf, nan), + complex(inf, nan)}, + {complex(nan, 1.0), + NaN()}, + {complex(nan, inf), + complex(inf, nan)}, + {NaN(), + NaN()}, +} +var asinSC = []struct { + in, + want complex128 +}{ + // Derived from Asin(z) = -i * Asinh(i * z), G.6 #7 + {complex(zero, zero), + complex(zero, zero)}, + {complex(1.0, inf), + complex(0, inf)}, + {complex(1.0, nan), + NaN()}, + {complex(inf, 1), + complex(math.Pi/2, inf)}, + {complex(inf, inf), + complex(math.Pi/4, inf)}, + {complex(inf, nan), + complex(nan, inf)}, // imaginary sign unspecified + {complex(nan, zero), + NaN()}, + {complex(nan, 1), + NaN()}, + {complex(nan, inf), + complex(nan, inf)}, + {NaN(), + NaN()}, +} +var asinhSC = []struct { + in, + want complex128 +}{ + // G.6.2.2 + {complex(zero, zero), + complex(zero, zero)}, + {complex(1.0, inf), + complex(inf, math.Pi/2)}, + {complex(1.0, nan), + NaN()}, + {complex(inf, 1.0), + complex(inf, zero)}, + {complex(inf, inf), + complex(inf, math.Pi/4)}, + {complex(inf, nan), + complex(inf, nan)}, + {complex(nan, zero), + complex(nan, zero)}, + {complex(nan, 1.0), + NaN()}, + {complex(nan, inf), + complex(inf, nan)}, // sign of real part unspecified + {NaN(), + NaN()}, +} +var atanSC = []struct { + in, + want complex128 +}{ + // Derived from Atan(z) = -i * Atanh(i * z), G.6 #7 + {complex(0, zero), + complex(0, zero)}, + {complex(0, nan), + NaN()}, + {complex(1.0, zero), + complex(math.Pi/4, zero)}, + {complex(1.0, inf), + complex(math.Pi/2, zero)}, + {complex(1.0, nan), + NaN()}, + {complex(inf, 1), + complex(math.Pi/2, zero)}, + {complex(inf, inf), + complex(math.Pi/2, zero)}, + {complex(inf, nan), + complex(math.Pi/2, zero)}, + {complex(nan, 1), + NaN()}, + {complex(nan, inf), + complex(nan, zero)}, + {NaN(), + NaN()}, +} +var atanhSC = []struct { + in, + want complex128 +}{ + // G.6.2.3 + {complex(zero, zero), + complex(zero, zero)}, + {complex(zero, nan), + complex(zero, nan)}, + {complex(1.0, zero), + complex(inf, zero)}, + {complex(1.0, inf), + complex(0, math.Pi/2)}, + {complex(1.0, nan), + NaN()}, + {complex(inf, 1.0), + complex(zero, math.Pi/2)}, + {complex(inf, inf), + complex(zero, math.Pi/2)}, + {complex(inf, nan), + complex(0, nan)}, + {complex(nan, 1.0), + NaN()}, + {complex(nan, inf), + complex(zero, math.Pi/2)}, // sign of real part not specified. + {NaN(), + NaN()}, +} +var vcConjSC = []complex128{ + NaN(), +} +var conjSC = []complex128{ + NaN(), +} +var cosSC = []struct { + in, + want complex128 +}{ + // Derived from Cos(z) = Cosh(i * z), G.6 #7 + {complex(zero, zero), + complex(1.0, -zero)}, + {complex(zero, inf), + complex(inf, -zero)}, + {complex(zero, nan), + complex(nan, zero)}, // imaginary sign unspecified + {complex(1.0, inf), + complex(inf, -inf)}, + {complex(1.0, nan), + NaN()}, + {complex(inf, zero), + complex(nan, -zero)}, + {complex(inf, 1.0), + NaN()}, + {complex(inf, inf), + complex(inf, nan)}, // real sign unspecified + {complex(inf, nan), + NaN()}, + {complex(nan, zero), + complex(nan, -zero)}, // imaginary sign unspecified + {complex(nan, 1.0), + NaN()}, + {complex(nan, inf), + complex(inf, nan)}, + {NaN(), + NaN()}, +} +var coshSC = []struct { + in, + want complex128 +}{ + // G.6.2.4 + {complex(zero, zero), + complex(1.0, zero)}, + {complex(zero, inf), + complex(nan, zero)}, // imaginary sign unspecified + {complex(zero, nan), + complex(nan, zero)}, // imaginary sign unspecified + {complex(1.0, inf), + NaN()}, + {complex(1.0, nan), + NaN()}, + {complex(inf, zero), + complex(inf, zero)}, + {complex(inf, 1.0), + complex(inf*math.Cos(1.0), inf*math.Sin(1.0))}, // +inf cis(y) + {complex(inf, inf), + complex(inf, nan)}, // real sign unspecified + {complex(inf, nan), + complex(inf, nan)}, + {complex(nan, zero), + complex(nan, zero)}, // imaginary sign unspecified + {complex(nan, 1.0), + NaN()}, + {complex(nan, inf), + NaN()}, + {NaN(), + NaN()}, +} +var expSC = []struct { + in, + want complex128 +}{ + // G.6.3.1 + {complex(zero, zero), + complex(1.0, zero)}, + {complex(-zero, zero), + complex(1.0, zero)}, + {complex(1.0, inf), + NaN()}, + {complex(1.0, nan), + NaN()}, + {complex(inf, zero), + complex(inf, zero)}, + {complex(-inf, 1.0), + complex(math.Copysign(0.0, math.Cos(1.0)), math.Copysign(0.0, math.Sin(1.0)))}, // +0 cis(y) + {complex(inf, 1.0), + complex(inf*math.Cos(1.0), inf*math.Sin(1.0))}, // +inf cis(y) + {complex(-inf, inf), + complex(zero, zero)}, // real and imaginary sign unspecified + {complex(inf, inf), + complex(inf, nan)}, // real sign unspecified + {complex(-inf, nan), + complex(zero, zero)}, // real and imaginary sign unspecified + {complex(inf, nan), + complex(inf, nan)}, // real sign unspecified + {complex(nan, zero), + complex(nan, zero)}, + {complex(nan, 1.0), + NaN()}, + {complex(nan, inf), + NaN()}, + {NaN(), + NaN()}, +} +var vcIsNaNSC = []complex128{ + complex(math.Inf(-1), math.Inf(-1)), + complex(math.Inf(-1), math.NaN()), + complex(math.NaN(), math.Inf(-1)), + complex(0, math.NaN()), + complex(math.NaN(), 0), + complex(math.Inf(1), math.Inf(1)), + complex(math.Inf(1), math.NaN()), + complex(math.NaN(), math.Inf(1)), + complex(math.NaN(), math.NaN()), +} +var isNaNSC = []bool{ + false, + false, + false, + true, + true, + false, + false, + false, + true, +} + +var logSC = []struct { + in, + want complex128 +}{ + // G.6.3.2 + {complex(zero, zero), + complex(-inf, zero)}, + {complex(-zero, zero), + complex(-inf, math.Pi)}, + {complex(1.0, inf), + complex(inf, math.Pi/2)}, + {complex(1.0, nan), + NaN()}, + {complex(-inf, 1.0), + complex(inf, math.Pi)}, + {complex(inf, 1.0), + complex(inf, 0.0)}, + {complex(-inf, inf), + complex(inf, 3*math.Pi/4)}, + {complex(inf, inf), + complex(inf, math.Pi/4)}, + {complex(-inf, nan), + complex(inf, nan)}, + {complex(inf, nan), + complex(inf, nan)}, + {complex(nan, 1.0), + NaN()}, + {complex(nan, inf), + complex(inf, nan)}, + {NaN(), + NaN()}, +} +var log10SC = []struct { + in, + want complex128 +}{ + // derived from Log special cases via Log10(x) = math.Log10E*Log(x) + {complex(zero, zero), + complex(-inf, zero)}, + {complex(-zero, zero), + complex(-inf, float64(math.Log10E)*float64(math.Pi))}, + {complex(1.0, inf), + complex(inf, float64(math.Log10E)*float64(math.Pi/2))}, + {complex(1.0, nan), + NaN()}, + {complex(-inf, 1.0), + complex(inf, float64(math.Log10E)*float64(math.Pi))}, + {complex(inf, 1.0), + complex(inf, 0.0)}, + {complex(-inf, inf), + complex(inf, float64(math.Log10E)*float64(3*math.Pi/4))}, + {complex(inf, inf), + complex(inf, float64(math.Log10E)*float64(math.Pi/4))}, + {complex(-inf, nan), + complex(inf, nan)}, + {complex(inf, nan), + complex(inf, nan)}, + {complex(nan, 1.0), + NaN()}, + {complex(nan, inf), + complex(inf, nan)}, + {NaN(), + NaN()}, +} +var vcPolarSC = []complex128{ + NaN(), +} +var polarSC = []ff{ + {math.NaN(), math.NaN()}, +} +var vcPowSC = [][2]complex128{ + {NaN(), NaN()}, + {0, NaN()}, +} +var powSC = []complex128{ + NaN(), + NaN(), +} +var sinSC = []struct { + in, + want complex128 +}{ + // Derived from Sin(z) = -i * Sinh(i * z), G.6 #7 + {complex(zero, zero), + complex(zero, zero)}, + {complex(zero, inf), + complex(zero, inf)}, + {complex(zero, nan), + complex(zero, nan)}, + {complex(1.0, inf), + complex(inf, inf)}, + {complex(1.0, nan), + NaN()}, + {complex(inf, zero), + complex(nan, zero)}, + {complex(inf, 1.0), + NaN()}, + {complex(inf, inf), + complex(nan, inf)}, + {complex(inf, nan), + NaN()}, + {complex(nan, zero), + complex(nan, zero)}, + {complex(nan, 1.0), + NaN()}, + {complex(nan, inf), + complex(nan, inf)}, + {NaN(), + NaN()}, +} + +var sinhSC = []struct { + in, + want complex128 +}{ + // G.6.2.5 + {complex(zero, zero), + complex(zero, zero)}, + {complex(zero, inf), + complex(zero, nan)}, // real sign unspecified + {complex(zero, nan), + complex(zero, nan)}, // real sign unspecified + {complex(1.0, inf), + NaN()}, + {complex(1.0, nan), + NaN()}, + {complex(inf, zero), + complex(inf, zero)}, + {complex(inf, 1.0), + complex(inf*math.Cos(1.0), inf*math.Sin(1.0))}, // +inf cis(y) + {complex(inf, inf), + complex(inf, nan)}, // real sign unspecified + {complex(inf, nan), + complex(inf, nan)}, // real sign unspecified + {complex(nan, zero), + complex(nan, zero)}, + {complex(nan, 1.0), + NaN()}, + {complex(nan, inf), + NaN()}, + {NaN(), + NaN()}, +} + +var sqrtSC = []struct { + in, + want complex128 +}{ + // G.6.4.2 + {complex(zero, zero), + complex(zero, zero)}, + {complex(-zero, zero), + complex(zero, zero)}, + {complex(1.0, inf), + complex(inf, inf)}, + {complex(nan, inf), + complex(inf, inf)}, + {complex(1.0, nan), + NaN()}, + {complex(-inf, 1.0), + complex(zero, inf)}, + {complex(inf, 1.0), + complex(inf, zero)}, + {complex(-inf, nan), + complex(nan, inf)}, // imaginary sign unspecified + {complex(inf, nan), + complex(inf, nan)}, + {complex(nan, 1.0), + NaN()}, + {NaN(), + NaN()}, +} +var tanSC = []struct { + in, + want complex128 +}{ + // Derived from Tan(z) = -i * Tanh(i * z), G.6 #7 + {complex(zero, zero), + complex(zero, zero)}, + {complex(zero, nan), + complex(zero, nan)}, + {complex(1.0, inf), + complex(zero, 1.0)}, + {complex(1.0, nan), + NaN()}, + {complex(inf, 1.0), + NaN()}, + {complex(inf, inf), + complex(zero, 1.0)}, + {complex(inf, nan), + NaN()}, + {complex(nan, zero), + NaN()}, + {complex(nan, 1.0), + NaN()}, + {complex(nan, inf), + complex(zero, 1.0)}, + {NaN(), + NaN()}, +} +var tanhSC = []struct { + in, + want complex128 +}{ + // G.6.2.6 + {complex(zero, zero), + complex(zero, zero)}, + {complex(1.0, inf), + NaN()}, + {complex(1.0, nan), + NaN()}, + {complex(inf, 1.0), + complex(1.0, math.Copysign(0.0, math.Sin(2*1.0)))}, // 1 + i 0 sin(2y) + {complex(inf, inf), + complex(1.0, zero)}, // imaginary sign unspecified + {complex(inf, nan), + complex(1.0, zero)}, // imaginary sign unspecified + {complex(nan, zero), + complex(nan, zero)}, + {complex(nan, 1.0), + NaN()}, + {complex(nan, inf), + NaN()}, + {NaN(), + NaN()}, +} + +// branch cut continuity checks +// points on each axis at |z| > 1 are checked for one-sided continuity from both the positive and negative side +// all possible branch cuts for the elementary functions are at one of these points + +var zero = 0.0 +var eps = 1.0 / (1 << 53) + +var branchPoints = [][2]complex128{ + {complex(2.0, zero), complex(2.0, eps)}, + {complex(2.0, -zero), complex(2.0, -eps)}, + {complex(-2.0, zero), complex(-2.0, eps)}, + {complex(-2.0, -zero), complex(-2.0, -eps)}, + {complex(zero, 2.0), complex(eps, 2.0)}, + {complex(-zero, 2.0), complex(-eps, 2.0)}, + {complex(zero, -2.0), complex(eps, -2.0)}, + {complex(-zero, -2.0), complex(-eps, -2.0)}, +} + +// functions borrowed from pkg/math/all_test.go +func tolerance(a, b, e float64) bool { + d := a - b + if d < 0 { + d = -d + } + + // note: b is correct (expected) value, a is actual value. + // make error tolerance a fraction of b, not a. + if b != 0 { + e = e * b + if e < 0 { + e = -e + } + } + return d < e +} +func veryclose(a, b float64) bool { return tolerance(a, b, 4e-16) } +func alike(a, b float64) bool { + switch { + case a != a && b != b: // math.IsNaN(a) && math.IsNaN(b): + return true + case a == b: + return math.Signbit(a) == math.Signbit(b) + } + return false +} + +func cTolerance(a, b complex128, e float64) bool { + d := Abs(a - b) + if b != 0 { + e = e * Abs(b) + if e < 0 { + e = -e + } + } + return d < e +} +func cSoclose(a, b complex128, e float64) bool { return cTolerance(a, b, e) } +func cVeryclose(a, b complex128) bool { return cTolerance(a, b, 4e-16) } +func cAlike(a, b complex128) bool { + var realAlike, imagAlike bool + if isExact(real(b)) { + realAlike = alike(real(a), real(b)) + } else { + // Allow non-exact special cases to have errors in ULP. + realAlike = veryclose(real(a), real(b)) + } + if isExact(imag(b)) { + imagAlike = alike(imag(a), imag(b)) + } else { + // Allow non-exact special cases to have errors in ULP. + imagAlike = veryclose(imag(a), imag(b)) + } + return realAlike && imagAlike +} +func isExact(x float64) bool { + // Special cases that should match exactly. Other cases are multiples + // of Pi that may not be last bit identical on all platforms. + return math.IsNaN(x) || math.IsInf(x, 0) || x == 0 || x == 1 || x == -1 +} + +func TestAbs(t *testing.T) { + for i := 0; i < len(vc); i++ { + if f := Abs(vc[i]); !veryclose(abs[i], f) { + t.Errorf("Abs(%g) = %g, want %g", vc[i], f, abs[i]) + } + } + for i := 0; i < len(vcAbsSC); i++ { + if f := Abs(vcAbsSC[i]); !alike(absSC[i], f) { + t.Errorf("Abs(%g) = %g, want %g", vcAbsSC[i], f, absSC[i]) + } + } +} +func TestAcos(t *testing.T) { + for i := 0; i < len(vc); i++ { + if f := Acos(vc[i]); !cSoclose(acos[i], f, 1e-14) { + t.Errorf("Acos(%g) = %g, want %g", vc[i], f, acos[i]) + } + } + for _, v := range acosSC { + if f := Acos(v.in); !cAlike(v.want, f) { + t.Errorf("Acos(%g) = %g, want %g", v.in, f, v.want) + } + if math.IsNaN(imag(v.in)) || math.IsNaN(imag(v.want)) { + // Negating NaN is undefined with regard to the sign bit produced. + continue + } + // Acos(Conj(z)) == Conj(Acos(z)) + if f := Acos(Conj(v.in)); !cAlike(Conj(v.want), f) && !cAlike(v.in, Conj(v.in)) { + t.Errorf("Acos(%g) = %g, want %g", Conj(v.in), f, Conj(v.want)) + } + } + for _, pt := range branchPoints { + if f0, f1 := Acos(pt[0]), Acos(pt[1]); !cVeryclose(f0, f1) { + t.Errorf("Acos(%g) not continuous, got %g want %g", pt[0], f0, f1) + } + } +} +func TestAcosh(t *testing.T) { + for i := 0; i < len(vc); i++ { + if f := Acosh(vc[i]); !cSoclose(acosh[i], f, 1e-14) { + t.Errorf("Acosh(%g) = %g, want %g", vc[i], f, acosh[i]) + } + } + for _, v := range acoshSC { + if f := Acosh(v.in); !cAlike(v.want, f) { + t.Errorf("Acosh(%g) = %g, want %g", v.in, f, v.want) + } + if math.IsNaN(imag(v.in)) || math.IsNaN(imag(v.want)) { + // Negating NaN is undefined with regard to the sign bit produced. + continue + } + // Acosh(Conj(z)) == Conj(Acosh(z)) + if f := Acosh(Conj(v.in)); !cAlike(Conj(v.want), f) && !cAlike(v.in, Conj(v.in)) { + t.Errorf("Acosh(%g) = %g, want %g", Conj(v.in), f, Conj(v.want)) + } + + } + for _, pt := range branchPoints { + if f0, f1 := Acosh(pt[0]), Acosh(pt[1]); !cVeryclose(f0, f1) { + t.Errorf("Acosh(%g) not continuous, got %g want %g", pt[0], f0, f1) + } + } +} +func TestAsin(t *testing.T) { + for i := 0; i < len(vc); i++ { + if f := Asin(vc[i]); !cSoclose(asin[i], f, 1e-14) { + t.Errorf("Asin(%g) = %g, want %g", vc[i], f, asin[i]) + } + } + for _, v := range asinSC { + if f := Asin(v.in); !cAlike(v.want, f) { + t.Errorf("Asin(%g) = %g, want %g", v.in, f, v.want) + } + if math.IsNaN(imag(v.in)) || math.IsNaN(imag(v.want)) { + // Negating NaN is undefined with regard to the sign bit produced. + continue + } + // Asin(Conj(z)) == Asin(Sinh(z)) + if f := Asin(Conj(v.in)); !cAlike(Conj(v.want), f) && !cAlike(v.in, Conj(v.in)) { + t.Errorf("Asin(%g) = %g, want %g", Conj(v.in), f, Conj(v.want)) + } + if math.IsNaN(real(v.in)) || math.IsNaN(real(v.want)) { + // Negating NaN is undefined with regard to the sign bit produced. + continue + } + // Asin(-z) == -Asin(z) + if f := Asin(-v.in); !cAlike(-v.want, f) && !cAlike(v.in, -v.in) { + t.Errorf("Asin(%g) = %g, want %g", -v.in, f, -v.want) + } + } + for _, pt := range branchPoints { + if f0, f1 := Asin(pt[0]), Asin(pt[1]); !cVeryclose(f0, f1) { + t.Errorf("Asin(%g) not