summaryrefslogtreecommitdiffstats
path: root/src/runtime/signal_unix.go
diff options
context:
space:
mode:
authorDaniel Baumann <daniel.baumann@progress-linux.org>2024-04-16 19:23:18 +0000
committerDaniel Baumann <daniel.baumann@progress-linux.org>2024-04-16 19:23:18 +0000
commit43a123c1ae6613b3efeed291fa552ecd909d3acf (patch)
treefd92518b7024bc74031f78a1cf9e454b65e73665 /src/runtime/signal_unix.go
parentInitial commit. (diff)
downloadgolang-1.20-43a123c1ae6613b3efeed291fa552ecd909d3acf.tar.xz
golang-1.20-43a123c1ae6613b3efeed291fa552ecd909d3acf.zip
Adding upstream version 1.20.14.upstream/1.20.14upstream
Signed-off-by: Daniel Baumann <daniel.baumann@progress-linux.org>
Diffstat (limited to 'src/runtime/signal_unix.go')
-rw-r--r--src/runtime/signal_unix.go1358
1 files changed, 1358 insertions, 0 deletions
diff --git a/src/runtime/signal_unix.go b/src/runtime/signal_unix.go
new file mode 100644
index 0000000..c1abe62
--- /dev/null
+++ b/src/runtime/signal_unix.go
@@ -0,0 +1,1358 @@
+// Copyright 2012 The Go Authors. All rights reserved.
+// Use of this source code is governed by a BSD-style
+// license that can be found in the LICENSE file.
+
+//go:build unix
+
+package runtime
+
+import (
+ "internal/abi"
+ "runtime/internal/atomic"
+ "runtime/internal/sys"
+ "unsafe"
+)
+
+// sigTabT is the type of an entry in the global sigtable array.
+// sigtable is inherently system dependent, and appears in OS-specific files,
+// but sigTabT is the same for all Unixy systems.
+// The sigtable array is indexed by a system signal number to get the flags
+// and printable name of each signal.
+type sigTabT struct {
+ flags int32
+ name string
+}
+
+//go:linkname os_sigpipe os.sigpipe
+func os_sigpipe() {
+ systemstack(sigpipe)
+}
+
+func signame(sig uint32) string {
+ if sig >= uint32(len(sigtable)) {
+ return ""
+ }
+ return sigtable[sig].name
+}
+
+const (
+ _SIG_DFL uintptr = 0
+ _SIG_IGN uintptr = 1
+)
+
+// sigPreempt is the signal used for non-cooperative preemption.
+//
+// There's no good way to choose this signal, but there are some
+// heuristics:
+//
+// 1. It should be a signal that's passed-through by debuggers by
+// default. On Linux, this is SIGALRM, SIGURG, SIGCHLD, SIGIO,
+// SIGVTALRM, SIGPROF, and SIGWINCH, plus some glibc-internal signals.
+//
+// 2. It shouldn't be used internally by libc in mixed Go/C binaries
+// because libc may assume it's the only thing that can handle these
+// signals. For example SIGCANCEL or SIGSETXID.
+//
+// 3. It should be a signal that can happen spuriously without
+// consequences. For example, SIGALRM is a bad choice because the
+// signal handler can't tell if it was caused by the real process
+// alarm or not (arguably this means the signal is broken, but I
+// digress). SIGUSR1 and SIGUSR2 are also bad because those are often
+// used in meaningful ways by applications.
+//
+// 4. We need to deal with platforms without real-time signals (like
+// macOS), so those are out.
+//
+// We use SIGURG because it meets all of these criteria, is extremely
+// unlikely to be used by an application for its "real" meaning (both
+// because out-of-band data is basically unused and because SIGURG
+// doesn't report which socket has the condition, making it pretty
+// useless), and even if it is, the application has to be ready for
+// spurious SIGURG. SIGIO wouldn't be a bad choice either, but is more
+// likely to be used for real.
+const sigPreempt = _SIGURG
+
+// Stores the signal handlers registered before Go installed its own.
+// These signal handlers will be invoked in cases where Go doesn't want to
+// handle a particular signal (e.g., signal occurred on a non-Go thread).
+// See sigfwdgo for more information on when the signals are forwarded.
+//
+// This is read by the signal handler; accesses should use
+// atomic.Loaduintptr and atomic.Storeuintptr.
+var fwdSig [_NSIG]uintptr
+
+// handlingSig is indexed by signal number and is non-zero if we are
+// currently handling the signal. Or, to put it another way, whether
+// the signal handler is currently set to the Go signal handler or not.
+// This is uint32 rather than bool so that we can use atomic instructions.
+var handlingSig [_NSIG]uint32
+
+// channels for synchronizing signal mask updates with the signal mask
+// thread
+var (
+ disableSigChan chan uint32
+ enableSigChan chan uint32
+ maskUpdatedChan chan struct{}
+)
+
+func init() {
+ // _NSIG is the number of signals on this operating system.
+ // sigtable should describe what to do for all the possible signals.
+ if len(sigtable) != _NSIG {
+ print("runtime: len(sigtable)=", len(sigtable), " _NSIG=", _NSIG, "\n")
+ throw("bad sigtable len")
+ }
+}
+
+var signalsOK bool
+
+// Initialize signals.
+// Called by libpreinit so runtime may not be initialized.
+//
+//go:nosplit
+//go:nowritebarrierrec
+func initsig(preinit bool) {
+ if !preinit {
+ // It's now OK for signal handlers to run.
+ signalsOK = true
+ }
+
+ // For c-archive/c-shared this is called by libpreinit with
+ // preinit == true.
+ if (isarchive || islibrary) && !preinit {
+ return
+ }
+
+ for i := uint32(0); i < _NSIG; i++ {
+ t := &sigtable[i]
+ if t.flags == 0 || t.flags&_SigDefault != 0 {
+ continue
+ }
+
+ // We don't need to use atomic operations here because
+ // there shouldn't be any other goroutines running yet.
+ fwdSig[i] = getsig(i)
+
+ if !sigInstallGoHandler(i) {
+ // Even if we are not installing a signal handler,
+ // set SA_ONSTACK if necessary.
+ if fwdSig[i] != _SIG_DFL && fwdSig[i] != _SIG_IGN {
+ setsigstack(i)
+ } else if fwdSig[i] == _SIG_IGN {
+ sigInitIgnored(i)
+ }
+ continue
+ }
+
+ handlingSig[i] = 1
+ setsig(i, abi.FuncPCABIInternal(sighandler))
+ }
+}
+
+//go:nosplit
+//go:nowritebarrierrec
+func sigInstallGoHandler(sig uint32) bool {
+ // For some signals, we respect an inherited SIG_IGN handler
+ // rather than insist on installing our own default handler.
