summaryrefslogtreecommitdiffstats
path: root/src/runtime/mprof.go
diff options
context:
space:
mode:
authorDaniel Baumann <daniel.baumann@progress-linux.org>2024-04-16 19:23:18 +0000
committerDaniel Baumann <daniel.baumann@progress-linux.org>2024-04-16 19:23:18 +0000
commit43a123c1ae6613b3efeed291fa552ecd909d3acf (patch)
treefd92518b7024bc74031f78a1cf9e454b65e73665 /src/runtime/mprof.go
parentInitial commit. (diff)
downloadgolang-1.20-upstream.tar.xz
golang-1.20-upstream.zip
Adding upstream version 1.20.14.upstream/1.20.14upstream
Signed-off-by: Daniel Baumann <daniel.baumann@progress-linux.org>
Diffstat (limited to '')
-rw-r--r--src/runtime/mprof.go1281
1 files changed, 1281 insertions, 0 deletions
diff --git a/src/runtime/mprof.go b/src/runtime/mprof.go
new file mode 100644
index 0000000..24f8889
--- /dev/null
+++ b/src/runtime/mprof.go
@@ -0,0 +1,1281 @@
+// Copyright 2009 The Go Authors. All rights reserved.
+// Use of this source code is governed by a BSD-style
+// license that can be found in the LICENSE file.
+
+// Malloc profiling.
+// Patterned after tcmalloc's algorithms; shorter code.
+
+package runtime
+
+import (
+ "internal/abi"
+ "runtime/internal/atomic"
+ "runtime/internal/sys"
+ "unsafe"
+)
+
+// NOTE(rsc): Everything here could use cas if contention became an issue.
+var (
+ // profInsertLock protects changes to the start of all *bucket linked lists
+ profInsertLock mutex
+ // profBlockLock protects the contents of every blockRecord struct
+ profBlockLock mutex
+ // profMemActiveLock protects the active field of every memRecord struct
+ profMemActiveLock mutex
+ // profMemFutureLock is a set of locks that protect the respective elements
+ // of the future array of every memRecord struct
+ profMemFutureLock [len(memRecord{}.future)]mutex
+)
+
+// All memory allocations are local and do not escape outside of the profiler.
+// The profiler is forbidden from referring to garbage-collected memory.
+
+const (
+ // profile types
+ memProfile bucketType = 1 + iota
+ blockProfile
+ mutexProfile
+
+ // size of bucket hash table
+ buckHashSize = 179999
+
+ // max depth of stack to record in bucket
+ maxStack = 32
+)
+
+type bucketType int
+
+// A bucket holds per-call-stack profiling information.
+// The representation is a bit sleazy, inherited from C.
+// This struct defines the bucket header. It is followed in
+// memory by the stack words and then the actual record
+// data, either a memRecord or a blockRecord.
+//
+// Per-call-stack profiling information.
+// Lookup by hashing call stack into a linked-list hash table.
+//
+// None of the fields in this bucket header are modified after
+// creation, including its next and allnext links.
+//
+// No heap pointers.
+type bucket struct {
+ _ sys.NotInHeap
+ next *bucket
+ allnext *bucket
+ typ bucketType // memBucket or blockBucket (includes mutexProfile)
+ hash uintptr
+ size uintptr
+ nstk uintptr
+}
+
+// A memRecord is the bucket data for a bucket of type memProfile,
+// part of the memory profile.
+type memRecord struct {
+ // The following complex 3-stage scheme of stats accumulation
+ // is required to obtain a consistent picture of mallocs and frees
+ // for some point in time.
+ // The problem is that mallocs come in real time, while frees
+ // come only after a GC during concurrent sweeping. So if we would
+ // naively count them, we would get a skew toward mallocs.
+ //
+ // Hence, we delay information to get consistent snapshots as
+ // of mark termination. Allocations count toward the next mark
+ // termination's snapshot, while sweep frees count toward the
+ // previous mark termination's snapshot:
+ //
+ // MT MT MT MT
+ // .·| .·| .·| .·|
+ // .·˙ | .·˙ | .·˙ | .·˙ |
+ // .·˙ | .·˙ | .·˙ | .·˙ |
+ // .·˙ |.·˙ |.·˙ |.·˙ |
+ //
+ // alloc → ▲ ← free
+ // ┠┅┅┅┅┅┅┅┅┅┅┅P
+ // C+2 → C+1 → C
+ //
+ // alloc → ▲ ← free
+ // ┠┅┅┅┅┅┅┅┅┅┅┅P
+ // C+2 → C+1 → C
+ //
+ // Since we can't publish a consistent snapshot until all of
+ // the sweep frees are accounted for, we wait until the next
+ // mark termination ("MT" above) to publish the previous mark
+ // termination's snapshot ("P" above). To do this, allocation
+ // and free events are accounted to *future* heap profile
+ // cycles ("C+n" above) and we only publish a cycle once all
+ // of the events from that cycle must be done. Specifically:
+ //
+ // Mallocs are accounted to cycle C+2.
+ // Explicit frees are accounted to cycle C+2.
+ // GC frees (done during sweeping) are accounted to cycle C+1.
+ //
+ // After mark termination, we increment the global heap
+ // profile cycle counter and accumulate the stats from cycle C
+ // into the active profile.
+
+ // active is the currently published profile. A profiling
+ // cycle can be accumulated into active once its complete.
+ active memRecordCycle
+
+ // future records the profile events we're counting for cycles
+ // that have not yet been published. This is ring buffer
+ // indexed by the global heap profile cycle C and stores
+ // cycles C, C+1, and C+2. Unlike active, these counts are
+ // only for a single cycle; they are not cumulative across
+ // cycles.
+ //
+ // We store cycle C here because there's a window between when
+ // C becomes the active cycle and when we've flushed it to
+ // active.
+ future [3]memRecordCycle
+}
+
+// memRecordCycle
+type memRecordCycle struct {
+ allocs, frees uintptr
+ alloc_bytes, free_bytes uintptr
+}
+
+// add accumulates b into a. It does not zero b.