continuous, got %g want %g", pt[0], f0, f1) + } + } +} +func TestAsinh(t *testing.T) { + for i := 0; i < len(vc); i++ { + if f := Asinh(vc[i]); !cSoclose(asinh[i], f, 4e-15) { + t.Errorf("Asinh(%g) = %g, want %g", vc[i], f, asinh[i]) + } + } + for _, v := range asinhSC { + if f := Asinh(v.in); !cAlike(v.want, f) { + t.Errorf("Asinh(%g) = %g, want %g", v.in, f, v.want) + } + if math.IsNaN(imag(v.in)) || math.IsNaN(imag(v.want)) { + // Negating NaN is undefined with regard to the sign bit produced. + continue + } + // Asinh(Conj(z)) == Asinh(Sinh(z)) + if f := Asinh(Conj(v.in)); !cAlike(Conj(v.want), f) && !cAlike(v.in, Conj(v.in)) { + t.Errorf("Asinh(%g) = %g, want %g", Conj(v.in), f, Conj(v.want)) + } + if math.IsNaN(real(v.in)) || math.IsNaN(real(v.want)) { + // Negating NaN is undefined with regard to the sign bit produced. + continue + } + // Asinh(-z) == -Asinh(z) + if f := Asinh(-v.in); !cAlike(-v.want, f) && !cAlike(v.in, -v.in) { + t.Errorf("Asinh(%g) = %g, want %g", -v.in, f, -v.want) + } + } + for _, pt := range branchPoints { + if f0, f1 := Asinh(pt[0]), Asinh(pt[1]); !cVeryclose(f0, f1) { + t.Errorf("Asinh(%g) not continuous, got %g want %g", pt[0], f0, f1) + } + } +} +func TestAtan(t *testing.T) { + for i := 0; i < len(vc); i++ { + if f := Atan(vc[i]); !cVeryclose(atan[i], f) { + t.Errorf("Atan(%g) = %g, want %g", vc[i], f, atan[i]) + } + } + for _, v := range atanSC { + if f := Atan(v.in); !cAlike(v.want, f) { + t.Errorf("Atan(%g) = %g, want %g", v.in, f, v.want) + } + if math.IsNaN(imag(v.in)) || math.IsNaN(imag(v.want)) { + // Negating NaN is undefined with regard to the sign bit produced. + continue + } + // Atan(Conj(z)) == Conj(Atan(z)) + if f := Atan(Conj(v.in)); !cAlike(Conj(v.want), f) && !cAlike(v.in, Conj(v.in)) { + t.Errorf("Atan(%g) = %g, want %g", Conj(v.in), f, Conj(v.want)) + } + if math.IsNaN(real(v.in)) || math.IsNaN(real(v.want)) { + // Negating NaN is undefined with regard to the sign bit produced. + continue + } + // Atan(-z) == -Atan(z) + if f := Atan(-v.in); !cAlike(-v.want, f) && !cAlike(v.in, -v.in) { + t.Errorf("Atan(%g) = %g, want %g", -v.in, f, -v.want) + } + } + for _, pt := range branchPoints { + if f0, f1 := Atan(pt[0]), Atan(pt[1]); !cVeryclose(f0, f1) { + t.Errorf("Atan(%g) not continuous, got %g want %g", pt[0], f0, f1) + } + } +} +func TestAtanh(t *testing.T) { + for i := 0; i < len(vc); i++ { + if f := Atanh(vc[i]); !cVeryclose(atanh[i], f) { + t.Errorf("Atanh(%g) = %g, want %g", vc[i], f, atanh[i]) + } + } + for _, v := range atanhSC { + if f := Atanh(v.in); !cAlike(v.want, f) { + t.Errorf("Atanh(%g) = %g, want %g", v.in, f, v.want) + } + if math.IsNaN(imag(v.in)) || math.IsNaN(imag(v.want)) { + // Negating NaN is undefined with regard to the sign bit produced. + continue + } + // Atanh(Conj(z)) == Conj(Atanh(z)) + if f := Atanh(Conj(v.in)); !cAlike(Conj(v.want), f) && !cAlike(v.in, Conj(v.in)) { + t.Errorf("Atanh(%g) = %g, want %g", Conj(v.in), f, Conj(v.want)) + } + if math.IsNaN(real(v.in)) || math.IsNaN(real(v.want)) { + // Negating NaN is undefined with regard to the sign bit produced. + continue + } + // Atanh(-z) == -Atanh(z) + if f := Atanh(-v.in); !cAlike(-v.want, f) && !cAlike(v.in, -v.in) { + t.Errorf("Atanh(%g) = %g, want %g", -v.in, f, -v.want) + } + } + for _, pt := range branchPoints { + if f0, f1 := Atanh(pt[0]), Atanh(pt[1]); !cVeryclose(f0, f1) { + t.Errorf("Atanh(%g) not continuous, got %g want %g", pt[0], f0, f1) + } + } +} +func TestConj(t *testing.T) { + for i := 0; i < len(vc); i++ { + if f := Conj(vc[i]); !cVeryclose(conj[i], f) { + t.Errorf("Conj(%g) = %g, want %g", vc[i], f, conj[i]) + } + } + for i := 0; i < len(vcConjSC); i++ { + if f := Conj(vcConjSC[i]); !cAlike(conjSC[i], f) { + t.Errorf("Conj(%g) = %g, want %g", vcConjSC[i], f, conjSC[i]) + } + } +} +func TestCos(t *testing.T) { + for i := 0; i < len(vc); i++ { + if f := Cos(vc[i]); !cSoclose(cos[i], f, 3e-15) { + t.Errorf("Cos(%g) = %g, want %g", vc[i], f, cos[i]) + } + } + for _, v := range cosSC { + if f := Cos(v.in); !cAlike(v.want, f) { + t.Errorf("Cos(%g) = %g, want %g", v.in, f, v.want) + } + if math.IsNaN(imag(v.in)) || math.IsNaN(imag(v.want)) { + // Negating NaN is undefined with regard to the sign bit produced. + continue + } + // Cos(Conj(z)) == Cos(Cosh(z)) + if f := Cos(Conj(v.in)); !cAlike(Conj(v.want), f) && !cAlike(v.in, Conj(v.in)) { + t.Errorf("Cos(%g) = %g, want %g", Conj(v.in), f, Conj(v.want)) + } + if math.IsNaN(real(v.in)) || math.IsNaN(real(v.want)) { + // Negating NaN is undefined with regard to the sign bit produced. + continue + } + // Cos(-z) == Cos(z) + if f := Cos(-v.in); !cAlike(v.want, f) && !cAlike(v.in, -v.in) { + t.Errorf("Cos(%g) = %g, want %g", -v.in, f, v.want) + } + } +} +func TestCosh(t *testing.T) { + for i := 0; i < len(vc); i++ { + if f := Cosh(vc[i]); !cSoclose(cosh[i], f, 2e-15) { + t.Errorf("Cosh(%g) = %g, want %g", vc[i], f, cosh[i]) + } + } + for _, v := range coshSC { + if f := Cosh(v.in); !cAlike(v.want, f) { + t.Errorf("Cosh(%g) = %g, want %g", v.in, f, v.want) + } + if math.IsNaN(imag(v.in)) || math.IsNaN(imag(v.want)) { + // Negating NaN is undefined with regard to the sign bit produced. + continue + } + // Cosh(Conj(z)) == Conj(Cosh(z)) + if f := Cosh(Conj(v.in)); !cAlike(Conj(v.want), f) && !cAlike(v.in, Conj(v.in)) { + t.Errorf("Cosh(%g) = %g, want %g", Conj(v.in), f, Conj(v.want)) + } + if math.IsNaN(real(v.in)) || math.IsNaN(real(v.want)) { + // Negating NaN is undefined with regard to the sign bit produced. + continue + } + // Cosh(-z) == Cosh(z) + if f := Cosh(-v.in); !cAlike(v.want, f) && !cAlike(v.in, -v.in) { + t.Errorf("Cosh(%g) = %g, want %g", -v.in, f, v.want) + } + } +} +func TestExp(t *testing.T) { + for i := 0; i < len(vc); i++ { + if f := Exp(vc[i]); !cSoclose(exp[i], f, 1e-15) { + t.Errorf("Exp(%g) = %g, want %g", vc[i], f, exp[i]) + } + } + for _, v := range expSC { + if f := Exp(v.in); !cAlike(v.want, f) { + t.Errorf("Exp(%g) = %g, want %g", v.in, f, v.want) + } + if math.IsNaN(imag(v.in)) || math.IsNaN(imag(v.want)) { + // Negating NaN is undefined with regard to the sign bit produced. + continue + } + // Exp(Conj(z)) == Exp(Cosh(z)) + if f := Exp(Conj(v.in)); !cAlike(Conj(v.want), f) && !cAlike(v.in, Conj(v.in)) { + t.Errorf("Exp(%g) = %g, want %g", Conj(v.in), f, Conj(v.want)) + } + } +} +func TestIsNaN(t *testing.T) { + for i := 0; i < len(vcIsNaNSC); i++ { + if f := IsNaN(vcIsNaNSC[i]); isNaNSC[i] != f { + t.Errorf("IsNaN(%v) = %v, want %v", vcIsNaNSC[i], f, isNaNSC[i]) + } + } +} +func TestLog(t *testing.T) { + for i := 0; i < len(vc); i++ { + if f := Log(vc[i]); !cVeryclose(log[i], f) { + t.Errorf("Log(%g) = %g, want %g", vc[i], f, log[i]) + } + } + for _, v := range logSC { + if f := Log(v.in); !cAlike(v.want, f) { + t.Errorf("Log(%g) = %g, want %g", v.in, f, v.want) + } + if math.IsNaN(imag(v.in)) || math.IsNaN(imag(v.want)) { + // Negating NaN is undefined with regard to the sign bit produced. + continue + } + // Log(Conj(z)) == Conj(Log(z)) + if f := Log(Conj(v.in)); !cAlike(Conj(v.want), f) && !cAlike(v.in, Conj(v.in)) { + t.Errorf("Log(%g) = %g, want %g", Conj(v.in), f, Conj(v.want)) + } + } + for _, pt := range branchPoints { + if f0, f1 := Log(pt[0]), Log(pt[1]); !cVeryclose(f0, f1) { + t.Errorf("Log(%g) not continuous, got %g want %g", pt[0], f0, f1) + } + } +} +func TestLog10(t *testing.T) { + for i := 0; i < len(vc); i++ { + if f := Log10(vc[i]); !cVeryclose(log10[i], f) { + t.Errorf("Log10(%g) = %g, want %g", vc[i], f, log10[i]) + } + } + for _, v := range log10SC { + if f := Log10(v.in); !cAlike(v.want, f) { + t.Errorf("Log10(%g) = %g, want %g", v.in, f, v.want) + } + if math.IsNaN(imag(v.in)) || math.IsNaN(imag(v.want)) { + // Negating NaN is undefined with regard to the sign bit produced. + continue + } + // Log10(Conj(z)) == Conj(Log10(z)) + if f := Log10(Conj(v.in)); !cAlike(Conj(v.want), f) && !cAlike(v.in, Conj(v.in)) { + t.Errorf("Log10(%g) = %g, want %g", Conj(v.in), f, Conj(v.want)) + } + } +} +func TestPolar(t *testing.T) { + for i := 0; i < len(vc); i++ { + if r, theta := Polar(vc[i]); !veryclose(polar[i].r, r) && !veryclose(polar[i].theta, theta) { + t.Errorf("Polar(%g) = %g, %g want %g, %g", vc[i], r, theta, polar[i].r, polar[i].theta) + } + } + for i := 0; i < len(vcPolarSC); i++ { + if r, theta := Polar(vcPolarSC[i]); !alike(polarSC[i].r, r) && !alike(polarSC[i].theta, theta) { + t.Errorf("Polar(%g) = %g, %g, want %g, %g", vcPolarSC[i], r, theta, polarSC[i].r, polarSC[i].theta) + } + } +} +func TestPow(t *testing.T) { + // Special cases for Pow(0, c). + var zero = complex(0, 0) + zeroPowers := [][2]complex128{ + {0, 1 + 0i}, + {1.5, 0 + 0i}, + {-1.5, complex(math.Inf(0), 0)}, + {-1.5 + 1.5i, Inf()}, + } + for _, zp := range zeroPowers { + if f := Pow(zero, zp[0]); f != zp[1] { + t.Errorf("Pow(%g, %g) = %g, want %g", zero, zp[0], f, zp[1]) + } + } + var a = complex(3.0, 3.0) + for i := 0; i < len(vc); i++ { + if f := Pow(a, vc[i]); !cSoclose(pow[i], f, 4e-15) { + t.Errorf("Pow(%g, %g) = %g, want %g", a, vc[i], f, pow[i]) + } + } + for i := 0; i < len(vcPowSC); i++ { + if f := Pow(vcPowSC[i][0], vcPowSC[i][1]); !cAlike(powSC[i], f) { + t.Errorf("Pow(%g, %g) = %g, want %g", vcPowSC[i][0], vcPowSC[i][1], f, powSC[i]) + } + } + for _, pt := range branchPoints { + if f0, f1 := Pow(pt[0], 0.1), Pow(pt[1], 0.1); !cVeryclose(f0, f1) { + t.Errorf("Pow(%g, 0.1) not continuous, got %g want %g", pt[0], f0, f1) + } + } +} +func TestRect(t *testing.T) { + for i := 0; i < len(vc); i++ { + if f := Rect(polar[i].r, polar[i].theta); !cVeryclose(vc[i], f) { + t.Errorf("Rect(%g, %g) = %g want %g", polar[i].r, polar[i].theta, f, vc[i]) + } + } + for i := 0; i < len(vcPolarSC); i++ { + if f := Rect(polarSC[i].r, polarSC[i].theta); !cAlike(vcPolarSC[i], f) { + t.Errorf("Rect(%g, %g) = %g, want %g", polarSC[i].r, polarSC[i].theta, f, vcPolarSC[i]) + } + } +} +func TestSin(t *testing.T) { + for i := 0; i < len(vc); i++ { + if f := Sin(vc[i]); !cSoclose(sin[i], f, 2e-15) { + t.Errorf("Sin(%g) = %g, want %g", vc[i], f, sin[i]) + } + } + for _, v := range sinSC { + if f := Sin(v.in); !cAlike(v.want, f) { + t.Errorf("Sin(%g) = %g, want %g", v.in, f, v.want) + } + if math.IsNaN(imag(v.in)) || math.IsNaN(imag(v.want)) { + // Negating NaN is undefined with regard to the sign bit produced. + continue + } + // Sin(Conj(z)) == Conj(Sin(z)) + if f := Sin(Conj(v.in)); !cAlike(Conj(v.want), f) && !cAlike(v.in, Conj(v.in)) { + t.Errorf("Sinh(%g) = %g, want %g", Conj(v.in), f, Conj(v.want)) + } + if math.IsNaN(real(v.in)) || math.IsNaN(real(v.want)) { + // Negating NaN is undefined with regard to the sign bit produced. + continue + } + // Sin(-z) == -Sin(z) + if f := Sin(-v.in); !cAlike(-v.want, f) && !cAlike(v.in, -v.in) { + t.Errorf("Sinh(%g) = %g, want %g", -v.in, f, -v.want) + } + } +} +func TestSinh(t *testing.T) { + for i := 0; i < len(vc); i++ { + if f := Sinh(vc[i]); !cSoclose(sinh[i], f, 2e-15) { + t.Errorf("Sinh(%g) = %g, want %g", vc[i], f, sinh[i]) + } + } + for _, v := range sinhSC { + if f := Sinh(v.in); !cAlike(v.want, f) { + t.Errorf("Sinh(%g) = %g, want %g", v.in, f, v.want) + } + if math.IsNaN(imag(v.in)) || math.IsNaN(imag(v.want)) { + // Negating NaN is undefined with regard to the sign bit produced. + continue + } + // Sinh(Conj(z)) == Conj(Sinh(z)) + if f := Sinh(Conj(v.in)); !cAlike(Conj(v.want), f) && !cAlike(v.in, Conj(v.in)) { + t.Errorf("Sinh(%g) = %g, want %g", Conj(v.in), f, Conj(v.want)) + } + if math.IsNaN(real(v.in)) || math.IsNaN(real(v.want)) { + // Negating NaN is undefined with regard to the sign bit produced. + continue + } + // Sinh(-z) == -Sinh(z) + if f := Sinh(-v.in); !cAlike(-v.want, f) && !cAlike(v.in, -v.in) { + t.Errorf("Sinh(%g) = %g, want %g", -v.in, f, -v.want) + } + } +} +func TestSqrt(t *testing.T) { + for i := 0; i < len(vc); i++ { + if f := Sqrt(vc[i]); !cVeryclose(sqrt[i], f) { + t.Errorf("Sqrt(%g) = %g, want %g", vc[i], f, sqrt[i]) + } + } + for _, v := range sqrtSC { + if f := Sqrt(v.in); !cAlike(v.want, f) { + t.Errorf("Sqrt(%g) = %g, want %g", v.in, f, v.want) + } + if math.IsNaN(imag(v.in)) || math.IsNaN(imag(v.want)) { + // Negating NaN is undefined with regard to the sign bit produced. + continue + } + // Sqrt(Conj(z)) == Conj(Sqrt(z)) + if f := Sqrt(Conj(v.in)); !cAlike(Conj(v.want), f) && !cAlike(v.in, Conj(v.in)) { + t.Errorf("Sqrt(%g) = %g, want %g", Conj(v.in), f, Conj(v.want)) + } + } + for _, pt := range branchPoints { + if f0, f1 := Sqrt(pt[0]), Sqrt(pt[1]); !cVeryclose(f0, f1) { + t.Errorf("Sqrt(%g) not continuous, got %g want %g", pt[0], f0, f1) + } + } +} +func TestTan(t *testing.T) { + for i := 0; i < len(vc); i++ { + if f := Tan(vc[i]); !cSoclose(tan[i], f, 3e-15) { + t.Errorf("Tan(%g) = %g, want %g", vc[i], f, tan[i]) + } + } + for _, v := range tanSC { + if f := Tan(v.in); !cAlike(v.want, f) { + t.Errorf("Tan(%g) = %g, want %g", v.in, f, v.want) + } + if math.IsNaN(imag(v.in)) || math.IsNaN(imag(v.want)) { + // Negating NaN is undefined with regard to the sign bit produced. + continue + } + // Tan(Conj(z)) == Conj(Tan(z)) + if f := Tan(Conj(v.in)); !cAlike(Conj(v.want), f) && !cAlike(v.in, Conj(v.in)) { + t.Errorf("Tan(%g) = %g, want %g", Conj(v.in), f, Conj(v.want)) + } + if math.IsNaN(real(v.in)) || math.IsNaN(real(v.want)) { + // Negating NaN is undefined with regard to the sign bit produced. + continue + } + // Tan(-z) == -Tan(z) + if f := Tan(-v.in); !cAlike(-v.want, f) && !cAlike(v.in, -v.in) { + t.Errorf("Tan(%g) = %g, want %g", -v.in, f, -v.want) + } + } +} +func TestTanh(t *testing.T) { + for i := 0; i < len(vc); i++ { + if f := Tanh(vc[i]); !cSoclose(tanh[i], f, 2e-15) { + t.Errorf("Tanh(%g) = %g, want %g", vc[i], f, tanh[i]) + } + } + for _, v := range tanhSC { + if f := Tanh(v.in); !cAlike(v.want, f) { + t.Errorf("Tanh(%g) = %g, want %g", v.in, f, v.want) + } + if math.IsNaN(imag(v.in)) || math.IsNaN(imag(v.want)) { + // Negating NaN is undefined with regard to the sign bit produced. + continue + } + // Tanh(Conj(z)) == Conj(Tanh(z)) + if f := Tanh(Conj(v.in)); !cAlike(Conj(v.want), f) && !cAlike(v.in, Conj(v.in)) { + t.Errorf("Tanh(%g) = %g, want %g", Conj(v.in), f, Conj(v.want)) + } + if math.IsNaN(real(v.in)) || math.IsNaN(real(v.want)) { + // Negating NaN is undefined with regard to the sign bit produced. + continue + } + // Tanh(-z) == -Tanh(z) + if f := Tanh(-v.in); !cAlike(-v.want, f) && !cAlike(v.in, -v.in) { + t.Errorf("Tanh(%g) = %g, want %g", -v.in, f, -v.want) + } + } +} + +// See issue 17577 +func TestInfiniteLoopIntanSeries(t *testing.T) { + want := Inf() + if got := Cot(0); got != want { + t.Errorf("Cot(0): got %g, want %g", got, want) + } +} + +func BenchmarkAbs(b *testing.B) { + for i := 0; i < b.N; i++ { + Abs(complex(2.5, 3.5)) + } +} +func BenchmarkAcos(b *testing.B) { + for i := 0; i < b.N; i++ { + Acos(complex(2.5, 3.5)) + } +} +func BenchmarkAcosh(b *testing.B) { + for i := 0; i < b.N; i++ { + Acosh(complex(2.5, 3.5)) + } +} +func BenchmarkAsin(b *testing.B) { + for i := 0; i < b.N; i++ { + Asin(complex(2.5, 3.5)) + } +} +func BenchmarkAsinh(b *testing.B) { + for i := 0; i < b.N; i++ { + Asinh(complex(2.5, 3.5)) + } +} +func BenchmarkAtan(b *testing.B) { + for