+ // Even these signals can be fetched using the os/signal package.
+ switch sig {
+ case _SIGHUP, _SIGINT:
+ if atomic.Loaduintptr(&fwdSig[sig]) == _SIG_IGN {
+ return false
+ }
+ }
+
+ if (GOOS == "linux" || GOOS == "android") && !iscgo && sig == sigPerThreadSyscall {
+ // sigPerThreadSyscall is the same signal used by glibc for
+ // per-thread syscalls on Linux. We use it for the same purpose
+ // in non-cgo binaries.
+ return true
+ }
+
+ t := &sigtable[sig]
+ if t.flags&_SigSetStack != 0 {
+ return false
+ }
+
+ // When built using c-archive or c-shared, only install signal
+ // handlers for synchronous signals and SIGPIPE and sigPreempt.
+ if (isarchive || islibrary) && t.flags&_SigPanic == 0 && sig != _SIGPIPE && sig != sigPreempt {
+ return false
+ }
+
+ return true
+}
+
+// sigenable enables the Go signal handler to catch the signal sig.
+// It is only called while holding the os/signal.handlers lock,
+// via os/signal.enableSignal and signal_enable.
+func sigenable(sig uint32) {
+ if sig >= uint32(len(sigtable)) {
+ return
+ }
+
+ // SIGPROF is handled specially for profiling.
+ if sig == _SIGPROF {
+ return
+ }
+
+ t := &sigtable[sig]
+ if t.flags&_SigNotify != 0 {
+ ensureSigM()
+ enableSigChan <- sig
+ <-maskUpdatedChan
+ if atomic.Cas(&handlingSig[sig], 0, 1) {
+ atomic.Storeuintptr(&fwdSig[sig], getsig(sig))
+ setsig(sig, abi.FuncPCABIInternal(sighandler))
+ }
+ }
+}
+
+// sigdisable disables the Go signal handler for the signal sig.
+// It is only called while holding the os/signal.handlers lock,
+// via os/signal.disableSignal and signal_disable.
+func sigdisable(sig uint32) {
+ if sig >= uint32(len(sigtable)) {
+ return
+ }
+
+ // SIGPROF is handled specially for profiling.
+ if sig == _SIGPROF {
+ return
+ }
+
+ t := &sigtable[sig]
+ if t.flags&_SigNotify != 0 {
+ ensureSigM()
+ disableSigChan <- sig
+ <-maskUpdatedChan
+
+ // If initsig does not install a signal handler for a
+ // signal, then to go back to the state before Notify
+ // we should remove the one we installed.
+ if !sigInstallGoHandler(sig) {
+ atomic.Store(&handlingSig[sig], 0)
+ setsig(sig, atomic.Loaduintptr(&fwdSig[sig]))
+ }
+ }
+}
+
+// sigignore ignores the signal sig.
+// It is only called while holding the os/signal.handlers lock,
+// via os/signal.ignoreSignal and signal_ignore.
+func sigignore(sig uint32) {
+ if sig >= uint32(len(sigtable)) {
+ return
+ }
+
+ // SIGPROF is handled specially for profiling.
+ if sig == _SIGPROF {
+ return
+ }
+
+ t := &sigtable[sig]
+ if t.flags&_SigNotify != 0 {
+ atomic.Store(&handlingSig[sig], 0)
+ setsig(sig, _SIG_IGN)
+ }
+}
+
+// clearSignalHandlers clears all signal handlers that are not ignored
+// back to the default. This is called by the child after a fork, so that
+// we can enable the signal mask for the exec without worrying about
+// running a signal handler in the child.
+//
+//go:nosplit
+//go:nowritebarrierrec
+func clearSignalHandlers() {
+ for i := uint32(0); i < _NSIG; i++ {
+ if atomic.Load(&handlingSig[i]) != 0 {
+ setsig(i, _SIG_DFL)
+ }
+ }
+}
+
+// setProcessCPUProfilerTimer is called when the profiling timer changes.
+// It is called with prof.signalLock held. hz is the new timer, and is 0 if
+// profiling is being disabled. Enable or disable the signal as
+// required for -buildmode=c-archive.
+func setProcessCPUProfilerTimer(hz int32) {
+ if hz != 0 {
+ // Enable the Go signal handler if not enabled.
+ if atomic.Cas(&handlingSig[_SIGPROF], 0, 1) {
+ h := getsig(_SIGPROF)
+ // If no signal handler was installed before, then we record
+ // _SIG_IGN here. When we turn off profiling (below) we'll start
+ // ignoring SIGPROF signals. We do this, rather than change
+ // to SIG_DFL, because there may be a pending SIGPROF
+ // signal that has not yet been delivered to some other thread.
+ // If we change to SIG_DFL when turning off profiling, the
+ // program will crash when that SIGPROF is delivered. We assume
+ // that programs that use profiling don't want to crash on a
+ // stray SIGPROF. See issue 19320.
+ // We do the change here instead of when turning off profiling,
+ // because there we may race with a signal handler running
+ // concurrently, in particular, sigfwdgo may observe _SIG_DFL and
+ // die. See issue 43828.
+ if h == _SIG_DFL {
+ h = _SIG_IGN
+ }
+ atomic.Storeuintptr(&fwdSig[_SIGPROF], h)
+ setsig(_SIGPROF, abi.FuncPCABIInternal(sighandler))
+ }
+
+ var it itimerval
+ it.it_interval.tv_sec = 0
+ it.it_interval.set_usec(1000000 / hz)
+ it.it_value = it.it_interval
+ setitimer(_ITIMER_PROF, &it, nil)
+ } else {
+ setitimer(_ITIMER_PROF, &itimerval{}, nil)
+
+ // If the Go signal handler should be disabled by default,
+ // switch back to the signal handler that was installed
+ // when we enabled profiling. We don't try to handle the case
+ // of a program that changes the SIGPROF handler while Go
+ // profiling is enabled.
+ if !sigInstallGoHandler(_SIGPROF) {
+ if atomic.Cas(&handlingSig[_SIGPROF], 1, 0) {
+ h := atomic.Loaduintptr(&fwdSig[_SIGPROF])
+ setsig(_SIGPROF, h)
+ }
+ }
+ }
+}
+
+// setThreadCPUProfilerHz makes any thread-specific changes required to
+// implement profiling at a rate of hz.
+// No changes required on Unix systems when using setitimer.