+func (a *memRecordCycle) add(b *memRecordCycle) {
+ a.allocs += b.allocs
+ a.frees += b.frees
+ a.alloc_bytes += b.alloc_bytes
+ a.free_bytes += b.free_bytes
+}
+
+// A blockRecord is the bucket data for a bucket of type blockProfile,
+// which is used in blocking and mutex profiles.
+type blockRecord struct {
+ count float64
+ cycles int64
+}
+
+var (
+ mbuckets atomic.UnsafePointer // *bucket, memory profile buckets
+ bbuckets atomic.UnsafePointer // *bucket, blocking profile buckets
+ xbuckets atomic.UnsafePointer // *bucket, mutex profile buckets
+ buckhash atomic.UnsafePointer // *buckhashArray
+
+ mProfCycle mProfCycleHolder
+)
+
+type buckhashArray [buckHashSize]atomic.UnsafePointer // *bucket
+
+const mProfCycleWrap = uint32(len(memRecord{}.future)) * (2 << 24)
+
+// mProfCycleHolder holds the global heap profile cycle number (wrapped at
+// mProfCycleWrap, stored starting at bit 1), and a flag (stored at bit 0) to
+// indicate whether future[cycle] in all buckets has been queued to flush into
+// the active profile.
+type mProfCycleHolder struct {
+ value atomic.Uint32
+}
+
+// read returns the current cycle count.
+func (c *mProfCycleHolder) read() (cycle uint32) {
+ v := c.value.Load()
+ cycle = v >> 1
+ return cycle
+}
+
+// setFlushed sets the flushed flag. It returns the current cycle count and the
+// previous value of the flushed flag.
+func (c *mProfCycleHolder) setFlushed() (cycle uint32, alreadyFlushed bool) {
+ for {
+ prev := c.value.Load()
+ cycle = prev >> 1
+ alreadyFlushed = (prev & 0x1) != 0
+ next := prev | 0x1
+ if c.value.CompareAndSwap(prev, next) {
+ return cycle, alreadyFlushed
+ }
+ }
+}
+
+// increment increases the cycle count by one, wrapping the value at
+// mProfCycleWrap. It clears the flushed flag.
+func (c *mProfCycleHolder) increment() {
+ // We explicitly wrap mProfCycle rather than depending on
+ // uint wraparound because the memRecord.future ring does not
+ // itself wrap at a power of two.
+ for {
+ prev := c.value.Load()
+ cycle := prev >> 1
+ cycle = (cycle + 1) % mProfCycleWrap
+ next := cycle << 1
+ if c.value.CompareAndSwap(prev, next) {
+ break
+ }
+ }
+}
+
+// newBucket allocates a bucket with the given type and number of stack entries.
+func newBucket(typ bucketType, nstk int) *bucket {
+ size := unsafe.Sizeof(bucket{}) + uintptr(nstk)*unsafe.Sizeof(uintptr(0))
+ switch typ {
+ default:
+ throw("invalid profile bucket type")
+ case memProfile:
+ size += unsafe.Sizeof(memRecord{})
+ case blockProfile, mutexProfile:
+ size += unsafe.Sizeof(blockRecord{})
+ }
+
+ b := (*bucket)(persistentalloc(size, 0, &memstats.buckhash_sys))
+ b.typ = typ
+ b.nstk = uintptr(nstk)
+ return b
+}
+
+// stk returns the slice in b holding the stack.
+func (b *bucket) stk() []uintptr {
+ stk := (*[maxStack]uintptr)(add(unsafe.Pointer(b), unsafe.Sizeof(*b)))
+ return stk[:b.nstk:b.nstk]
+}
+
+// mp returns the memRecord associated with the memProfile bucket b.
+func (b *bucket) mp() *memRecord {
+ if b.typ != memProfile {
+ throw("bad use of bucket.mp")
+ }
+ data := add(unsafe.Pointer(b), unsafe.Sizeof(*b)+b.nstk*unsafe.Sizeof(uintptr(0)))
+ return (*memRecord)(data)
+}
+
+// bp returns the blockRecord associated with the blockProfile bucket b.
+func (b *bucket) bp() *blockRecord {
+ if b.typ != blockProfile && b.typ != mutexProfile {
+ throw("bad use of bucket.bp")
+ }
+ data := add(unsafe.Pointer(b), unsafe.Sizeof(*b)+b.nstk*unsafe.Sizeof(uintptr(0)))
+ return (*blockRecord)(data)
+}
+
+// Return the bucket for stk[0:nstk], allocating new bucket if needed.
+func stkbucket(typ bucketType, size uintptr, stk []uintptr, alloc bool) *bucket {
+ bh := (*buckhashArray)(buckhash.Load())
+ if bh == nil {
+ lock(&profInsertLock)
+ // check again under the lock
+ bh = (*buckhashArray)(buckhash.Load())
+ if bh == nil {
+ bh = (*buckhashArray)(sysAlloc(unsafe.Sizeof(buckhashArray{}), &memstats.buckhash_sys))
+ if bh == nil {
+ throw("runtime: cannot allocate memory")
+ }
+ buckhash.StoreNoWB(unsafe.Pointer(bh))
+ }
+ unlock(&profInsertLock)
+ }
+
+ // Hash stack.
+ var h uintptr
+ for _, pc := range stk {
+ h += pc
+ h += h << 10
+ h ^= h >> 6
+ }
+ // hash in size
+ h += size
+ h += h << 10
+ h ^= h >> 6
+ // finalize
+ h += h << 3
+ h ^= h >> 11
+
+ i := int(h % buckHashSize)
+ // first check optimistically, without the lock
+ for b := (*bucket)(bh[i].Load()); b != nil; b = b.next {
+ if b.typ == typ && b.hash == h && b.size == size && eqslice(b.stk(), stk) {
+ return b
+ }
+ }
+
+ if !alloc {
+ return nil
+ }
+
+ lock(&profInsertLock)
+ // check again under the insertion lock
+ for b := (*bucket)(bh[i].Load()); b != nil; b = b.next {
+ if b.typ == typ && b.hash == h && b.size == size && eqslice(b.stk(), stk) {
+ unlock(&profInsertLock)
+ return b
+ }
+ }
+
+ // Create new bucket.