i := 0; i < b.N; i++ { + Atan(complex(2.5, 3.5)) + } +} +func BenchmarkAtanh(b *testing.B) { + for i := 0; i < b.N; i++ { + Atanh(complex(2.5, 3.5)) + } +} +func BenchmarkConj(b *testing.B) { + for i := 0; i < b.N; i++ { + Conj(complex(2.5, 3.5)) + } +} +func BenchmarkCos(b *testing.B) { + for i := 0; i < b.N; i++ { + Cos(complex(2.5, 3.5)) + } +} +func BenchmarkCosh(b *testing.B) { + for i := 0; i < b.N; i++ { + Cosh(complex(2.5, 3.5)) + } +} +func BenchmarkExp(b *testing.B) { + for i := 0; i < b.N; i++ { + Exp(complex(2.5, 3.5)) + } +} +func BenchmarkLog(b *testing.B) { + for i := 0; i < b.N; i++ { + Log(complex(2.5, 3.5)) + } +} +func BenchmarkLog10(b *testing.B) { + for i := 0; i < b.N; i++ { + Log10(complex(2.5, 3.5)) + } +} +func BenchmarkPhase(b *testing.B) { + for i := 0; i < b.N; i++ { + Phase(complex(2.5, 3.5)) + } +} +func BenchmarkPolar(b *testing.B) { + for i := 0; i < b.N; i++ { + Polar(complex(2.5, 3.5)) + } +} +func BenchmarkPow(b *testing.B) { + for i := 0; i < b.N; i++ { + Pow(complex(2.5, 3.5), complex(2.5, 3.5)) + } +} +func BenchmarkRect(b *testing.B) { + for i := 0; i < b.N; i++ { + Rect(2.5, 1.5) + } +} +func BenchmarkSin(b *testing.B) { + for i := 0; i < b.N; i++ { + Sin(complex(2.5, 3.5)) + } +} +func BenchmarkSinh(b *testing.B) { + for i := 0; i < b.N; i++ { + Sinh(complex(2.5, 3.5)) + } +} +func BenchmarkSqrt(b *testing.B) { + for i := 0; i < b.N; i++ { + Sqrt(complex(2.5, 3.5)) + } +} +func BenchmarkTan(b *testing.B) { + for i := 0; i < b.N; i++ { + Tan(complex(2.5, 3.5)) + } +} +func BenchmarkTanh(b *testing.B) { + for i := 0; i < b.N; i++ { + Tanh(complex(2.5, 3.5)) + } +} diff --git a/src/math/cmplx/conj.go b/src/math/cmplx/conj.go new file mode 100644 index 0000000..34a4277 --- /dev/null +++ b/src/math/cmplx/conj.go @@ -0,0 +1,8 @@ +// Copyright 2010 The Go Authors. All rights reserved. +// Use of this source code is governed by a BSD-style +// license that can be found in the LICENSE file. + +package cmplx + +// Conj returns the complex conjugate of x. +func Conj(x complex128) complex128 { return complex(real(x), -imag(x)) } diff --git a/src/math/cmplx/example_test.go b/src/math/cmplx/example_test.go new file mode 100644 index 0000000..f0ed963 --- /dev/null +++ b/src/math/cmplx/example_test.go @@ -0,0 +1,28 @@ +// Copyright 2016 The Go Authors. All rights reserved. +// Use of this source code is governed by a BSD-style +// license that can be found in the LICENSE file. + +package cmplx_test + +import ( + "fmt" + "math" + "math/cmplx" +) + +func ExampleAbs() { + fmt.Printf("%.1f", cmplx.Abs(3+4i)) + // Output: 5.0 +} + +// ExampleExp computes Euler's identity. +func ExampleExp() { + fmt.Printf("%.1f", cmplx.Exp(1i*math.Pi)+1) + // Output: (0.0+0.0i) +} + +func ExamplePolar() { + r, theta := cmplx.Polar(2i) + fmt.Printf("r: %.1f, θ: %.1f*π", r, theta/math.Pi) + // Output: r: 2.0, θ: 0.5*π +} diff --git a/src/math/cmplx/exp.go b/src/math/cmplx/exp.go new file mode 100644 index 0000000..d5d0a5d --- /dev/null +++ b/src/math/cmplx/exp.go @@ -0,0 +1,72 @@ +// Copyright 2010 The Go Authors. All rights reserved. +// Use of this source code is governed by a BSD-style +// license that can be found in the LICENSE file. + +package cmplx + +import "math" + +// The original C code, the long comment, and the constants +// below are from http://netlib.sandia.gov/cephes/c9x-complex/clog.c. +// The go code is a simplified version of the original C. +// +// Cephes Math Library Release 2.8: June, 2000 +// Copyright 1984, 1987, 1989, 1992, 2000 by Stephen L. Moshier +// +// The readme file at http://netlib.sandia.gov/cephes/ says: +// Some software in this archive may be from the book _Methods and +// Programs for Mathematical Functions_ (Prentice-Hall or Simon & Schuster +// International, 1989) or from the Cephes Mathematical Library, a +// commercial product. In either event, it is copyrighted by the author. +// What you see here may be used freely but it comes with no support or +// guarantee. +// +// The two known misprints in the book are repaired here in the +// source listings for the gamma function and the incomplete beta +// integral. +// +// Stephen L. Moshier +// moshier@na-net.ornl.gov + +// Complex exponential function +// +// DESCRIPTION: +// +// Returns the complex exponential of the complex argument z. +// +// If +// z = x + iy, +// r = exp(x), +// then +// w = r cos y + i r sin y. +// +// ACCURACY: +// +// Relative error: +// arithmetic domain # trials peak rms +// DEC -10,+10 8700 3.7e-17 1.1e-17 +// IEEE -10,+10 30000 3.0e-16 8.7e-17 + +// Exp returns e**x, the base-e exponential of x. +func Exp(x complex128) complex128 { + switch re, im := real(x), imag(x); { + case math.IsInf(re, 0): + switch { + case re > 0 && im == 0: + return x + case math.IsInf(im, 0) || math.IsNaN(im): + if re < 0 { + return complex(0, math.Copysign(0, im)) + } else { + return complex(math.Inf(1.0), math.NaN()) + } + } + case math.IsNaN(re): + if im == 0 { + return complex(math.NaN(), im) + } + } + r := math.Exp(real(x)) + s, c := math.Sincos(imag(x)) + return complex(r*c, r*s) +} diff --git a/src/math/cmplx/huge_test.go b/src/math/cmplx/huge_test.go new file mode 100644 index 0000000..e794cf2 --- /dev/null +++ b/src/math/cmplx/huge_test.go @@ -0,0 +1,22 @@ +// Copyright 2020 The Go Authors. All rights reserved. +// Use of this source code is governed by a BSD-style +// license that can be found in the LICENSE file. + +// Disabled for s390x because it uses assembly routines that are not +// accurate for huge arguments. + +//go:build !s390x + +package cmplx + +import ( + "testing" +) + +func TestTanHuge(t *testing.T) { + for i, x := range hugeIn { + if f := Tan(x); !cSoclose(tanHuge[i], f, 3e-15) { + t.Errorf("Tan(%g) = %g, want %g", x, f, tanHuge[i]) + } + } +} diff --git a/src/math/cmplx/isinf.go b/src/math/cmplx/isinf.go new file mode 100644 index 0000000..6273cd3 --- /dev/null +++ b/src/math/cmplx/isinf.go @@ -0,0 +1,21 @@ +// Copyright 2010 The Go Authors. All rights reserved. +// Use of this source code is governed by a BSD-style +// license that can be found in the LICENSE file. + +package cmplx + +import "math" + +// IsInf reports whether either real(x) or imag(x) is an infinity. +func IsInf(x complex128) bool { + if math.IsInf(real(x), 0) || math.IsInf(imag(x), 0) { + return true + } + return false +} + +// Inf returns a complex infinity, complex(+Inf, +Inf). +func Inf() complex128 { + inf := math.Inf(1) + return complex(inf, inf) +} diff --git a/src/math/cmplx/isnan.go b/src/math/cmplx/isnan.go new file mode 100644 index 0000000..fed442c --- /dev/null +++ b/src/math/cmplx/isnan.go @@ -0,0 +1,25 @@ +// Copyright 2010 The Go Authors. All rights reserved. +// Use of this source code is governed by a BSD-style +// license that can be found in the LICENSE file. + +package cmplx + +import "math" + +// IsNaN reports whether either real(x) or imag(x) is NaN +// and neither is an infinity. +func IsNaN(x complex128) bool { + switch { + case math.IsInf(real(x), 0) || math.IsInf(imag(x), 0): + return false + case math.IsNaN(real(x)) || math.IsNaN(imag(x)): + return true + } + return false +} + +// NaN returns a complex “not-a-number” value. +func NaN() complex128 { + nan := math.NaN() + return complex(nan, nan) +} diff --git a/src/math/cmplx/log.go b/src/math/cmplx/log.go new file mode 100644 index 0000000..fd39c76 --- /dev/null +++ b/src/math/cmplx/log.go @@ -0,0 +1,65 @@ +// Copyright 2010 The Go Authors. All rights reserved. +// Use of this source code is governed by a BSD-style +// license that can be found in the LICENSE file. + +package