+func setThreadCPUProfilerHz(hz int32) {
+ getg().m.profilehz = hz
+}
+
+func sigpipe() {
+ if signal_ignored(_SIGPIPE) || sigsend(_SIGPIPE) {
+ return
+ }
+ dieFromSignal(_SIGPIPE)
+}
+
+// doSigPreempt handles a preemption signal on gp.
+func doSigPreempt(gp *g, ctxt *sigctxt) {
+ // Check if this G wants to be preempted and is safe to
+ // preempt.
+ if wantAsyncPreempt(gp) {
+ if ok, newpc := isAsyncSafePoint(gp, ctxt.sigpc(), ctxt.sigsp(), ctxt.siglr()); ok {
+ // Adjust the PC and inject a call to asyncPreempt.
+ ctxt.pushCall(abi.FuncPCABI0(asyncPreempt), newpc)
+ }
+ }
+
+ // Acknowledge the preemption.
+ gp.m.preemptGen.Add(1)
+ gp.m.signalPending.Store(0)
+
+ if GOOS == "darwin" || GOOS == "ios" {
+ pendingPreemptSignals.Add(-1)
+ }
+}
+
+const preemptMSupported = true
+
+// preemptM sends a preemption request to mp. This request may be
+// handled asynchronously and may be coalesced with other requests to
+// the M. When the request is received, if the running G or P are
+// marked for preemption and the goroutine is at an asynchronous
+// safe-point, it will preempt the goroutine. It always atomically
+// increments mp.preemptGen after handling a preemption request.
+func preemptM(mp *m) {
+ // On Darwin, don't try to preempt threads during exec.
+ // Issue #41702.
+ if GOOS == "darwin" || GOOS == "ios" {
+ execLock.rlock()
+ }
+
+ if mp.signalPending.CompareAndSwap(0, 1) {
+ if GOOS == "darwin" || GOOS == "ios" {
+ pendingPreemptSignals.Add(1)
+ }
+
+ // If multiple threads are preempting the same M, it may send many
+ // signals to the same M such that it hardly make progress, causing
+ // live-lock problem. Apparently this could happen on darwin. See
+ // issue #37741.
+ // Only send a signal if there isn't already one pending.
+ signalM(mp, sigPreempt)
+ }
+
+ if GOOS == "darwin" || GOOS == "ios" {
+ execLock.runlock()
+ }
+}
+
+// sigFetchG fetches the value of G safely when running in a signal handler.
+// On some architectures, the g value may be clobbered when running in a VDSO.
+// See issue #32912.
+//
+//go:nosplit
+func sigFetchG(c *sigctxt) *g {
+ switch GOARCH {
+ case "arm", "arm64", "ppc64", "ppc64le", "riscv64", "s390x":
+ if !iscgo && inVDSOPage(c.sigpc()) {
+ // When using cgo, we save the g on TLS and load it from there
+ // in sigtramp. Just use that.
+ // Otherwise, before making a VDSO call we save the g to the
+ // bottom of the signal stack. Fetch from there.
+ // TODO: in efence mode, stack is sysAlloc'd, so this wouldn't
+ // work.
+ sp := getcallersp()
+ s := spanOf(sp)
+ if s != nil && s.state.get() == mSpanManual && s.base() < sp && sp < s.limit {
+ gp := *(**g)(unsafe.Pointer(s.base()))
+ return gp
+ }
+ return nil
+ }
+ }
+ return getg()
+}
+
+// sigtrampgo is called from the signal handler function, sigtramp,
+// written in assembly code.
+// This is called by the signal handler, and the world may be stopped.
+//
+// It must be nosplit because getg() is still the G that was running
+// (if any) when the signal was delivered, but it's (usually) called
+// on the gsignal stack. Until this switches the G to gsignal, the
+// stack bounds check won't work.
+//
+//go:nosplit
+//go:nowritebarrierrec
+func sigtrampgo(sig uint32, info *siginfo, ctx unsafe.Pointer) {
+ if sigfwdgo(sig, info, ctx) {
+ return
+ }
+ c := &sigctxt{info, ctx}
+ gp := sigFetchG(c)
+ setg(gp)
+ if gp == nil {
+ if sig == _SIGPROF {
+ // Some platforms (Linux) have per-thread timers, which we use in
+ // combination with the process-wide timer. Avoid double-counting.
+ if validSIGPROF(nil, c) {
+ sigprofNonGoPC(c.sigpc())
+ }
+ return
+ }
+ if sig == sigPreempt && preemptMSupported && debug.asyncpreemptoff == 0 {
+ // This is probably a signal from preemptM sent
+ // while executing Go code but received while
+ // executing non-Go code.
+ // We got past sigfwdgo, so we know that there is
+ // no non-Go signal handler for sigPreempt.
+ // The default behavior for sigPreempt is to ignore
+ // the signal, so badsignal will be a no-op anyway.
+ if GOOS == "darwin" || GOOS == "ios" {
+ pendingPreemptSignals.Add(-1)
+ }
+ return
+ }
+ c.fixsigcode(sig)
+ badsignal(uintptr(sig), c)
+ return
+ }
+
+ setg(gp.m.gsignal)
+
+ // If some non-Go code called sigaltstack, adjust.
+ var gsignalStack gsignalStack
+ setStack := adjustSignalStack(sig, gp.m, &gsignalStack)
+ if setStack {
+ gp.m.gsignal.stktopsp = getcallersp()
+ }
+
+ if gp.stackguard0 == stackFork {
+ signalDuringFork(sig)
+ }
+
+ c.fixsigcode(sig)
+ sighandler(sig, info, ctx, gp)
+ setg(gp)
+ if setStack {
+ restoreGsignalStack(&gsignalStack)
+ }
+}
+
+// If the signal handler receives a SIGPROF signal on a non-Go thread,
+// it tries to collect a traceback into sigprofCallers.
+// sigprofCallersUse is set to non-zero while sigprofCallers holds a traceback.
+var sigprofCallers cgoCallers
+var sigprofCallersUse uint32
+
+// sigprofNonGo is called if we receive a SIGPROF signal on a non-Go thread,
+// and the signal handler collected a stack trace in sigprofCallers.
+// When this is called, sigprofCallersUse will be non-zero.
+// g is nil, and what we can do is very limited.
+//
+// It is called from the signal handling functions written in assembly code that
+// are active for cgo programs, cgoSigtramp and sigprofNonGoWrapper, which have
+// not verified that the SIGPROF delivery corresponds to the best available
+// profiling source for this thread.