+ b := newBucket(typ, len(stk))
+ copy(b.stk(), stk)
+ b.hash = h
+ b.size = size
+
+ var allnext *atomic.UnsafePointer
+ if typ == memProfile {
+ allnext = &mbuckets
+ } else if typ == mutexProfile {
+ allnext = &xbuckets
+ } else {
+ allnext = &bbuckets
+ }
+
+ b.next = (*bucket)(bh[i].Load())
+ b.allnext = (*bucket)(allnext.Load())
+
+ bh[i].StoreNoWB(unsafe.Pointer(b))
+ allnext.StoreNoWB(unsafe.Pointer(b))
+
+ unlock(&profInsertLock)
+ return b
+}
+
+func eqslice(x, y []uintptr) bool {
+ if len(x) != len(y) {
+ return false
+ }
+ for i, xi := range x {
+ if xi != y[i] {
+ return false
+ }
+ }
+ return true
+}
+
+// mProf_NextCycle publishes the next heap profile cycle and creates a
+// fresh heap profile cycle. This operation is fast and can be done
+// during STW. The caller must call mProf_Flush before calling
+// mProf_NextCycle again.
+//
+// This is called by mark termination during STW so allocations and
+// frees after the world is started again count towards a new heap
+// profiling cycle.
+func mProf_NextCycle() {
+ mProfCycle.increment()
+}
+
+// mProf_Flush flushes the events from the current heap profiling
+// cycle into the active profile. After this it is safe to start a new
+// heap profiling cycle with mProf_NextCycle.
+//
+// This is called by GC after mark termination starts the world. In
+// contrast with mProf_NextCycle, this is somewhat expensive, but safe
+// to do concurrently.
+func mProf_Flush() {
+ cycle, alreadyFlushed := mProfCycle.setFlushed()
+ if alreadyFlushed {
+ return
+ }
+
+ index := cycle % uint32(len(memRecord{}.future))
+ lock(&profMemActiveLock)
+ lock(&profMemFutureLock[index])
+ mProf_FlushLocked(index)
+ unlock(&profMemFutureLock[index])
+ unlock(&profMemActiveLock)
+}
+
+// mProf_FlushLocked flushes the events from the heap profiling cycle at index
+// into the active profile. The caller must hold the lock for the active profile
+// (profMemActiveLock) and for the profiling cycle at index
+// (profMemFutureLock[index]).
+func mProf_FlushLocked(index uint32) {
+ assertLockHeld(&profMemActiveLock)
+ assertLockHeld(&profMemFutureLock[index])
+ head := (*bucket)(mbuckets.Load())
+ for b := head; b != nil; b = b.allnext {
+ mp := b.mp()
+
+ // Flush cycle C into the published profile and clear
+ // it for reuse.
+ mpc := &mp.future[index]
+ mp.active.add(mpc)
+ *mpc = memRecordCycle{}
+ }
+}
+
+// mProf_PostSweep records that all sweep frees for this GC cycle have
+// completed. This has the effect of publishing the heap profile
+// snapshot as of the last mark termination without advancing the heap
+// profile cycle.
+func mProf_PostSweep() {
+ // Flush cycle C+1 to the active profile so everything as of
+ // the last mark termination becomes visible. *Don't* advance
+ // the cycle, since we're still accumulating allocs in cycle
+ // C+2, which have to become C+1 in the next mark termination
+ // and so on.
+ cycle := mProfCycle.read() + 1
+
+ index := cycle % uint32(len(memRecord{}.future))
+ lock(&profMemActiveLock)
+ lock(&profMemFutureLock[index])
+ mProf_FlushLocked(index)
+ unlock(&profMemFutureLock[index])
+ unlock(&profMemActiveLock)
+}
+
+// Called by malloc to record a profiled block.
+func mProf_Malloc(p unsafe.Pointer, size uintptr) {
+ var stk [maxStack]uintptr
+ nstk := callers(4, stk[:])
+
+ index := (mProfCycle.read() + 2) % uint32(len(memRecord{}.future))
+
+ b := stkbucket(memProfile, size, stk[:nstk], true)
+ mp := b.mp()
+ mpc := &mp.future[index]
+
+ lock(&profMemFutureLock[index])
+ mpc.allocs++
+ mpc.alloc_bytes += size
+ unlock(&profMemFutureLock[index])
+
+ // Setprofilebucket locks a bunch of other mutexes, so we call it outside of
+ // the profiler locks. This reduces potential contention and chances of
+ // deadlocks. Since the object must be alive during the call to
+ // mProf_Malloc, it's fine to do this non-atomically.
+ systemstack(func() {
+ setprofilebucket(p, b)
+ })
+}
+
+// Called when freeing a profiled block.
+func mProf_Free(b *bucket, size uintptr) {
+ index := (mProfCycle.read() + 1) % uint32(len(memRecord{}.future))
+
+ mp := b.mp()
+ mpc := &mp.future[index]
+
+ lock(&profMemFutureLock[index])
+ mpc.frees++
+ mpc.free_bytes += size
+ unlock(&profMemFutureLock[index])
+}
+
+var blockprofilerate uint64 // in CPU ticks
+
+// SetBlockProfileRate controls the fraction of goroutine blocking events
+// that are reported in the blocking profile. The profiler aims to sample
+// an average of one blocking event per rate nanoseconds spent blocked.
+//
+// To include every blocking event in the profile, pass rate = 1.
+// To turn off profiling entirely, pass rate <= 0.
