summaryrefslogtreecommitdiffstats
path: root/src/regexp/syntax/compile.go
diff options
context:
space:
mode:
authorDaniel Baumann <daniel.baumann@progress-linux.org>2024-04-16 19:23:18 +0000
committerDaniel Baumann <daniel.baumann@progress-linux.org>2024-04-16 19:23:18 +0000
commit43a123c1ae6613b3efeed291fa552ecd909d3acf (patch)
treefd92518b7024bc74031f78a1cf9e454b65e73665 /src/regexp/syntax/compile.go
parentInitial commit. (diff)
downloadgolang-1.20-43a123c1ae6613b3efeed291fa552ecd909d3acf.tar.xz
golang-1.20-43a123c1ae6613b3efeed291fa552ecd909d3acf.zip
Adding upstream version 1.20.14.upstream/1.20.14upstream
Signed-off-by: Daniel Baumann <daniel.baumann@progress-linux.org>
Diffstat (limited to 'src/regexp/syntax/compile.go')
-rw-r--r--src/regexp/syntax/compile.go296
1 files changed, 296 insertions, 0 deletions
diff --git a/src/regexp/syntax/compile.go b/src/regexp/syntax/compile.go
new file mode 100644
index 0000000..c9f9fa0
--- /dev/null
+++ b/src/regexp/syntax/compile.go
@@ -0,0 +1,296 @@
+// Copyright 2011 The Go Authors. All rights reserved.
+// Use of this source code is governed by a BSD-style
+// license that can be found in the LICENSE file.
+
+package syntax
+
+import "unicode"
+
+// A patchList is a list of instruction pointers that need to be filled in (patched).
+// Because the pointers haven't been filled in yet, we can reuse their storage
+// to hold the list. It's kind of sleazy, but works well in practice.
+// See https://swtch.com/~rsc/regexp/regexp1.html for inspiration.
+//
+// These aren't really pointers: they're integers, so we can reinterpret them
+// this way without using package unsafe. A value l.head denotes
+// p.inst[l.head>>1].Out (l.head&1==0) or .Arg (l.head&1==1).
+// head == 0 denotes the empty list, okay because we start every program
+// with a fail instruction, so we'll never want to point at its output link.
+type patchList struct {
+ head, tail uint32
+}
+
+func makePatchList(n uint32) patchList {
+ return patchList{n, n}
+}
+
+func (l patchList) patch(p *Prog, val uint32) {
+ head := l.head
+ for head != 0 {
+ i := &p.Inst[head>>1]
+ if head&1 == 0 {
+ head = i.Out
+ i.Out = val
+ } else {
+ head = i.Arg
+ i.Arg = val
+ }
+ }
+}
+
+func (l1 patchList) append(p *Prog, l2 patchList) patchList {
+ if l1.head == 0 {
+ return l2
+ }
+ if l2.head == 0 {
+ return l1
+ }
+
+ i := &p.Inst[l1.tail>>1]
+ if l1.tail&1 == 0 {
+ i.Out = l2.head
+ } else {
+ i.Arg = l2.head
+ }
+ return patchList{l1.head, l2.tail}
+}
+
+// A frag represents a compiled program fragment.
+type frag struct {
+ i uint32 // index of first instruction
+ out patchList // where to record end instruction
+ nullable bool // whether fragment can match empty string
+}
+
+type compiler struct {
+ p *Prog
+}
+
+// Compile compiles the regexp into a program to be executed.
+// The regexp should have been simplified already (returned from re.Simplify).
+func Compile(re *Regexp) (*Prog, error) {
+ var c compiler
+ c.init()
+ f := c.compile(re)
+ f.out.patch(c.p, c.inst(InstMatch).i)
+ c.p.Start = int(f.i)
+ return c.p, nil
+}
+
+func (c *compiler) init() {
+ c.p = new(Prog)
+ c.p.NumCap = 2 // implicit ( and ) for whole match $0
+ c.inst(InstFail)
+}
+
+var anyRuneNotNL = []rune{0, '\n' - 1, '\n' + 1, unicode.MaxRune}
+var anyRune = []rune{0, unicode.MaxRune}
+
+func (c *compiler) compile(re *Regexp) frag {
+ switch re.Op {
+ case OpNoMatch:
+ return c.fail()
+ case OpEmptyMatch:
+ return c.nop()
+ case OpLiteral:
+ if len(re.Rune) == 0 {
+ return c.nop()
+ }
+ var f frag
+ for j := range re.Rune {
+ f1 := c.rune(re.Rune[j:j+1], re.Flags)
+ if j == 0 {
+ f = f1
+ } else {
+ f = c.cat(f, f1)
+ }
+ }
+ return f
+ case OpCharClass:
+ return c.rune(re.Rune, re.Flags)
+ case OpAnyCharNotNL:
+ return c.rune(anyRuneNotNL, 0)
+ case OpAnyChar:
+ return c.rune(anyRune, 0)
+ case OpBeginLine:
+ return c.empty(EmptyBeginLine)
+ case OpEndLine:
+ return c.empty(EmptyEndLine)
+ case OpBeginText:
+ return c.empty(EmptyBeginText)
+ case OpEndText:
+ return c.empty(EmptyEndText)
+ case OpWordBoundary:
+ return c.empty(EmptyWordBoundary)