+//
+//go:nosplit
+//go:nowritebarrierrec
+func sigprofNonGo(sig uint32, info *siginfo, ctx unsafe.Pointer) {
+ if prof.hz.Load() != 0 {
+ c := &sigctxt{info, ctx}
+ // Some platforms (Linux) have per-thread timers, which we use in
+ // combination with the process-wide timer. Avoid double-counting.
+ if validSIGPROF(nil, c) {
+ n := 0
+ for n < len(sigprofCallers) && sigprofCallers[n] != 0 {
+ n++
+ }
+ cpuprof.addNonGo(sigprofCallers[:n])
+ }
+ }
+
+ atomic.Store(&sigprofCallersUse, 0)
+}
+
+// sigprofNonGoPC is called when a profiling signal arrived on a
+// non-Go thread and we have a single PC value, not a stack trace.
+// g is nil, and what we can do is very limited.
+//
+//go:nosplit
+//go:nowritebarrierrec
+func sigprofNonGoPC(pc uintptr) {
+ if prof.hz.Load() != 0 {
+ stk := []uintptr{
+ pc,
+ abi.FuncPCABIInternal(_ExternalCode) + sys.PCQuantum,
+ }
+ cpuprof.addNonGo(stk)
+ }
+}
+
+// adjustSignalStack adjusts the current stack guard based on the
+// stack pointer that is actually in use while handling a signal.
+// We do this in case some non-Go code called sigaltstack.
+// This reports whether the stack was adjusted, and if so stores the old
+// signal stack in *gsigstack.
+//
+//go:nosplit
+func adjustSignalStack(sig uint32, mp *m, gsigStack *gsignalStack) bool {
+ sp := uintptr(unsafe.Pointer(&sig))
+ if sp >= mp.gsignal.stack.lo && sp < mp.gsignal.stack.hi {
+ return false
+ }
+
+ var st stackt
+ sigaltstack(nil, &st)
+ stsp := uintptr(unsafe.Pointer(st.ss_sp))
+ if st.ss_flags&_SS_DISABLE == 0 && sp >= stsp && sp < stsp+st.ss_size {
+ setGsignalStack(&st, gsigStack)
+ return true
+ }
+
+ if sp >= mp.g0.stack.lo && sp < mp.g0.stack.hi {
+ // The signal was delivered on the g0 stack.
+ // This can happen when linked with C code
+ // using the thread sanitizer, which collects
+ // signals then delivers them itself by calling
+ // the signal handler directly when C code,
+ // including C code called via cgo, calls a
+ // TSAN-intercepted function such as malloc.
+ //
+ // We check this condition last as g0.stack.lo
+ // may be not very accurate (see mstart).
+ st := stackt{ss_size: mp.g0.stack.hi - mp.g0.stack.lo}
+ setSignalstackSP(&st, mp.g0.stack.lo)
+ setGsignalStack(&st, gsigStack)
+ return true
+ }
+
+ // sp is not within gsignal stack, g0 stack, or sigaltstack. Bad.
+ setg(nil)
+ needm()
+ if st.ss_flags&_SS_DISABLE != 0 {
+ noSignalStack(sig)
+ } else {
+ sigNotOnStack(sig)
+ }
+ dropm()
+ return false
+}
+
+// crashing is the number of m's we have waited for when implementing
+// GOTRACEBACK=crash when a signal is received.
+var crashing int32
+
+// testSigtrap and testSigusr1 are used by the runtime tests. If
+// non-nil, it is called on SIGTRAP/SIGUSR1. If it returns true, the
+// normal behavior on this signal is suppressed.
+var testSigtrap func(info *siginfo, ctxt *sigctxt, gp *g) bool
+var testSigusr1 func(gp *g) bool
+
+// sighandler is invoked when a signal occurs. The global g will be
+// set to a gsignal goroutine and we will be running on the alternate
+// signal stack. The parameter gp will be the value of the global g
+// when the signal occurred. The sig, info, and ctxt parameters are
+// from the system signal handler: they are the parameters passed when
+// the SA is passed to the sigaction system call.
+//
+// The garbage collector may have stopped the world, so write barriers
+// are not allowed.
+//
+//go:nowritebarrierrec
+func sighandler(sig uint32, info *siginfo, ctxt unsafe.Pointer, gp *g) {
+ // The g executing the signal handler. This is almost always
+ // mp.gsignal. See delayedSignal for an exception.
+ gsignal := getg()
+ mp := gsignal.m
+ c := &sigctxt{info, ctxt}
+
+ // Cgo TSAN (not the Go race detector) intercepts signals and calls the
+ // signal handler at a later time. When the signal handler is called, the
+ // memory may have changed, but the signal context remains old. The
+ // unmatched signal context and memory makes it unsafe to unwind or inspect
+ // the stack. So we ignore delayed non-fatal signals that will cause a stack
+ // inspection (profiling signal and preemption signal).
+ // cgo_yield is only non-nil for TSAN, and is specifically used to trigger
+ // signal delivery. We use that as an indicator of delayed signals.
+ // For delayed signals, the handler is called on the g0 stack (see
+ // adjustSignalStack).
+ delayedSignal := *cgo_yield != nil && mp != nil && gsignal.stack == mp.g0.stack
+
+ if sig == _SIGPROF {
+ // Some platforms (Linux) have per-thread timers, which we use in
+ // combination with the process-wide timer. Avoid double-counting.
+ if !delayedSignal && validSIGPROF(mp, c) {
+ sigprof(c.sigpc(), c.sigsp(), c.siglr(), gp, mp)
+ }
+ return
+ }
+
+ if sig == _SIGTRAP && testSigtrap != nil && testSigtrap(info, (*sigctxt)(noescape(unsafe.Pointer(c))), gp) {
+ return
+ }
+
+ if sig == _SIGUSR1 && testSigusr1 != nil && testSigusr1(gp) {
+ return
+ }
+
+ if (GOOS == "linux" || GOOS == "android") && sig == sigPerThreadSyscall {
+ // sigPerThreadSyscall is the same signal used by glibc for
+ // per-thread syscalls on Linux. We use it for the same purpose
+ // in non-cgo binaries. Since this signal is not _SigNotify,
+ // there is nothing more to do once we run the syscall.
+ runPerThreadSyscall()
+ return
+ }
+
+ if sig == sigPreempt && debug.asyncpreemptoff == 0 && !delayedSignal {
+ // Might be a preemption signal.
+ doSigPreempt(gp, c)
+ // Even if this was definitely a preemption signal, it
+ // may have been coalesced with another signal, so we
+ // still let it through to the application.