+func SetBlockProfileRate(rate int) {
+ var r int64
+ if rate <= 0 {
+ r = 0 // disable profiling
+ } else if rate == 1 {
+ r = 1 // profile everything
+ } else {
+ // convert ns to cycles, use float64 to prevent overflow during multiplication
+ r = int64(float64(rate) * float64(tickspersecond()) / (1000 * 1000 * 1000))
+ if r == 0 {
+ r = 1
+ }
+ }
+
+ atomic.Store64(&blockprofilerate, uint64(r))
+}
+
+func blockevent(cycles int64, skip int) {
+ if cycles <= 0 {
+ cycles = 1
+ }
+
+ rate := int64(atomic.Load64(&blockprofilerate))
+ if blocksampled(cycles, rate) {
+ saveblockevent(cycles, rate, skip+1, blockProfile)
+ }
+}
+
+// blocksampled returns true for all events where cycles >= rate. Shorter
+// events have a cycles/rate random chance of returning true.
+func blocksampled(cycles, rate int64) bool {
+ if rate <= 0 || (rate > cycles && int64(fastrand())%rate > cycles) {
+ return false
+ }
+ return true
+}
+
+func saveblockevent(cycles, rate int64, skip int, which bucketType) {
+ gp := getg()
+ var nstk int
+ var stk [maxStack]uintptr
+ if gp.m.curg == nil || gp.m.curg == gp {
+ nstk = callers(skip, stk[:])
+ } else {
+ nstk = gcallers(gp.m.curg, skip, stk[:])
+ }
+ b := stkbucket(which, 0, stk[:nstk], true)
+ bp := b.bp()
+
+ lock(&profBlockLock)
+ // We want to up-scale the count and cycles according to the
+ // probability that the event was sampled. For block profile events,
+ // the sample probability is 1 if cycles >= rate, and cycles / rate
+ // otherwise. For mutex profile events, the sample probability is 1 / rate.
+ // We scale the events by 1 / (probability the event was sampled).
+ if which == blockProfile && cycles < rate {
+ // Remove sampling bias, see discussion on http://golang.org/cl/299991.
+ bp.count += float64(rate) / float64(cycles)
+ bp.cycles += rate
+ } else if which == mutexProfile {
+ bp.count += float64(rate)
+ bp.cycles += rate * cycles
+ } else {
+ bp.count++
+ bp.cycles += cycles
+ }
+ unlock(&profBlockLock)
+}
+
+var mutexprofilerate uint64 // fraction sampled
+
+// SetMutexProfileFraction controls the fraction of mutex contention events
+// that are reported in the mutex profile. On average 1/rate events are
+// reported. The previous rate is returned.
+//
+// To turn off profiling entirely, pass rate 0.
+// To just read the current rate, pass rate < 0.
+// (For n>1 the details of sampling may change.)
+func SetMutexProfileFraction(rate int) int {
+ if rate < 0 {
+ return int(mutexprofilerate)
+ }
+ old := mutexprofilerate
+ atomic.Store64(&mutexprofilerate, uint64(rate))
+ return int(old)
+}
+
+//go:linkname mutexevent sync.event
+func mutexevent(cycles int64, skip int) {
+ if cycles < 0 {
+ cycles = 0
+ }
+ rate := int64(atomic.Load64(&mutexprofilerate))
+ // TODO(pjw): measure impact of always calling fastrand vs using something
+ // like malloc.go:nextSample()
+ if rate > 0 && int64(fastrand())%rate == 0 {
+ saveblockevent(cycles, rate, skip+1, mutexProfile)
+ }
+}
+
+// Go interface to profile data.
+
+// A StackRecord describes a single execution stack.
+type StackRecord struct {
+ Stack0 [32]uintptr // stack trace for this record; ends at first 0 entry
+}
+
+// Stack returns the stack trace associated with the record,
+// a prefix of r.Stack0.
+func (r *StackRecord) Stack() []uintptr {
+ for i, v := range r.Stack0 {
+ if v == 0 {
+ return r.Stack0[0:i]
+ }
+ }
+ return r.Stack0[0:]
+}
+
+// MemProfileRate controls the fraction of memory allocations
+// that are recorded and reported in the memory profile.
+// The profiler aims to sample an average of
+// one allocation per MemProfileRate bytes allocated.
+//
+// To include every allocated block in the profile, set MemProfileRate to 1.
+// To turn off profiling entirely, set MemProfileRate to 0.
+//
+// The tools that process the memory profiles assume that the
+// profile rate is constant across the lifetime of the program
+// and equal to the current value. Programs that change the
+// memory profiling rate should do so just once, as early as
+// possible in the execution of the program (for example,
+// at the beginning of main).
+var MemProfileRate int = 512 * 1024
+
+// disableMemoryProfiling is set by the linker if runtime.MemProfile
+// is not used and the link type guarantees nobody else could use it
+// elsewhere.
+var disableMemoryProfiling bool
+
+// A MemProfileRecord describes the live objects allocated
+// by a particular call sequence (stack trace).
+type MemProfileRecord struct {
+ AllocBytes, FreeBytes int64 // number of bytes allocated, freed
+ AllocObjects, FreeObjects int64 // number of objects allocated, freed
+ Stack0 [32]uintptr // stack trace for this record; ends at first 0 entry
+}
+
+// InUseBytes returns the number of bytes in use (AllocBytes - FreeBytes).
+func (r *MemProfileRecord) InUseBytes() int64 { return r.AllocBytes - r.FreeBytes }
+
+// InUseObjects returns the number of objects in use (AllocObjects - FreeObjects).
+func (r *MemProfileRecord) InUseObjects() int64 {
+ return r.AllocObjects - r.FreeObjects
+}
+
+// Stack returns the stack trace associated with the record,
+// a prefix of r.Stack0.
+func (r *MemProfileRecord) Stack() []uintptr {
+ for i, v := range r.Stack0 {
+ if v == 0 {
+ return r.Stack0[0:i]
+ }
+ }
+ return r.Stack0[0:]
+}
+
+// MemProfile returns a profile of memory allocated and freed per allocation
+// site.
+//
+// MemProfile returns n, the number of records in the current memory profile.
+// If len(p) >= n, MemProfile copies the profile into p and returns n, true.
+// If len(p) < n, MemProfile does not change p and returns n, false.
+//
+// If inuseZero is true, the profile includes allocation records
+// where r.AllocBytes > 0 but r.AllocBytes == r.FreeBytes.
+// These are sites where memory was allocated, but it has all
+// been released back to the runtime.