cmplx + +import "math" + +// The original C code, the long comment, and the constants +// below are from http://netlib.sandia.gov/cephes/c9x-complex/clog.c. +// The go code is a simplified version of the original C. +// +// Cephes Math Library Release 2.8: June, 2000 +// Copyright 1984, 1987, 1989, 1992, 2000 by Stephen L. Moshier +// +// The readme file at http://netlib.sandia.gov/cephes/ says: +// Some software in this archive may be from the book _Methods and +// Programs for Mathematical Functions_ (Prentice-Hall or Simon & Schuster +// International, 1989) or from the Cephes Mathematical Library, a +// commercial product. In either event, it is copyrighted by the author. +// What you see here may be used freely but it comes with no support or +// guarantee. +// +// The two known misprints in the book are repaired here in the +// source listings for the gamma function and the incomplete beta +// integral. +// +// Stephen L. Moshier +// moshier@na-net.ornl.gov + +// Complex natural logarithm +// +// DESCRIPTION: +// +// Returns complex logarithm to the base e (2.718...) of +// the complex argument z. +// +// If +// z = x + iy, r = sqrt( x**2 + y**2 ), +// then +// w = log(r) + i arctan(y/x). +// +// The arctangent ranges from -PI to +PI. +// +// ACCURACY: +// +// Relative error: +// arithmetic domain # trials peak rms +// DEC -10,+10 7000 8.5e-17 1.9e-17 +// IEEE -10,+10 30000 5.0e-15 1.1e-16 +// +// Larger relative error can be observed for z near 1 +i0. +// In IEEE arithmetic the peak absolute error is 5.2e-16, rms +// absolute error 1.0e-16. + +// Log returns the natural logarithm of x. +func Log(x complex128) complex128 { + return complex(math.Log(Abs(x)), Phase(x)) +} + +// Log10 returns the decimal logarithm of x. +func Log10(x complex128) complex128 { + z := Log(x) + return complex(math.Log10E*real(z), math.Log10E*imag(z)) +} diff --git a/src/math/cmplx/phase.go b/src/math/cmplx/phase.go new file mode 100644 index 0000000..03cece8 --- /dev/null +++ b/src/math/cmplx/phase.go @@ -0,0 +1,11 @@ +// Copyright 2010 The Go Authors. All rights reserved. +// Use of this source code is governed by a BSD-style +// license that can be found in the LICENSE file. + +package cmplx + +import "math" + +// Phase returns the phase (also called the argument) of x. +// The returned value is in the range [-Pi, Pi]. +func Phase(x complex128) float64 { return math.Atan2(imag(x), real(x)) } diff --git a/src/math/cmplx/polar.go b/src/math/cmplx/polar.go new file mode 100644 index 0000000..9b192bc --- /dev/null +++ b/src/math/cmplx/polar.go @@ -0,0 +1,12 @@ +// Copyright 2010 The Go Authors. All rights reserved. +// Use of this source code is governed by a BSD-style +// license that can be found in the LICENSE file. + +package cmplx + +// Polar returns the absolute value r and phase θ of x, +// such that x = r * e**θi. +// The phase is in the range [-Pi, Pi]. +func Polar(x complex128) (r, θ float64) { + return Abs(x), Phase(x) +} diff --git a/src/math/cmplx/pow.go b/src/math/cmplx/pow.go new file mode 100644 index 0000000..666bba2 --- /dev/null +++ b/src/math/cmplx/pow.go @@ -0,0 +1,82 @@ +// Copyright 2010 The Go Authors. All rights reserved. +// Use of this source code is governed by a BSD-style +// license that can be found in the LICENSE file. + +package cmplx + +import "math" + +// The original C code, the long comment, and the constants +// below are from http://netlib.sandia.gov/cephes/c9x-complex/clog.c. +// The go code is a simplified version of the original C. +// +// Cephes Math Library Release 2.8: June, 2000 +// Copyright 1984, 1987, 1989, 1992, 2000 by Stephen L. Moshier +// +// The readme file at http://netlib.sandia.gov/cephes/ says: +// Some software in this archive may be from the book _Methods and +// Programs for Mathematical Functions_ (Prentice-Hall or Simon & Schuster +// International, 1989) or from the Cephes Mathematical Library, a +// commercial product. In either event, it is copyrighted by the author. +// What you see here may be used freely but it comes with no support or +// guarantee. +// +// The two known misprints in the book are repaired here in the +// source listings for the gamma function and the incomplete beta +// integral. +// +// Stephen L. Moshier +// moshier@na-net.ornl.gov + +// Complex power function +// +// DESCRIPTION: +// +// Raises complex A to the complex Zth power. +// Definition is per AMS55 # 4.2.8, +// analytically equivalent to cpow(a,z) = cexp(z clog(a)). +// +// ACCURACY: +// +// Relative error: +// arithmetic domain # trials peak rms +// IEEE -10,+10 30000 9.4e-15 1.5e-15 + +// Pow returns x**y, the base-x exponential of y. +// For generalized compatibility with math.Pow: +// +// Pow(0, ±0) returns 1+0i +// Pow(0, c) for real(c)<0 returns Inf+0i if imag(c) is zero, otherwise Inf+Inf i. +func Pow(x, y complex128) complex128 { + if x == 0 { // Guaranteed also true for x == -0. + if IsNaN(y) { + return NaN() + } + r, i := real(y), imag(y) + switch { + case r == 0: + return 1 + case r < 0: + if i == 0 { + return complex(math.Inf(1), 0) + } + return Inf() + case r > 0: + return 0 + } + panic("not reached") + } + modulus := Abs(x) + if modulus == 0 { + return complex(0, 0) + } + r := math.Pow(modulus, real(y)) + arg := Phase(x) + theta := real(y) * arg + if imag(y) != 0 { + r *= math.Exp(-imag(y) * arg) + theta += imag(y) * math.Log(modulus) + } + s, c := math.Sincos(theta) + return complex(r*c, r*s) +} diff --git a/src/math/cmplx/rect.go b/src/math/cmplx/rect.go new file mode 100644 index 0000000..bf94d78 --- /dev/null +++ b/src/math/cmplx/rect.go @@ -0,0 +1,13 @@ +// Copyright 2010 The Go Authors. All rights reserved. +// Use of this source code is governed by a BSD-style +// license that can be found in the LICENSE file. + +package cmplx + +import "math" + +// Rect returns the complex number x with polar coordinates r, θ. +func Rect(r, θ float64) complex128 { + s, c := math.Sincos(θ) + return complex(r*c, r*s) +} diff --git a/src/math/cmplx/sin.go b/src/math/cmplx/sin.go new file mode 100644 index 0000000..51cf405 --- /dev/null +++ b/src/math/cmplx/sin.go @@ -0,0 +1,184 @@ +// Copyright 2010 The Go Authors. All rights reserved. +// Use of this source code is governed by a BSD-style +// license that can be found in the LICENSE file. + +package cmplx + +import "math" + +// The original C code, the long comment, and the constants +// below are from http://netlib.sandia.gov/cephes/c9x-complex/clog.c. +// The go code is a simplified version of the original C. +// +// Cephes Math Library Release 2.8: June, 2000 +// Copyright 1984, 1987, 1989, 1992, 2000 by Stephen L. Moshier +// +// The readme file at http://netlib.sandia.gov/cephes/ says: +// Some software in this archive may be from the book _Methods and +// Programs for Mathematical Functions_ (Prentice-Hall or Simon & Schuster +// International, 1989) or from the Cephes Mathematical Library, a +// commercial product. In either event, it is copyrighted by the author. +// What you see here may be used freely but it comes with no support or +// guarantee. +// +// The two known misprints in the book are repaired here in the +// source listings for the gamma function and the incomplete beta +// integral. +// +// Stephen L. Moshier +// moshier@na-net.ornl.gov + +// Complex circular sine +// +// DESCRIPTION: +// +// If +// z = x + iy, +// +// then +// +// w = sin x cosh y + i cos x sinh y. +// +// csin(z) = -i csinh(iz). +// +// ACCURACY: +// +// Relative error: +// arithmetic domain # trials peak rms +// DEC -10,+10 8400 5.3e-17 1.3e-17 +// IEEE -10,+10 