+ }
+
+ flags := int32(_SigThrow)
+ if sig < uint32(len(sigtable)) {
+ flags = sigtable[sig].flags
+ }
+ if !c.sigFromUser() && flags&_SigPanic != 0 && gp.throwsplit {
+ // We can't safely sigpanic because it may grow the
+ // stack. Abort in the signal handler instead.
+ flags = _SigThrow
+ }
+ if isAbortPC(c.sigpc()) {
+ // On many architectures, the abort function just
+ // causes a memory fault. Don't turn that into a panic.
+ flags = _SigThrow
+ }
+ if !c.sigFromUser() && flags&_SigPanic != 0 {
+ // The signal is going to cause a panic.
+ // Arrange the stack so that it looks like the point
+ // where the signal occurred made a call to the
+ // function sigpanic. Then set the PC to sigpanic.
+
+ // Have to pass arguments out of band since
+ // augmenting the stack frame would break
+ // the unwinding code.
+ gp.sig = sig
+ gp.sigcode0 = uintptr(c.sigcode())
+ gp.sigcode1 = uintptr(c.fault())
+ gp.sigpc = c.sigpc()
+
+ c.preparePanic(sig, gp)
+ return
+ }
+
+ if c.sigFromUser() || flags&_SigNotify != 0 {
+ if sigsend(sig) {
+ return
+ }
+ }
+
+ if c.sigFromUser() && signal_ignored(sig) {
+ return
+ }
+
+ if flags&_SigKill != 0 {
+ dieFromSignal(sig)
+ }
+
+ // _SigThrow means that we should exit now.
+ // If we get here with _SigPanic, it means that the signal
+ // was sent to us by a program (c.sigFromUser() is true);
+ // in that case, if we didn't handle it in sigsend, we exit now.
+ if flags&(_SigThrow|_SigPanic) == 0 {
+ return
+ }
+
+ mp.throwing = throwTypeRuntime
+ mp.caughtsig.set(gp)
+
+ if crashing == 0 {
+ startpanic_m()
+ }
+
+ if sig < uint32(len(sigtable)) {
+ print(sigtable[sig].name, "\n")
+ } else {
+ print("Signal ", sig, "\n")
+ }
+
+ if isSecureMode() {
+ exit(2)
+ }
+
+ print("PC=", hex(c.sigpc()), " m=", mp.id, " sigcode=", c.sigcode(), "\n")
+ if mp.incgo && gp == mp.g0 && mp.curg != nil {
+ print("signal arrived during cgo execution\n")
+ // Switch to curg so that we get a traceback of the Go code
+ // leading up to the cgocall, which switched from curg to g0.
+ gp = mp.curg
+ }
+ if sig == _SIGILL || sig == _SIGFPE {
+ // It would be nice to know how long the instruction is.
+ // Unfortunately, that's complicated to do in general (mostly for x86
+ // and s930x, but other archs have non-standard instruction lengths also).
+ // Opt to print 16 bytes, which covers most instructions.
+ const maxN = 16
+ n := uintptr(maxN)
+ // We have to be careful, though. If we're near the end of
+ // a page and the following page isn't mapped, we could
+ // segfault. So make sure we don't straddle a page (even though
+ // that could lead to printing an incomplete instruction).
+ // We're assuming here we can read at least the page containing the PC.
+ // I suppose it is possible that the page is mapped executable but not readable?
+ pc := c.sigpc()
+ if n > physPageSize-pc%physPageSize {
+ n = physPageSize - pc%physPageSize
+ }
+ print("instruction bytes:")
+ b := (*[maxN]byte)(unsafe.Pointer(pc))
+ for i := uintptr(0); i < n; i++ {
+ print(" ", hex(b[i]))
+ }
+ println()
+ }
+ print("\n")
+
+ level, _, docrash := gotraceback()
+ if level > 0 {
+ goroutineheader(gp)
+ tracebacktrap(c.sigpc(), c.sigsp(), c.siglr(), gp)
+ if crashing > 0 && gp != mp.curg && mp.curg != nil && readgstatus(mp.curg)&^_Gscan == _Grunning {
+ // tracebackothers on original m skipped this one; trace it now.
+ goroutineheader(mp.curg)
+ traceback(^uintptr(0), ^uintptr(0), 0, mp.curg)
+ } else if crashing == 0 {
+ tracebackothers(gp)
+ print("\n")
+ }
+ dumpregs(c)
+ }
+
+ if docrash {
+ crashing++
+ if crashing < mcount()-int32(extraMCount) {
+ // There are other m's that need to dump their stacks.
+ // Relay SIGQUIT to the next m by sending it to the current process.
+ // All m's that have already received SIGQUIT have signal masks blocking
+ // receipt of any signals, so the SIGQUIT will go to an m that hasn't seen it yet.
+ // When the last m receives the SIGQUIT, it will fall through to the call to
+ // crash below. Just in case the relaying gets botched, each m involved in
+ // the relay sleeps for 5 seconds and then does the crash/exit itself.
+ // In expected operation, the last m has received the SIGQUIT and run
+ // crash/exit and the process is gone, all long before any of the
+ // 5-second sleeps have finished.
+ print("\n-----\n\n")
+ raiseproc(_SIGQUIT)
+ usleep(5 * 1000 * 1000)
+ }
+ crash()
+ }
+
+ printDebugLog()
+
+ exit(2)
+}
+
+// sigpanic turns a synchronous signal into a run-time panic.
+// If the signal handler sees a synchronous panic, it arranges the
+// stack to look like the function where the signal occurred called
+// sigpanic, sets the signal's PC value to sigpanic, and returns from
+// the signal handler. The effect is that the program will act as
+// though the function that got the signal simply called sigpanic
+// instead.
+//
+// This must NOT be nosplit because the linker doesn't know where
+// sigpanic calls can be injected.
+//
+// The signal handler must not inject a call to sigpanic if
+// getg().throwsplit, since sigpanic may need to grow the stack.
+//
+// This is exported via linkname to assembly in runtime/cgo.
+//
+//go:linkname sigpanic
+func sigpanic() {
+ gp := getg()
+ if !canpanic() {
+ throw("unexpected signal during runtime execution")
+ }
+
+ switch gp.sig {
+ case _SIGBUS:
+ if gp.sigcode0 == _BUS_ADRERR && gp.sigcode1 < 0x1000 {
+ panicmem()
+ }
+ // Support runtime/debug.SetPanicOnFault.