+//
+// The returned profile may be up to two garbage collection cycles old.
+// This is to avoid skewing the profile toward allocations; because
+// allocations happen in real time but frees are delayed until the garbage
+// collector performs sweeping, the profile only accounts for allocations
+// that have had a chance to be freed by the garbage collector.
+//
+// Most clients should use the runtime/pprof package or
+// the testing package's -test.memprofile flag instead
+// of calling MemProfile directly.
+func MemProfile(p []MemProfileRecord, inuseZero bool) (n int, ok bool) {
+ cycle := mProfCycle.read()
+ // If we're between mProf_NextCycle and mProf_Flush, take care
+ // of flushing to the active profile so we only have to look
+ // at the active profile below.
+ index := cycle % uint32(len(memRecord{}.future))
+ lock(&profMemActiveLock)
+ lock(&profMemFutureLock[index])
+ mProf_FlushLocked(index)
+ unlock(&profMemFutureLock[index])
+ clear := true
+ head := (*bucket)(mbuckets.Load())
+ for b := head; b != nil; b = b.allnext {
+ mp := b.mp()
+ if inuseZero || mp.active.alloc_bytes != mp.active.free_bytes {
+ n++
+ }
+ if mp.active.allocs != 0 || mp.active.frees != 0 {
+ clear = false
+ }
+ }
+ if clear {
+ // Absolutely no data, suggesting that a garbage collection
+ // has not yet happened. In order to allow profiling when
+ // garbage collection is disabled from the beginning of execution,
+ // accumulate all of the cycles, and recount buckets.
+ n = 0
+ for b := head; b != nil; b = b.allnext {
+ mp := b.mp()
+ for c := range mp.future {
+ lock(&profMemFutureLock[c])
+ mp.active.add(&mp.future[c])
+ mp.future[c] = memRecordCycle{}
+ unlock(&profMemFutureLock[c])
+ }
+ if inuseZero || mp.active.alloc_bytes != mp.active.free_bytes {
+ n++
+ }
+ }
+ }
+ if n <= len(p) {
+ ok = true
+ idx := 0
+ for b := head; b != nil; b = b.allnext {
+ mp := b.mp()
+ if inuseZero || mp.active.alloc_bytes != mp.active.free_bytes {
+ record(&p[idx], b)
+ idx++
+ }
+ }
+ }
+ unlock(&profMemActiveLock)
+ return
+}
+
+// Write b's data to r.
+func record(r *MemProfileRecord, b *bucket) {
+ mp := b.mp()
+ r.AllocBytes = int64(mp.active.alloc_bytes)
+ r.FreeBytes = int64(mp.active.free_bytes)
+ r.AllocObjects = int64(mp.active.allocs)
+ r.FreeObjects = int64(mp.active.frees)
+ if raceenabled {
+ racewriterangepc(unsafe.Pointer(&r.Stack0[0]), unsafe.Sizeof(r.Stack0), getcallerpc(), abi.FuncPCABIInternal(MemProfile))
+ }
+ if msanenabled {
+ msanwrite(unsafe.Pointer(&r.Stack0[0]), unsafe.Sizeof(r.Stack0))
+ }
+ if asanenabled {
+ asanwrite(unsafe.Pointer(&r.Stack0[0]), unsafe.Sizeof(r.Stack0))
+ }
+ copy(r.Stack0[:], b.stk())
+ for i := int(b.nstk); i < len(r.Stack0); i++ {
+ r.Stack0[i] = 0
+ }
+}
+
+func iterate_memprof(fn func(*bucket, uintptr, *uintptr, uintptr, uintptr, uintptr)) {
+ lock(&profMemActiveLock)
+ head := (*bucket)(mbuckets.Load())
+ for b := head; b != nil; b = b.allnext {
+ mp := b.mp()
+ fn(b, b.nstk, &b.stk()[0], b.size, mp.active.allocs, mp.active.frees)
+ }
+ unlock(&profMemActiveLock)
+}
+
+// BlockProfileRecord describes blocking events originated
+// at a particular call sequence (stack trace).
+type BlockProfileRecord struct {
+ Count int64
+ Cycles int64
+ StackRecord
+}
+
+// BlockProfile returns n, the number of records in the current blocking profile.
+// If len(p) >= n, BlockProfile copies the profile into p and returns n, true.
+// If len(p) < n, BlockProfile does not change p and returns n, false.
+//
+// Most clients should use the runtime/pprof package or
+// the testing package's -test.blockprofile flag instead
+// of calling BlockProfile directly.
+func BlockProfile(p []BlockProfileRecord) (n int, ok bool) {
+ lock(&profBlockLock)
+ head := (*bucket)(bbuckets.Load())
+ for b := head; b != nil; b = b.allnext {
+ n++
+ }
+ if n <= len(p) {
+ ok = true
+ for b := head; b != nil; b = b.allnext {
+ bp := b.bp()
+ r := &p[0]
+ r.Count = int64(bp.count)
+ // Prevent callers from having to worry about division by zero errors.
+ // See discussion on http://golang.org/cl/299991.
+ if r.Count == 0 {
+ r.Count = 1
+ }
+ r.Cycles = bp.cycles
+ if raceenabled {
+ racewriterangepc(unsafe.Pointer(&r.Stack0[0]), unsafe.Sizeof(r.Stack0), getcallerpc(), abi.FuncPCABIInternal(BlockProfile))
+ }
+ if msanenabled {
+ msanwrite(unsafe.Pointer(&r.Stack0[0]), unsafe.Sizeof(r.Stack0))
+ }
+ if asanenabled {
+ asanwrite(unsafe.Pointer(&r.Stack0[0]), unsafe.Sizeof(r.Stack0))
+ }
+ i := copy(r.Stack0[:], b.stk())
+ for ; i < len(r.Stack0); i++ {
+ r.Stack0[i] = 0
+ }
+ p = p[1:]
+ }
+ }
+ unlock(&profBlockLock)
+ return
+}
+
+// MutexProfile returns n, the number of records in the current mutex profile.
+// If len(p) >= n, MutexProfile copies the profile into p and returns n, true.