30000 3.8e-16 1.0e-16 +// Also tested by csin(casin(z)) = z. + +// Sin returns the sine of x. +func Sin(x complex128) complex128 { + switch re, im := real(x), imag(x); { + case im == 0 && (math.IsInf(re, 0) || math.IsNaN(re)): + return complex(math.NaN(), im) + case math.IsInf(im, 0): + switch { + case re == 0: + return x + case math.IsInf(re, 0) || math.IsNaN(re): + return complex(math.NaN(), im) + } + case re == 0 && math.IsNaN(im): + return x + } + s, c := math.Sincos(real(x)) + sh, ch := sinhcosh(imag(x)) + return complex(s*ch, c*sh) +} + +// Complex hyperbolic sine +// +// DESCRIPTION: +// +// csinh z = (cexp(z) - cexp(-z))/2 +// = sinh x * cos y + i cosh x * sin y . +// +// ACCURACY: +// +// Relative error: +// arithmetic domain # trials peak rms +// IEEE -10,+10 30000 3.1e-16 8.2e-17 + +// Sinh returns the hyperbolic sine of x. +func Sinh(x complex128) complex128 { + switch re, im := real(x), imag(x); { + case re == 0 && (math.IsInf(im, 0) || math.IsNaN(im)): + return complex(re, math.NaN()) + case math.IsInf(re, 0): + switch { + case im == 0: + return complex(re, im) + case math.IsInf(im, 0) || math.IsNaN(im): + return complex(re, math.NaN()) + } + case im == 0 && math.IsNaN(re): + return complex(math.NaN(), im) + } + s, c := math.Sincos(imag(x)) + sh, ch := sinhcosh(real(x)) + return complex(c*sh, s*ch) +} + +// Complex circular cosine +// +// DESCRIPTION: +// +// If +// z = x + iy, +// +// then +// +// w = cos x cosh y - i sin x sinh y. +// +// ACCURACY: +// +// Relative error: +// arithmetic domain # trials peak rms +// DEC -10,+10 8400 4.5e-17 1.3e-17 +// IEEE -10,+10 30000 3.8e-16 1.0e-16 + +// Cos returns the cosine of x. +func Cos(x complex128) complex128 { + switch re, im := real(x), imag(x); { + case im == 0 && (math.IsInf(re, 0) || math.IsNaN(re)): + return complex(math.NaN(), -im*math.Copysign(0, re)) + case math.IsInf(im, 0): + switch { + case re == 0: + return complex(math.Inf(1), -re*math.Copysign(0, im)) + case math.IsInf(re, 0) || math.IsNaN(re): + return complex(math.Inf(1), math.NaN()) + } + case re == 0 && math.IsNaN(im): + return complex(math.NaN(), 0) + } + s, c := math.Sincos(real(x)) + sh, ch := sinhcosh(imag(x)) + return complex(c*ch, -s*sh) +} + +// Complex hyperbolic cosine +// +// DESCRIPTION: +// +// ccosh(z) = cosh x cos y + i sinh x sin y . +// +// ACCURACY: +// +// Relative error: +// arithmetic domain # trials peak rms +// IEEE -10,+10 30000 2.9e-16 8.1e-17 + +// Cosh returns the hyperbolic cosine of x. +func Cosh(x complex128) complex128 { + switch re, im := real(x), imag(x); { + case re == 0 && (math.IsInf(im, 0) || math.IsNaN(im)): + return complex(math.NaN(), re*math.Copysign(0, im)) + case math.IsInf(re, 0): + switch { + case im == 0: + return complex(math.Inf(1), im*math.Copysign(0, re)) + case math.IsInf(im, 0) || math.IsNaN(im): + return complex(math.Inf(1), math.NaN()) + } + case im == 0 && math.IsNaN(re): + return complex(math.NaN(), im) + } + s, c := math.Sincos(imag(x)) + sh, ch := sinhcosh(real(x)) + return complex(c*ch, s*sh) +} + +// calculate sinh and cosh. +func sinhcosh(x float64) (sh, ch float64) { + if math.Abs(x) <= 0.5 { + return math.Sinh(x), math.Cosh(x) + } + e := math.Exp(x) + ei := 0.5 / e + e *= 0.5 + return e - ei, e + ei +} diff --git a/src/math/cmplx/sqrt.go b/src/math/cmplx/sqrt.go new file mode 100644 index 0000000..eddce2f --- /dev/null +++ b/src/math/cmplx/sqrt.go @@ -0,0 +1,107 @@ +// Copyright 2010 The Go Authors. All rights reserved. +// Use of this source code is governed by a BSD-style +// license that can be found in the LICENSE file. + +package cmplx + +import "math" + +// The original C code, the long comment, and the constants +// below are from http://netlib.sandia.gov/cephes/c9x-complex/clog.c. +// The go code is a simplified version of the original C. +// +// Cephes Math Library Release 2.8: June, 2000 +// Copyright 1984, 1987, 1989, 1992, 2000 by Stephen L. Moshier +// +// The readme file at http://netlib.sandia.gov/cephes/ says: +// Some software in this archive may be from the book _Methods and +// Programs for Mathematical Functions_ (Prentice-Hall or Simon & Schuster +// International, 1989) or from the Cephes Mathematical Library, a +// commercial product. In either event, it is copyrighted by the author. +// What you see here may be used freely but it comes with no support or +// guarantee. +// +// The two known misprints in the book are repaired here in the +// source listings for the gamma function and the incomplete beta +// integral. +// +// Stephen L. Moshier +// moshier@na-net.ornl.gov + +// Complex square root +// +// DESCRIPTION: +// +// If z = x + iy, r = |z|, then +// +// 1/2 +// Re w = [ (r + x)/2 ] , +// +// 1/2 +// Im w = [ (r - x)/2 ] . +// +// Cancellation error in r-x or r+x is avoided by using the +// identity 2 Re w Im w = y. +// +// Note that -w is also a square root of z. The root chosen +// is always in the right half plane and Im w has the same sign as y. +// +// ACCURACY: +// +// Relative error: +// arithmetic domain # trials peak rms +// DEC -10,+10 25000 3.2e-17 9.6e-18 +// IEEE -10,+10 1,000,000 2.9e-16 6.1e-17 + +// Sqrt returns the square root of x. +// The result r is chosen so that real(r) ≥ 0 and imag(r) has the same sign as imag(x). +func Sqrt(x complex128) complex128 { + if imag(x) == 0 { + // Ensure that imag(r) has the same sign as imag(x) for imag(x) == signed zero. + if real(x) == 0 { + return complex(0, imag(x)) + } + if real(x) < 0 { + return complex(0, math.Copysign(math.Sqrt(-real(x)), imag(x))) + } + return complex(math.Sqrt(real(x)), imag(x)) + } else if math.IsInf(imag(x), 0) { + return complex(math.Inf(1.0), imag(x)) + } + if real(x) == 0 { + if imag(x) < 0 { + r := math.Sqrt(-0.5 * imag(x)) + return complex(r, -r) + } + r := math.Sqrt(0.5 * imag(x)) + return complex(r, r) + } + a := real(x) + b := imag(x) + var scale float64 + // Rescale to avoid internal overflow or underflow. + if math.Abs(a) > 4 || math.Abs(b) > 4 { + a *= 0.25 + b *= 0.25 + scale = 2 + } else { + a *= 1.8014398509481984e16 // 2**54 + b *= 1.8014398509481984e16 + scale = 7.450580596923828125e-9 // 2**-27 + } + r := math.Hypot(a, b) + var t float64 + if a > 0 { + t = math.Sqrt(0.5*r + 0.5*a) + r = scale * math.Abs((0.5*b)/t) + t *= scale + } else { + r = math.Sqrt(0.5*r - 0.5*a) + t = scale * math.Abs((0.5*b)/r) + r *= scale + } + if b < 0 { + return complex(t, -r) + } + return complex(t, r) +} diff --git a/src/math/cmplx/tan.go b/src/math/cmplx/tan.go new file mode 100644 index 0000000..67a1133 --- /dev/null +++ b/src/math/cmplx/tan.go @@ -0,0 +1,297 @@ +// Copyright 2010 The Go Authors. All rights reserved. +// Use of this source code is governed by a BSD-style +// license that can be found in the LICENSE file. + +package cmplx + +import ( + "math" + "math/bits" +) + +// The original C code, the long comment, and the constants +// below are from http://netlib.sandia.gov/cephes/c9x-complex/clog.c. +// The go code is a simplified version of the original C. +// +// Cephes Math Library Release 2.8: June, 2000 +// Copyright 1984, 1987, 1989, 1992, 2000 by Stephen L. Moshier +// +// The readme file at http://netlib.sandia.gov/cephes/ says: +// Some software in this archive may be from the book _Methods and +// Programs for Mathematical Functions_ (Prentice-Hall or Simon & Schuster +// International, 1989) or from the Cephes Mathematical Library, a +// commercial product. In either event, it is copyrighted by the author. +// What you see here may be used freely but it comes with no support or +// guarantee. +// +// The two known misprints in