+ if gp.paniconfault {
+ panicmemAddr(gp.sigcode1)
+ }
+ print("unexpected fault address ", hex(gp.sigcode1), "\n")
+ throw("fault")
+ case _SIGSEGV:
+ if (gp.sigcode0 == 0 || gp.sigcode0 == _SEGV_MAPERR || gp.sigcode0 == _SEGV_ACCERR) && gp.sigcode1 < 0x1000 {
+ panicmem()
+ }
+ // Support runtime/debug.SetPanicOnFault.
+ if gp.paniconfault {
+ panicmemAddr(gp.sigcode1)
+ }
+ if inUserArenaChunk(gp.sigcode1) {
+ // We could check that the arena chunk is explicitly set to fault,
+ // but the fact that we faulted on accessing it is enough to prove
+ // that it is.
+ print("accessed data from freed user arena ", hex(gp.sigcode1), "\n")
+ } else {
+ print("unexpected fault address ", hex(gp.sigcode1), "\n")
+ }
+ throw("fault")
+ case _SIGFPE:
+ switch gp.sigcode0 {
+ case _FPE_INTDIV:
+ panicdivide()
+ case _FPE_INTOVF:
+ panicoverflow()
+ }
+ panicfloat()
+ }
+
+ if gp.sig >= uint32(len(sigtable)) {
+ // can't happen: we looked up gp.sig in sigtable to decide to call sigpanic
+ throw("unexpected signal value")
+ }
+ panic(errorString(sigtable[gp.sig].name))
+}
+
+// dieFromSignal kills the program with a signal.
+// This provides the expected exit status for the shell.
+// This is only called with fatal signals expected to kill the process.
+//
+//go:nosplit
+//go:nowritebarrierrec
+func dieFromSignal(sig uint32) {
+ unblocksig(sig)
+ // Mark the signal as unhandled to ensure it is forwarded.
+ atomic.Store(&handlingSig[sig], 0)
+ raise(sig)
+
+ // That should have killed us. On some systems, though, raise
+ // sends the signal to the whole process rather than to just
+ // the current thread, which means that the signal may not yet
+ // have been delivered. Give other threads a chance to run and
+ // pick up the signal.
+ osyield()
+ osyield()
+ osyield()
+
+ // If that didn't work, try _SIG_DFL.
+ setsig(sig, _SIG_DFL)
+ raise(sig)
+
+ osyield()
+ osyield()
+ osyield()
+
+ // If we are still somehow running, just exit with the wrong status.
+ exit(2)
+}
+
+// raisebadsignal is called when a signal is received on a non-Go
+// thread, and the Go program does not want to handle it (that is, the
+// program has not called os/signal.Notify for the signal).
+func raisebadsignal(sig uint32, c *sigctxt) {
+ if sig == _SIGPROF {
+ // Ignore profiling signals that arrive on non-Go threads.
+ return
+ }
+
+ var handler uintptr
+ if sig >= _NSIG {
+ handler = _SIG_DFL
+ } else {
+ handler = atomic.Loaduintptr(&fwdSig[sig])
+ }
+
+ // Reset the signal handler and raise the signal.
+ // We are currently running inside a signal handler, so the
+ // signal is blocked. We need to unblock it before raising the
+ // signal, or the signal we raise will be ignored until we return
+ // from the signal handler. We know that the signal was unblocked
+ // before entering the handler, or else we would not have received
+ // it. That means that we don't have to worry about blocking it
+ // again.
+ unblocksig(sig)
+ setsig(sig, handler)
+
+ // If we're linked into a non-Go program we want to try to
+ // avoid modifying the original context in which the signal
+ // was raised. If the handler is the default, we know it
+ // is non-recoverable, so we don't have to worry about
+ // re-installing sighandler. At this point we can just
+ // return and the signal will be re-raised and caught by
+ // the default handler with the correct context.
+ //
+ // On FreeBSD, the libthr sigaction code prevents
+ // this from working so we fall through to raise.
+ if GOOS != "freebsd" && (isarchive || islibrary) && handler == _SIG_DFL && !c.sigFromUser() {
+ return
+ }
+
+ raise(sig)
+
+ // Give the signal a chance to be delivered.
+ // In almost all real cases the program is about to crash,
+ // so sleeping here is not a waste of time.
+ usleep(1000)
+
+ // If the signal didn't cause the program to exit, restore the
+ // Go signal handler and carry on.
+ //
+ // We may receive another instance of the signal before we
+ // restore the Go handler, but that is not so bad: we know
+ // that the Go program has been ignoring the signal.
+ setsig(sig, abi.FuncPCABIInternal(sighandler))
+}
+
+//go:nosplit
+func crash() {
+ // OS X core dumps are linear dumps of the mapped memory,
+ // from the first virtual byte to the last, with zeros in the gaps.
+ // Because of the way we arrange the address space on 64-bit systems,
+ // this means the OS X core file will be >128 GB and even on a zippy
+ // workstation can take OS X well over an hour to write (uninterruptible).
+ // Save users from making that mistake.
+ if GOOS == "darwin" && GOARCH == "amd64" {
+ return
+ }
+
+ dieFromSignal(_SIGABRT)
+}
+
+// ensureSigM starts one global, sleeping thread to make sure at least one thread
+// is available to catch signals enabled for os/signal.
+func ensureSigM() {
+ if maskUpdatedChan != nil {
+ return
+ }
+ maskUpdatedChan = make(chan struct{})
+ disableSigChan = make(chan uint32)
+ enableSigChan = make(chan uint32)
+ go func() {
+ // Signal masks are per-thread, so make sure this goroutine stays on one
+ // thread.
+ LockOSThread()
+ defer UnlockOSThread()
+ // The sigBlocked mask contains the signals not active for os/signal,
+ // initially all signals except the essential. When signal.Notify()/Stop is called,
+ // sigenable/sigdisable in turn notify this thread to update its signal
+ // mask accordingly.
+ sigBlocked := sigset_all
+ for i := range sigtable {
+ if !blockableSig(uint32(i)) {
+ sigdelset(&sigBlocked, i)
+ }
+ }
+ sigprocmask(_SIG_SETMASK, &sigBlocked, nil)
+ for {
+ select {
+ case sig := <-enableSigChan:
+ if sig > 0 {
+ sigdelset(&sigBlocked, int(sig))
+ }
+ case sig := <-disableSigChan:
+ if sig > 0 && blockableSig(sig) {
+ sigaddset(&sigBlocked, int(sig))
+ }
+ }
+ sigprocmask(_SIG_SETMASK, &sigBlocked, nil)
+ maskUpdatedChan <- struct{}{}
+ }
+ }()
+}
+
+// This is called when we receive a signal when there is no signal stack.