+// Otherwise, MutexProfile does not change p, and returns n, false.
+//
+// Most clients should use the runtime/pprof package
+// instead of calling MutexProfile directly.
+func MutexProfile(p []BlockProfileRecord) (n int, ok bool) {
+ lock(&profBlockLock)
+ head := (*bucket)(xbuckets.Load())
+ for b := head; b != nil; b = b.allnext {
+ n++
+ }
+ if n <= len(p) {
+ ok = true
+ for b := head; b != nil; b = b.allnext {
+ bp := b.bp()
+ r := &p[0]
+ r.Count = int64(bp.count)
+ r.Cycles = bp.cycles
+ i := copy(r.Stack0[:], b.stk())
+ for ; i < len(r.Stack0); i++ {
+ r.Stack0[i] = 0
+ }
+ p = p[1:]
+ }
+ }
+ unlock(&profBlockLock)
+ return
+}
+
+// ThreadCreateProfile returns n, the number of records in the thread creation profile.
+// If len(p) >= n, ThreadCreateProfile copies the profile into p and returns n, true.
+// If len(p) < n, ThreadCreateProfile does not change p and returns n, false.
+//
+// Most clients should use the runtime/pprof package instead
+// of calling ThreadCreateProfile directly.
+func ThreadCreateProfile(p []StackRecord) (n int, ok bool) {
+ first := (*m)(atomic.Loadp(unsafe.Pointer(&allm)))
+ for mp := first; mp != nil; mp = mp.alllink {
+ n++
+ }
+ if n <= len(p) {
+ ok = true
+ i := 0
+ for mp := first; mp != nil; mp = mp.alllink {
+ p[i].Stack0 = mp.createstack
+ i++
+ }
+ }
+ return
+}
+
+//go:linkname runtime_goroutineProfileWithLabels runtime/pprof.runtime_goroutineProfileWithLabels
+func runtime_goroutineProfileWithLabels(p []StackRecord, labels []unsafe.Pointer) (n int, ok bool) {
+ return goroutineProfileWithLabels(p, labels)
+}
+
+const go119ConcurrentGoroutineProfile = true
+
+// labels may be nil. If labels is non-nil, it must have the same length as p.
+func goroutineProfileWithLabels(p []StackRecord, labels []unsafe.Pointer) (n int, ok bool) {
+ if labels != nil && len(labels) != len(p) {
+ labels = nil
+ }
+
+ if go119ConcurrentGoroutineProfile {
+ return goroutineProfileWithLabelsConcurrent(p, labels)
+ }
+ return goroutineProfileWithLabelsSync(p, labels)
+}
+
+var goroutineProfile = struct {
+ sema uint32
+ active bool
+ offset atomic.Int64
+ records []StackRecord
+ labels []unsafe.Pointer
+}{
+ sema: 1,
+}
+
+// goroutineProfileState indicates the status of a goroutine's stack for the
+// current in-progress goroutine profile. Goroutines' stacks are initially
+// "Absent" from the profile, and end up "Satisfied" by the time the profile is
+// complete. While a goroutine's stack is being captured, its
+// goroutineProfileState will be "InProgress" and it will not be able to run
+// until the capture completes and the state moves to "Satisfied".
+//
+// Some goroutines (the finalizer goroutine, which at various times can be
+// either a "system" or a "user" goroutine, and the goroutine that is
+// coordinating the profile, any goroutines created during the profile) move
+// directly to the "Satisfied" state.
+type goroutineProfileState uint32
+
+const (
+ goroutineProfileAbsent goroutineProfileState = iota
+ goroutineProfileInProgress
+ goroutineProfileSatisfied
+)
+
+type goroutineProfileStateHolder atomic.Uint32
+
+func (p *goroutineProfileStateHolder) Load() goroutineProfileState {
+ return goroutineProfileState((*atomic.Uint32)(p).Load())
+}
+
+func (p *goroutineProfileStateHolder) Store(value goroutineProfileState) {
+ (*atomic.Uint32)(p).Store(uint32(value))
+}
+
+func (p *goroutineProfileStateHolder) CompareAndSwap(old, new goroutineProfileState) bool {
+ return (*atomic.Uint32)(p).CompareAndSwap(uint32(old), uint32(new))
+}
+
+func goroutineProfileWithLabelsConcurrent(p []StackRecord, labels []unsafe.Pointer) (n int, ok bool) {
+ semacquire(&goroutineProfile.sema)
+
+ ourg := getg()
+
+ stopTheWorld("profile")
+ // Using gcount while the world is stopped should give us a consistent view
+ // of the number of live goroutines, minus the number of goroutines that are
+ // alive and permanently marked as "system". But to make this count agree
+ // with what we'd get from isSystemGoroutine, we need special handling for
+ // goroutines that can vary between user and system to ensure that the count
+ // doesn't change during the collection. So, check the finalizer goroutine
+ // in particular.
+ n = int(gcount())
+ if fingStatus.Load()&fingRunningFinalizer != 0 {
+ n++
+ }
+
+ if n > len(p) {
+ // There's not enough space in p to store the whole profile, so (per the
+ // contract of runtime.GoroutineProfile) we're not allowed to write to p
+ // at all and must return n, false.
+ startTheWorld()
+ semrelease(&goroutineProfile.sema)
+ return n, false
+ }
+
+ // Save current goroutine.
+ sp := getcallersp()
+ pc := getcallerpc()
+ systemstack(func() {
+ saveg(pc, sp, ourg, &p[0])
+ })
+ ourg.goroutineProfiled.Store(goroutineProfileSatisfied)
+ goroutineProfile.offset.Store(1)
+
+ // Prepare for all other goroutines to enter the profile. Aside from ourg,
+ // every goroutine struct in the allgs list has its goroutineProfiled field
+ // cleared. Any goroutine created from this point on (while
+ // goroutineProfile.active is set) will start with its goroutineProfiled
+ // field set to goroutineProfileSatisfied.