the book are repaired here in the +// source listings for the gamma function and the incomplete beta +// integral. +// +// Stephen L. Moshier +// moshier@na-net.ornl.gov + +// Complex circular tangent +// +// DESCRIPTION: +// +// If +// z = x + iy, +// +// then +// +// sin 2x + i sinh 2y +// w = --------------------. +// cos 2x + cosh 2y +// +// On the real axis the denominator is zero at odd multiples +// of PI/2. The denominator is evaluated by its Taylor +// series near these points. +// +// ctan(z) = -i ctanh(iz). +// +// ACCURACY: +// +// Relative error: +// arithmetic domain # trials peak rms +// DEC -10,+10 5200 7.1e-17 1.6e-17 +// IEEE -10,+10 30000 7.2e-16 1.2e-16 +// Also tested by ctan * ccot = 1 and catan(ctan(z)) = z. + +// Tan returns the tangent of x. +func Tan(x complex128) complex128 { + switch re, im := real(x), imag(x); { + case math.IsInf(im, 0): + switch { + case math.IsInf(re, 0) || math.IsNaN(re): + return complex(math.Copysign(0, re), math.Copysign(1, im)) + } + return complex(math.Copysign(0, math.Sin(2*re)), math.Copysign(1, im)) + case re == 0 && math.IsNaN(im): + return x + } + d := math.Cos(2*real(x)) + math.Cosh(2*imag(x)) + if math.Abs(d) < 0.25 { + d = tanSeries(x) + } + if d == 0 { + return Inf() + } + return complex(math.Sin(2*real(x))/d, math.Sinh(2*imag(x))/d) +} + +// Complex hyperbolic tangent +// +// DESCRIPTION: +// +// tanh z = (sinh 2x + i sin 2y) / (cosh 2x + cos 2y) . +// +// ACCURACY: +// +// Relative error: +// arithmetic domain # trials peak rms +// IEEE -10,+10 30000 1.7e-14 2.4e-16 + +// Tanh returns the hyperbolic tangent of x. +func Tanh(x complex128) complex128 { + switch re, im := real(x), imag(x); { + case math.IsInf(re, 0): + switch { + case math.IsInf(im, 0) || math.IsNaN(im): + return complex(math.Copysign(1, re), math.Copysign(0, im)) + } + return complex(math.Copysign(1, re), math.Copysign(0, math.Sin(2*im))) + case im == 0 && math.IsNaN(re): + return x + } + d := math.Cosh(2*real(x)) + math.Cos(2*imag(x)) + if d == 0 { + return Inf() + } + return complex(math.Sinh(2*real(x))/d, math.Sin(2*imag(x))/d) +} + +// reducePi reduces the input argument x to the range (-Pi/2, Pi/2]. +// x must be greater than or equal to 0. For small arguments it +// uses Cody-Waite reduction in 3 float64 parts based on: +// "Elementary Function Evaluation: Algorithms and Implementation" +// Jean-Michel Muller, 1997. +// For very large arguments it uses Payne-Hanek range reduction based on: +// "ARGUMENT REDUCTION FOR HUGE ARGUMENTS: Good to the Last Bit" +// K. C. Ng et al, March 24, 1992. +func reducePi(x float64) float64 { + // reduceThreshold is the maximum value of x where the reduction using + // Cody-Waite reduction still gives accurate results. This threshold + // is set by t*PIn being representable as a float64 without error + // where t is given by t = floor(x * (1 / Pi)) and PIn are the leading partial + // terms of Pi. Since the leading terms, PI1 and PI2 below, have 30 and 32 + // trailing zero bits respectively, t should have less than 30 significant bits. + // t < 1<<30 -> floor(x*(1/Pi)+0.5) < 1<<30 -> x < (1<<30-1) * Pi - 0.5 + // So, conservatively we can take x < 1<<30. + const reduceThreshold float64 = 1 << 30 + if math.Abs(x) < reduceThreshold { + // Use Cody-Waite reduction in three parts. + const ( + // PI1, PI2 and PI3 comprise an extended precision value of PI + // such that PI ~= PI1 + PI2 + PI3. The parts are chosen so + // that PI1 and PI2 have an approximately equal number of trailing + // zero bits. This ensures that t*PI1 and t*PI2 are exact for + // large integer values of t. The full precision PI3 ensures the + // approximation of PI is accurate to 102 bits to handle cancellation + // during subtraction. + PI1 = 3.141592502593994 // 0x400921fb40000000 + PI2 = 1.5099578831723193e-07 // 0x3e84442d00000000 + PI3 = 1.0780605716316238e-14 // 0x3d08469898cc5170 + ) + t := x / math.Pi + t += 0.5 + t = float64(int64(t)) // int64(t) = the multiple + return ((x - t*PI1) - t*PI2) - t*PI3 + } + // Must apply Payne-Hanek range reduction + const ( + mask = 0x7FF + shift = 64 - 11 - 1 + bias = 1023 + fracMask = 1<<shift - 1 + ) + // Extract out the integer and exponent such that, + // x = ix * 2 ** exp. + ix := math.Float64bits(x) + exp := int(ix>>shift&mask) - bias - shift + ix &= fracMask + ix |= 1 << shift + + // mPi is the binary digits of 1/Pi as a uint64 array, + // that is, 1/Pi = Sum mPi[i]*2^(-64*i). + // 19 64-bit digits give 1216 bits of precision + // to handle the largest possible float64 exponent. + var mPi = [...]uint64{ + 0x0000000000000000, + 0x517cc1b727220a94, + 0xfe13abe8fa9a6ee0, + 0x6db14acc9e21c820, + 0xff28b1d5ef5de2b0, + 0xdb92371d2126e970, + 0x0324977504e8c90e, + 0x7f0ef58e5894d39f, + 0x74411afa975da242, + 0x74ce38135a2fbf20, + 0x9cc8eb1cc1a99cfa, + 0x4e422fc5defc941d, + 0x8ffc4bffef02cc07, + 0xf79788c5ad05368f, + 0xb69b3f6793e584db, + 0xa7a31fb34f2ff516, + 0xba93dd63f5f2f8bd, + 0x9e839cfbc5294975, + 0x35fdafd88fc6ae84, + 0x2b0198237e3db5d5, + } + // Use the exponent to extract the 3 appropriate uint64 digits from mPi, + // B ~ (z0, z1, z2), such that the product leading digit has the exponent -64. + // Note, exp >= 50 since x >= reduceThreshold and exp < 971 for maximum float64. + digit, bitshift := uint(exp+64)/64, uint(exp+64)%64 + z0 := (mPi[digit] << bitshift) | (mPi[digit+1] >> (64 - bitshift)) + z1 := (mPi[digit+1] << bitshift) | (mPi[digit+2] >> (64 - bitshift)) + z2 := (mPi[digit+2] << bitshift) | (mPi[digit+3] >> (64 - bitshift)) + // Multiply mantissa by the digits and extract the upper two digits (hi, lo). + z2hi, _ := bits.Mul64(z2, ix) + z1hi, z1lo := bits.Mul64(z1, ix) + z0lo := z0 * ix + lo, c := bits.Add64(z1lo, z2hi, 0) + hi, _ := bits.Add64(z0lo, z1hi, c) + // Find the magnitude of the fraction. + lz := uint(bits.LeadingZeros64(hi)) + e := uint64(bias - (lz + 1)) + // Clear implicit mantissa bit and shift into place. + hi = (hi << (lz + 1)) | (lo >> (64 - (lz + 1))) + hi >>= 64 - shift + // Include the exponent and convert to a float. + hi |= e << shift + x = math.Float64frombits(hi) + // map to (-Pi/2, Pi/2] + if x > 0.5 { + x-- + } + return math.Pi * x +} + +// Taylor series expansion for cosh(2y) - cos(2x) +func tanSeries(z complex128) float64 { + const MACHEP = 1.0 / (1 << 53) + x := math.Abs(2 * real(z)) + y := math.Abs(2 * imag(z)) + x = reducePi(x) + x = x * x + y = y * y + x2 := 1.0 + y2 := 1.0 + f := 1.0 + rn := 0.0 + d := 0.0 + for { + rn++ + f *= rn + rn++ + f *= rn + x2 *= x + y2 *= y + t := y2 + x2 + t /= f + d += t + + rn++ + f *= rn + rn++ + f *= rn + x2 *= x + y2 *= y + t = y2 - x2 + t /= f + d += t + if !(math.Abs(t/d) > MACHEP) { + // Caution: Use ! and > instead of <= for correct behavior if t/d is NaN. + // See issue 17577. + break + } + } + return d +} + +// Complex circular cotangent +// +// DESCRIPTION: +// +// If +// z = x + iy, +// +// then +// +// sin 2x - i sinh 2y +// w = --------------------. +// cosh 2y - cos 2x +// +// On the real axis, the denominator has zeros at even +// multiples of PI/2. Near these points it is evaluated +// by a Taylor series. +// +// ACCURACY: +// +// Relative error: +// arithmetic domain # trials peak rms +// DEC -10,+10 3000 6.5e-17 1.6e-17 +// IEEE -10,+10 30000 9.2e-16 1.2e-16 +// Also tested by ctan * ccot = 1 + i0. + +// Cot returns the cotangent of x. +func Cot(x complex128) complex128 { + d := math.Cosh(2*imag(x)) - math.Cos(2*real(x)) + if math.Abs(d) < 0.25 { + d = tanSeries(x) + } + if d == 0 { + return Inf() + } + return complex(math.Sin(2*real(x))/d, -math.Sinh(2*imag(x))/d) +} |