+// This can only happen if non-Go code calls sigaltstack to disable the
+// signal stack.
+func noSignalStack(sig uint32) {
+ println("signal", sig, "received on thread with no signal stack")
+ throw("non-Go code disabled sigaltstack")
+}
+
+// This is called if we receive a signal when there is a signal stack
+// but we are not on it. This can only happen if non-Go code called
+// sigaction without setting the SS_ONSTACK flag.
+func sigNotOnStack(sig uint32) {
+ println("signal", sig, "received but handler not on signal stack")
+ throw("non-Go code set up signal handler without SA_ONSTACK flag")
+}
+
+// signalDuringFork is called if we receive a signal while doing a fork.
+// We do not want signals at that time, as a signal sent to the process
+// group may be delivered to the child process, causing confusion.
+// This should never be called, because we block signals across the fork;
+// this function is just a safety check. See issue 18600 for background.
+func signalDuringFork(sig uint32) {
+ println("signal", sig, "received during fork")
+ throw("signal received during fork")
+}
+
+// This runs on a foreign stack, without an m or a g. No stack split.
+//
+//go:nosplit
+//go:norace
+//go:nowritebarrierrec
+func badsignal(sig uintptr, c *sigctxt) {
+ if !iscgo && !cgoHasExtraM {
+ // There is no extra M. needm will not be able to grab
+ // an M. Instead of hanging, just crash.
+ // Cannot call split-stack function as there is no G.
+ writeErrStr("fatal: bad g in signal handler\n")
+ exit(2)
+ *(*uintptr)(unsafe.Pointer(uintptr(123))) = 2
+ }
+ needm()
+ if !sigsend(uint32(sig)) {
+ // A foreign thread received the signal sig, and the
+ // Go code does not want to handle it.
+ raisebadsignal(uint32(sig), c)
+ }
+ dropm()
+}
+
+//go:noescape
+func sigfwd(fn uintptr, sig uint32, info *siginfo, ctx unsafe.Pointer)
+
+// Determines if the signal should be handled by Go and if not, forwards the
+// signal to the handler that was installed before Go's. Returns whether the
+// signal was forwarded.
+// This is called by the signal handler, and the world may be stopped.
+//
+//go:nosplit
+//go:nowritebarrierrec
+func sigfwdgo(sig uint32, info *siginfo, ctx unsafe.Pointer) bool {
+ if sig >= uint32(len(sigtable)) {
+ return false
+ }
+ fwdFn := atomic.Loaduintptr(&fwdSig[sig])
+ flags := sigtable[sig].flags
+
+ // If we aren't handling the signal, forward it.
+ if atomic.Load(&handlingSig[sig]) == 0 || !signalsOK {
+ // If the signal is ignored, doing nothing is the same as forwarding.
+ if fwdFn == _SIG_IGN || (fwdFn == _SIG_DFL && flags&_SigIgn != 0) {
+ return true
+ }
+ // We are not handling the signal and there is no other handler to forward to.
+ // Crash with the default behavior.
+ if fwdFn == _SIG_DFL {
+ setsig(sig, _SIG_DFL)
+ dieFromSignal(sig)
+ return false
+ }
+
+ sigfwd(fwdFn, sig, info, ctx)
+ return true
+ }
+
+ // This function and its caller sigtrampgo assumes SIGPIPE is delivered on the
+ // originating thread. This property does not hold on macOS (golang.org/issue/33384),
+ // so we have no choice but to ignore SIGPIPE.
+ if (GOOS == "darwin" || GOOS == "ios") && sig == _SIGPIPE {
+ return true
+ }
+
+ // If there is no handler to forward to, no need to forward.
+ if fwdFn == _SIG_DFL {
+ return false
+ }
+
+ c := &sigctxt{info, ctx}
+ // Only forward synchronous signals and SIGPIPE.
+ // Unfortunately, user generated SIGPIPEs will also be forwarded, because si_code
+ // is set to _SI_USER even for a SIGPIPE raised from a write to a closed socket
+ // or pipe.
+ if (c.sigFromUser() || flags&_SigPanic == 0) && sig != _SIGPIPE {
+ return false
+ }
+ // Determine if the signal occurred inside Go code. We test that:
+ // (1) we weren't in VDSO page,
+ // (2) we were in a goroutine (i.e., m.curg != nil), and
+ // (3) we weren't in CGO.
+ gp := sigFetchG(c)
+ if gp != nil && gp.m != nil && gp.m.curg != nil && !gp.m.incgo {
+ return false
+ }
+
+ // Signal not handled by Go, forward it.
+ if fwdFn != _SIG_IGN {
+ sigfwd(fwdFn, sig, info, ctx)
+ }
+
+ return true
+}
+
+// sigsave saves the current thread's signal mask into *p.
+// This is used to preserve the non-Go signal mask when a non-Go
+// thread calls a Go function.
+// This is nosplit and nowritebarrierrec because it is called by needm
+// which may be called on a non-Go thread with no g available.
+//
+//go:nosplit
+//go:nowritebarrierrec
+func sigsave(p *sigset) {
+ sigprocmask(_SIG_SETMASK, nil, p)
+}
+
+// msigrestore sets the current thread's signal mask to sigmask.
+// This is used to restore the non-Go signal mask when a non-Go thread
+// calls a Go function.
+// This is nosplit and nowritebarrierrec because it is called by dropm
+// after g has been cleared.
+//
+//go:nosplit
+//go:nowritebarrierrec
+func msigrestore(sigmask sigset) {
+ sigprocmask(_SIG_SETMASK, &sigmask, nil)
+}
+
+// sigsetAllExiting is used by sigblock(true) when a thread is
+// exiting. sigset_all is defined in OS specific code, and per GOOS
+// behavior may override this default for sigsetAllExiting: see
+// osinit().
+var sigsetAllExiting = sigset_all
+
+// sigblock blocks signals in the current thread's signal mask.
+// This is used to block signals while setting up and tearing down g
+// when a non-Go thread calls a Go function. When a thread is exiting
+// we use the sigsetAllExiting value, otherwise the OS specific
+// definition of sigset_all is used.
+// This is nosplit and nowritebarrierrec because it is called by needm
+// which may be called on a non-Go thread with no g available.
+//
+//go:nosplit
+//go:nowritebarrierrec
+func sigblock(exiting bool) {
+ if exiting {
+ sigprocmask(_SIG_SETMASK, &sigsetAllExiting, nil)
+ return
+ }
+ sigprocmask(_SIG_SETMASK, &sigset_all, nil)
+}
+
+// unblocksig removes sig from the current thread's signal mask.