+ goroutineProfile.active = true
+ goroutineProfile.records = p
+ goroutineProfile.labels = labels
+ // The finalizer goroutine needs special handling because it can vary over
+ // time between being a user goroutine (eligible for this profile) and a
+ // system goroutine (to be excluded). Pick one before restarting the world.
+ if fing != nil {
+ fing.goroutineProfiled.Store(goroutineProfileSatisfied)
+ if readgstatus(fing) != _Gdead && !isSystemGoroutine(fing, false) {
+ doRecordGoroutineProfile(fing)
+ }
+ }
+ startTheWorld()
+
+ // Visit each goroutine that existed as of the startTheWorld call above.
+ //
+ // New goroutines may not be in this list, but we didn't want to know about
+ // them anyway. If they do appear in this list (via reusing a dead goroutine
+ // struct, or racing to launch between the world restarting and us getting
+ // the list), they will already have their goroutineProfiled field set to
+ // goroutineProfileSatisfied before their state transitions out of _Gdead.
+ //
+ // Any goroutine that the scheduler tries to execute concurrently with this
+ // call will start by adding itself to the profile (before the act of
+ // executing can cause any changes in its stack).
+ forEachGRace(func(gp1 *g) {
+ tryRecordGoroutineProfile(gp1, Gosched)
+ })
+
+ stopTheWorld("profile cleanup")
+ endOffset := goroutineProfile.offset.Swap(0)
+ goroutineProfile.active = false
+ goroutineProfile.records = nil
+ goroutineProfile.labels = nil
+ startTheWorld()
+
+ // Restore the invariant that every goroutine struct in allgs has its
+ // goroutineProfiled field cleared.
+ forEachGRace(func(gp1 *g) {
+ gp1.goroutineProfiled.Store(goroutineProfileAbsent)
+ })
+
+ if raceenabled {
+ raceacquire(unsafe.Pointer(&labelSync))
+ }
+
+ if n != int(endOffset) {
+ // It's a big surprise that the number of goroutines changed while we
+ // were collecting the profile. But probably better to return a
+ // truncated profile than to crash the whole process.
+ //
+ // For instance, needm moves a goroutine out of the _Gdead state and so
+ // might be able to change the goroutine count without interacting with
+ // the scheduler. For code like that, the race windows are small and the
+ // combination of features is uncommon, so it's hard to be (and remain)
+ // sure we've caught them all.
+ }
+
+ semrelease(&goroutineProfile.sema)
+ return n, true
+}
+
+// tryRecordGoroutineProfileWB asserts that write barriers are allowed and calls
+// tryRecordGoroutineProfile.
+//
+//go:yeswritebarrierrec
+func tryRecordGoroutineProfileWB(gp1 *g) {
+ if getg().m.p.ptr() == nil {
+ throw("no P available, write barriers are forbidden")
+ }
+ tryRecordGoroutineProfile(gp1, osyield)
+}
+
+// tryRecordGoroutineProfile ensures that gp1 has the appropriate representation
+// in the current goroutine profile: either that it should not be profiled, or
+// that a snapshot of its call stack and labels are now in the profile.
+func tryRecordGoroutineProfile(gp1 *g, yield func()) {
+ if readgstatus(gp1) == _Gdead {
+ // Dead goroutines should not appear in the profile. Goroutines that
+ // start while profile collection is active will get goroutineProfiled
+ // set to goroutineProfileSatisfied before transitioning out of _Gdead,
+ // so here we check _Gdead first.
+ return
+ }
+ if isSystemGoroutine(gp1, true) {
+ // System goroutines should not appear in the profile. (The finalizer
+ // goroutine is marked as "already profiled".)
+ return
+ }
+
+ for {
+ prev := gp1.goroutineProfiled.Load()
+ if prev == goroutineProfileSatisfied {
+ // This goroutine is already in the profile (or is new since the
+ // start of collection, so shouldn't appear in the profile).
+ break
+ }
+ if prev == goroutineProfileInProgress {
+ // Something else is adding gp1 to the goroutine profile right now.
+ // Give that a moment to finish.
+ yield()
+ continue
+ }
+
+ // While we have gp1.goroutineProfiled set to
+ // goroutineProfileInProgress, gp1 may appear _Grunnable but will not
+ // actually be able to run. Disable preemption for ourselves, to make
+ // sure we finish profiling gp1 right away instead of leaving it stuck
+ // in this limbo.
+ mp := acquirem()
+ if gp1.goroutineProfiled.CompareAndSwap(goroutineProfileAbsent, goroutineProfileInProgress) {
+ doRecordGoroutineProfile(gp1)
+ gp1.goroutineProfiled.Store(goroutineProfileSatisfied)
+ }
+ releasem(mp)
+ }
+}
+
+// doRecordGoroutineProfile writes gp1's call stack and labels to an in-progress
+// goroutine profile. Preemption is disabled.
+//
+// This may be called via tryRecordGoroutineProfile in two ways: by the
+// goroutine that is coordinating the goroutine profile (running on its own
+// stack), or from the scheduler in preparation to execute gp1 (running on the
+// system stack).
+func doRecordGoroutineProfile(gp1 *g) {
+ if readgstatus(gp1) == _Grunning {
+ print("doRecordGoroutineProfile gp1=", gp1.goid, "\n")
+ throw("cannot read stack of running goroutine")
+ }
+
+ offset := int(goroutineProfile.offset.Add(1)) - 1
+
+ if offset >= len(goroutineProfile.records) {
+ // Should be impossible, but better to return a truncated profile than
+ // to crash the entire process at this point. Instead, deal with it in
+ // goroutineProfileWithLabelsConcurrent where we have more context.
+ return
+ }
+
+ // saveg calls gentraceback, which may call cgo traceback functions. When
+ // called from the scheduler, this is on the system stack already so
+ // traceback.go:cgoContextPCs will avoid calling back into the scheduler.
+ //
+ // When called from the goroutine coordinating the profile, we still have
+ // set gp1.goroutineProfiled to goroutineProfileInProgress and so are still
+ // preventing it from being truly _Grunnable. So we'll use the system stack
+ // to avoid schedule delays.