+ case OpNoWordBoundary:
+ return c.empty(EmptyNoWordBoundary)
+ case OpCapture:
+ bra := c.cap(uint32(re.Cap << 1))
+ sub := c.compile(re.Sub[0])
+ ket := c.cap(uint32(re.Cap<<1 | 1))
+ return c.cat(c.cat(bra, sub), ket)
+ case OpStar:
+ return c.star(c.compile(re.Sub[0]), re.Flags&NonGreedy != 0)
+ case OpPlus:
+ return c.plus(c.compile(re.Sub[0]), re.Flags&NonGreedy != 0)
+ case OpQuest:
+ return c.quest(c.compile(re.Sub[0]), re.Flags&NonGreedy != 0)
+ case OpConcat:
+ if len(re.Sub) == 0 {
+ return c.nop()
+ }
+ var f frag
+ for i, sub := range re.Sub {
+ if i == 0 {
+ f = c.compile(sub)
+ } else {
+ f = c.cat(f, c.compile(sub))
+ }
+ }
+ return f
+ case OpAlternate:
+ var f frag
+ for _, sub := range re.Sub {
+ f = c.alt(f, c.compile(sub))
+ }
+ return f
+ }
+ panic("regexp: unhandled case in compile")
+}
+
+func (c *compiler) inst(op InstOp) frag {
+ // TODO: impose length limit
+ f := frag{i: uint32(len(c.p.Inst)), nullable: true}
+ c.p.Inst = append(c.p.Inst, Inst{Op: op})
+ return f
+}
+
+func (c *compiler) nop() frag {
+ f := c.inst(InstNop)
+ f.out = makePatchList(f.i << 1)
+ return f
+}
+
+func (c *compiler) fail() frag {
+ return frag{}
+}
+
+func (c *compiler) cap(arg uint32) frag {
+ f := c.inst(InstCapture)
+ f.out = makePatchList(f.i << 1)
+ c.p.Inst[f.i].Arg = arg
+
+ if c.p.NumCap < int(arg)+1 {
+ c.p.NumCap = int(arg) + 1
+ }
+ return f
+}
+
+func (c *compiler) cat(f1, f2 frag) frag {
+ // concat of failure is failure
+ if f1.i == 0 || f2.i == 0 {
+ return frag{}
+ }
+
+ // TODO: elide nop
+
+ f1.out.patch(c.p, f2.i)
+ return frag{f1.i, f2.out, f1.nullable && f2.nullable}
+}
+
+func (c *compiler) alt(f1, f2 frag) frag {
+ // alt of failure is other
+ if f1.i == 0 {
+ return f2
+ }
+ if f2.i == 0 {
+ return f1
+ }
+
+ f := c.inst(InstAlt)
+ i := &c.p.Inst[f.i]
+ i.Out = f1.i
+ i.Arg = f2.i
+ f.out = f1.out.append(c.p, f2.out)
+ f.nullable = f1.nullable || f2.nullable
+ return f
+}
+
+func (c *compiler) quest(f1 frag, nongreedy bool) frag {
+ f := c.inst(InstAlt)
+ i := &c.p.Inst[f.i]
+ if nongreedy {
+ i.Arg = f1.i
+ f.out = makePatchList(f.i << 1)
+ } else {
+ i.Out = f1.i
+ f.out = makePatchList(f.i<<1 | 1)
+ }
+ f.out = f.out.append(c.p, f1.out)
+ return f
+}
+
+// loop returns the fragment for the main loop of a plus or star.
+// For plus, it can be used after changing the entry to f1.i.
+// For star, it can be used directly when f1 can't match an empty string.
+// (When f1 can match an empty string, f1* must be implemented as (f1+)?
+// to get the priority match order correct.)
+func (c *compiler) loop(f1 frag, nongreedy bool) frag {
+ f := c.inst(InstAlt)
+ i := &c.p.Inst[f.i]
+ if nongreedy {
+ i.Arg = f1.i
+ f.out = makePatchList(f.i << 1)
+ } else {
+ i.Out = f1.i
+ f.out = makePatchList(f.i<<1 | 1)
+ }
+ f1.out.patch(c.p, f.i)
+ return f
+}
+
+func (c *compiler) star(f1 frag, nongreedy bool) frag {
+ if f1.nullable {
+ // Use (f1+)? to get priority match order correct.
+ // See golang.org/issue/46123.
+ return c.quest(c.plus(f1, nongreedy), nongreedy)
+ }
+ return c.loop(f1, nongreedy)
+}
+
+func (c *compiler) plus(f1 frag, nongreedy bool) frag {
+ return frag{f1.i, c.loop(f1, nongreedy).out, f1.nullable}
+}
+
+func (c *compiler) empty(op EmptyOp) frag {
+ f := c.inst(InstEmptyWidth)
+ c.p.Inst[f.i].Arg = uint32(op)
+ f.out = makePatchList(f.i << 1)
+ return f
+}
+
+func (c *compiler) rune(r []rune, flags Flags) frag {
+ f := c.inst(InstRune)
+ f.nullable = false
+ i := &c.p.Inst[f.i]
+ i.Rune = r
+ flags &= FoldCase // only relevant flag is FoldCase
+ if len(r) != 1 || unicode.SimpleFold(r[0]) == r[0] {
+ // and sometimes not even that
+ flags &^= FoldCase
+ }
+ i.Arg = uint32(flags)
+ f.out = makePatchList(f.i << 1)
+
+ // Special cases for exec machine.
+ switch {
+ case flags&FoldCase == 0 && (len(r) == 1 || len(r) == 2 && r[0] == r[1]):
+ i.Op = InstRune1
+ case len(r) == 2 && r[0] == 0 && r[1] == unicode.MaxRune:
+ i.Op = InstRuneAny
+ case len(r) == 4 && r[0] == 0 && r[1] == '\n'-1 && r[2] == '\n'+1 && r[3] == unicode.MaxRune:
+ i.Op = InstRuneAnyNotNL
+ }
+
+ return f
+}