+// This is nosplit and nowritebarrierrec because it is called from
+// dieFromSignal, which can be called by sigfwdgo while running in the
+// signal handler, on the signal stack, with no g available.
+//
+//go:nosplit
+//go:nowritebarrierrec
+func unblocksig(sig uint32) {
+ var set sigset
+ sigaddset(&set, int(sig))
+ sigprocmask(_SIG_UNBLOCK, &set, nil)
+}
+
+// minitSignals is called when initializing a new m to set the
+// thread's alternate signal stack and signal mask.
+func minitSignals() {
+ minitSignalStack()
+ minitSignalMask()
+}
+
+// minitSignalStack is called when initializing a new m to set the
+// alternate signal stack. If the alternate signal stack is not set
+// for the thread (the normal case) then set the alternate signal
+// stack to the gsignal stack. If the alternate signal stack is set
+// for the thread (the case when a non-Go thread sets the alternate
+// signal stack and then calls a Go function) then set the gsignal
+// stack to the alternate signal stack. We also set the alternate
+// signal stack to the gsignal stack if cgo is not used (regardless
+// of whether it is already set). Record which choice was made in
+// newSigstack, so that it can be undone in unminit.
+func minitSignalStack() {
+ mp := getg().m
+ var st stackt
+ sigaltstack(nil, &st)
+ if st.ss_flags&_SS_DISABLE != 0 || !iscgo {
+ signalstack(&mp.gsignal.stack)
+ mp.newSigstack = true
+ } else {
+ setGsignalStack(&st, &mp.goSigStack)
+ mp.newSigstack = false
+ }
+}
+
+// minitSignalMask is called when initializing a new m to set the
+// thread's signal mask. When this is called all signals have been
+// blocked for the thread. This starts with m.sigmask, which was set
+// either from initSigmask for a newly created thread or by calling
+// sigsave if this is a non-Go thread calling a Go function. It
+// removes all essential signals from the mask, thus causing those
+// signals to not be blocked. Then it sets the thread's signal mask.
+// After this is called the thread can receive signals.
+func minitSignalMask() {
+ nmask := getg().m.sigmask
+ for i := range sigtable {
+ if !blockableSig(uint32(i)) {
+ sigdelset(&nmask, i)
+ }
+ }
+ sigprocmask(_SIG_SETMASK, &nmask, nil)
+}
+
+// unminitSignals is called from dropm, via unminit, to undo the
+// effect of calling minit on a non-Go thread.
+//
+//go:nosplit
+func unminitSignals() {
+ if getg().m.newSigstack {
+ st := stackt{ss_flags: _SS_DISABLE}
+ sigaltstack(&st, nil)
+ } else {
+ // We got the signal stack from someone else. Restore
+ // the Go-allocated stack in case this M gets reused
+ // for another thread (e.g., it's an extram). Also, on
+ // Android, libc allocates a signal stack for all
+ // threads, so it's important to restore the Go stack
+ // even on Go-created threads so we can free it.
+ restoreGsignalStack(&getg().m.goSigStack)
+ }
+}
+
+// blockableSig reports whether sig may be blocked by the signal mask.
+// We never want to block the signals marked _SigUnblock;
+// these are the synchronous signals that turn into a Go panic.
+// We never want to block the preemption signal if it is being used.
+// In a Go program--not a c-archive/c-shared--we never want to block
+// the signals marked _SigKill or _SigThrow, as otherwise it's possible
+// for all running threads to block them and delay their delivery until
+// we start a new thread. When linked into a C program we let the C code
+// decide on the disposition of those signals.
+func blockableSig(sig uint32) bool {
+ flags := sigtable[sig].flags
+ if flags&_SigUnblock != 0 {
+ return false
+ }
+ if sig == sigPreempt && preemptMSupported && debug.asyncpreemptoff == 0 {
+ return false
+ }
+ if isarchive || islibrary {
+ return true
+ }
+ return flags&(_SigKill|_SigThrow) == 0
+}
+
+// gsignalStack saves the fields of the gsignal stack changed by
+// setGsignalStack.
+type gsignalStack struct {
+ stack stack
+ stackguard0 uintptr
+ stackguard1 uintptr
+ stktopsp uintptr
+}
+
+// setGsignalStack sets the gsignal stack of the current m to an
+// alternate signal stack returned from the sigaltstack system call.
+// It saves the old values in *old for use by restoreGsignalStack.
+// This is used when handling a signal if non-Go code has set the
+// alternate signal stack.
+//
+//go:nosplit
+//go:nowritebarrierrec
+func setGsignalStack(st *stackt, old *gsignalStack) {
+ gp := getg()
+ if old != nil {
+ old.stack = gp.m.gsignal.stack
+ old.stackguard0 = gp.m.gsignal.stackguard0
+ old.stackguard1 = gp.m.gsignal.stackguard1
+ old.stktopsp = gp.m.gsignal.stktopsp
+ }
+ stsp := uintptr(unsafe.Pointer(st.ss_sp))
+ gp.m.gsignal.stack.lo = stsp
+ gp.m.gsignal.stack.hi = stsp + st.ss_size
+ gp.m.gsignal.stackguard0 = stsp + _StackGuard
+ gp.m.gsignal.stackguard1 = stsp + _StackGuard
+}
+
+// restoreGsignalStack restores the gsignal stack to the value it had
+// before entering the signal handler.
+//
+//go:nosplit
+//go:nowritebarrierrec
+func restoreGsignalStack(st *gsignalStack) {
+ gp := getg().m.gsignal
+ gp.stack = st.stack
+ gp.stackguard0 = st.stackguard0
+ gp.stackguard1 = st.stackguard1
+ gp.stktopsp = st.stktopsp
+}
+
+// signalstack sets the current thread's alternate signal stack to s.
+//
+//go:nosplit
+func signalstack(s *stack) {
+ st := stackt{ss_size: s.hi - s.lo}
+ setSignalstackSP(&st, s.lo)
+ sigaltstack(&st, nil)
+}
+
+// setsigsegv is used on darwin/arm64 to fake a segmentation fault.
+//
+// This is exported via linkname to assembly in runtime/cgo.
+//
+//go:nosplit
+//go:linkname setsigsegv
+func setsigsegv(pc uintptr) {
+ gp := getg()
+ gp.sig = _SIGSEGV
+ gp.sigpc = pc
+ gp.sigcode0 = _SEGV_MAPERR
+ gp.sigcode1 = 0 // TODO: emulate si_addr
+}