+ systemstack(func() { saveg(^uintptr(0), ^uintptr(0), gp1, &goroutineProfile.records[offset]) })
+
+ if goroutineProfile.labels != nil {
+ goroutineProfile.labels[offset] = gp1.labels
+ }
+}
+
+func goroutineProfileWithLabelsSync(p []StackRecord, labels []unsafe.Pointer) (n int, ok bool) {
+ gp := getg()
+
+ isOK := func(gp1 *g) bool {
+ // Checking isSystemGoroutine here makes GoroutineProfile
+ // consistent with both NumGoroutine and Stack.
+ return gp1 != gp && readgstatus(gp1) != _Gdead && !isSystemGoroutine(gp1, false)
+ }
+
+ stopTheWorld("profile")
+
+ // World is stopped, no locking required.
+ n = 1
+ forEachGRace(func(gp1 *g) {
+ if isOK(gp1) {
+ n++
+ }
+ })
+
+ if n <= len(p) {
+ ok = true
+ r, lbl := p, labels
+
+ // Save current goroutine.
+ sp := getcallersp()
+ pc := getcallerpc()
+ systemstack(func() {
+ saveg(pc, sp, gp, &r[0])
+ })
+ r = r[1:]
+
+ // If we have a place to put our goroutine labelmap, insert it there.
+ if labels != nil {
+ lbl[0] = gp.labels
+ lbl = lbl[1:]
+ }
+
+ // Save other goroutines.
+ forEachGRace(func(gp1 *g) {
+ if !isOK(gp1) {
+ return
+ }
+
+ if len(r) == 0 {
+ // Should be impossible, but better to return a
+ // truncated profile than to crash the entire process.
+ return
+ }
+ // saveg calls gentraceback, which may call cgo traceback functions.
+ // The world is stopped, so it cannot use cgocall (which will be
+ // blocked at exitsyscall). Do it on the system stack so it won't
+ // call into the schedular (see traceback.go:cgoContextPCs).
+ systemstack(func() { saveg(^uintptr(0), ^uintptr(0), gp1, &r[0]) })
+ if labels != nil {
+ lbl[0] = gp1.labels
+ lbl = lbl[1:]
+ }
+ r = r[1:]
+ })
+ }
+
+ if raceenabled {
+ raceacquire(unsafe.Pointer(&labelSync))
+ }
+
+ startTheWorld()
+ return n, ok
+}
+
+// GoroutineProfile returns n, the number of records in the active goroutine stack profile.
+// If len(p) >= n, GoroutineProfile copies the profile into p and returns n, true.
+// If len(p) < n, GoroutineProfile does not change p and returns n, false.
+//
+// Most clients should use the runtime/pprof package instead
+// of calling GoroutineProfile directly.
+func GoroutineProfile(p []StackRecord) (n int, ok bool) {
+
+ return goroutineProfileWithLabels(p, nil)
+}
+
+func saveg(pc, sp uintptr, gp *g, r *StackRecord) {
+ n := gentraceback(pc, sp, 0, gp, 0, &r.Stack0[0], len(r.Stack0), nil, nil, 0)
+ if n < len(r.Stack0) {
+ r.Stack0[n] = 0
+ }
+}
+
+// Stack formats a stack trace of the calling goroutine into buf
+// and returns the number of bytes written to buf.
+// If all is true, Stack formats stack traces of all other goroutines
+// into buf after the trace for the current goroutine.
+func Stack(buf []byte, all bool) int {
+ if all {
+ stopTheWorld("stack trace")
+ }
+
+ n := 0
+ if len(buf) > 0 {
+ gp := getg()
+ sp := getcallersp()
+ pc := getcallerpc()
+ systemstack(func() {
+ g0 := getg()
+ // Force traceback=1 to override GOTRACEBACK setting,
+ // so that Stack's results are consistent.
+ // GOTRACEBACK is only about crash dumps.
+ g0.m.traceback = 1
+ g0.writebuf = buf[0:0:len(buf)]
+ goroutineheader(gp)
+ traceback(pc, sp, 0, gp)
+ if all {
+ tracebackothers(gp)
+ }
+ g0.m.traceback = 0
+ n = len(g0.writebuf)
+ g0.writebuf = nil
+ })
+ }
+
+ if all {
+ startTheWorld()
+ }
+ return n
+}
+
+// Tracing of alloc/free/gc.
+
+var tracelock mutex
+
+func tracealloc(p unsafe.Pointer, size uintptr, typ *_type) {
+ lock(&tracelock)
+ gp := getg()
+ gp.m.traceback = 2
+ if typ == nil {
+ print("tracealloc(", p, ", ", hex(size), ")\n")
+ } else {
+ print("tracealloc(", p, ", ", hex(size), ", ", typ.string(), ")\n")
+ }
+ if gp.m.curg == nil || gp == gp.m.curg {
+ goroutineheader(gp)
+ pc := getcallerpc()
+ sp := getcallersp()
+ systemstack(func() {
+ traceback(pc, sp, 0, gp)
+ })
+ } else {
+ goroutineheader(gp.m.curg)
+ traceback(^uintptr(0), ^uintptr(0), 0, gp.m.curg)
+ }
+ print("\n")
+ gp.m.traceback = 0
+ unlock(&tracelock)
+}
+
+func tracefree(p unsafe.Pointer, size uintptr) {
+ lock(&tracelock)
+ gp := getg()
+ gp.m.traceback = 2
+ print("tracefree(", p, ", ", hex(size), ")\n")
+ goroutineheader(gp)
+ pc := getcallerpc()
+ sp := getcallersp()
+ systemstack(func() {
+ traceback(pc, sp, 0, gp)
+ })
+ print("\n")
+ gp.m.traceback = 0
+ unlock(&tracelock)
+}
+
+func tracegc() {
+ lock(&tracelock)
+ gp := getg()
+ gp.m.traceback = 2
+ print("tracegc()\n")
+ // running on m->g0 stack; show all non-g0 goroutines
+ tracebackothers(gp)
+ print("end tracegc\n")
+ print("\n")
+ gp.m.traceback = 0
+ unlock(&tracelock)
+}