summaryrefslogtreecommitdiffstats
path: root/src/strings/strings.go
diff options
context:
space:
mode:
authorDaniel Baumann <daniel.baumann@progress-linux.org>2024-04-16 19:23:18 +0000
committerDaniel Baumann <daniel.baumann@progress-linux.org>2024-04-16 19:23:18 +0000
commit43a123c1ae6613b3efeed291fa552ecd909d3acf (patch)
treefd92518b7024bc74031f78a1cf9e454b65e73665 /src/strings/strings.go
parentInitial commit. (diff)
downloadgolang-1.20-43a123c1ae6613b3efeed291fa552ecd909d3acf.tar.xz
golang-1.20-43a123c1ae6613b3efeed291fa552ecd909d3acf.zip
Adding upstream version 1.20.14.upstream/1.20.14upstream
Signed-off-by: Daniel Baumann <daniel.baumann@progress-linux.org>
Diffstat (limited to 'src/strings/strings.go')
-rw-r--r--src/strings/strings.go1289
1 files changed, 1289 insertions, 0 deletions
diff --git a/src/strings/strings.go b/src/strings/strings.go
new file mode 100644
index 0000000..646161f
--- /dev/null
+++ b/src/strings/strings.go
@@ -0,0 +1,1289 @@
+// Copyright 2009 The Go Authors. All rights reserved.
+// Use of this source code is governed by a BSD-style
+// license that can be found in the LICENSE file.
+
+// Package strings implements simple functions to manipulate UTF-8 encoded strings.
+//
+// For information about UTF-8 strings in Go, see https://blog.golang.org/strings.
+package strings
+
+import (
+ "internal/bytealg"
+ "unicode"
+ "unicode/utf8"
+)
+
+// explode splits s into a slice of UTF-8 strings,
+// one string per Unicode character up to a maximum of n (n < 0 means no limit).
+// Invalid UTF-8 bytes are sliced individually.
+func explode(s string, n int) []string {
+ l := utf8.RuneCountInString(s)
+ if n < 0 || n > l {
+ n = l
+ }
+ a := make([]string, n)
+ for i := 0; i < n-1; i++ {
+ _, size := utf8.DecodeRuneInString(s)
+ a[i] = s[:size]
+ s = s[size:]
+ }
+ if n > 0 {
+ a[n-1] = s
+ }
+ return a
+}
+
+// Count counts the number of non-overlapping instances of substr in s.
+// If substr is an empty string, Count returns 1 + the number of Unicode code points in s.
+func Count(s, substr string) int {
+ // special case
+ if len(substr) == 0 {
+ return utf8.RuneCountInString(s) + 1
+ }
+ if len(substr) == 1 {
+ return bytealg.CountString(s, substr[0])
+ }
+ n := 0
+ for {
+ i := Index(s, substr)
+ if i == -1 {
+ return n
+ }
+ n++
+ s = s[i+len(substr):]
+ }
+}
+
+// Contains reports whether substr is within s.
+func Contains(s, substr string) bool {
+ return Index(s, substr) >= 0
+}
+
+// ContainsAny reports whether any Unicode code points in chars are within s.
+func ContainsAny(s, chars string) bool {
+ return IndexAny(s, chars) >= 0
+}
+
+// ContainsRune reports whether the Unicode code point r is within s.
+func ContainsRune(s string, r rune) bool {
+ return IndexRune(s, r) >= 0
+}
+
+// LastIndex returns the index of the last instance of substr in s, or -1 if substr is not present in s.
+func LastIndex(s, substr string) int {
+ n := len(substr)
+ switch {
+ case n == 0:
+ return len(s)
+ case n == 1:
+ return LastIndexByte(s, substr[0])
+ case n == len(s):
+ if substr == s {
+ return 0
+ }
+ return -1
+ case n > len(s):
+ return -1
+ }
+ // Rabin-Karp search from the end of the string
+ hashss, pow := bytealg.HashStrRev(substr)
+ last := len(s) - n
+ var h uint32
+ for i := len(s) - 1; i >= last; i-- {
+ h = h*bytealg.PrimeRK + uint32(s[i])
+ }
+ if h == hashss && s[last:] == substr {
+ return last
+ }
+ for i := last - 1; i >= 0; i-- {
+ h *= bytealg.PrimeRK
+ h += uint32(s[i])
+ h -= pow * uint32(s[i+n])
+ if h == hashss && s[i:i+n] == substr {
+ return i
+ }
+ }
+ return -1
+}
+
+// IndexByte returns the index of the first instance of c in s, or -1 if c is not present in s.
+func IndexByte(s string, c byte) int {
+ return bytealg.IndexByteString(s, c)
+}
+
+// IndexRune returns the index of the first instance of the Unicode code point
+// r, or -1 if rune is not present in s.
+// If r is utf8.RuneError, it returns the first instance of any
+// invalid UTF-8 byte sequence.
+func IndexRune(s string, r rune) int {
+ switch {
+ case 0 <= r && r < utf8.RuneSelf:
+ return IndexByte(s, byte(r))
+ case r == utf8.RuneError:
+ for i, r := range s {
+ if r == utf8.RuneError {
+ return i
+ }
+ }
+ return -1
+ case !utf8.ValidRune(r):
+ return -1
+ default:
+ return Index(s, string(r))
+ }
+}
+
+// IndexAny returns the index of the first instance of any Unicode code point
+// from chars in s, or -1 if no Unicode code point from chars is present in s.
+func IndexAny(s, chars string) int {
+ if chars == "" {
+ // Avoid scanning all of s.
+ return -1
+ }
+ if len(chars) == 1 {
+ // Avoid scanning all of s.
+ r := rune(chars[0])
+ if r >= utf8.RuneSelf {
+ r = utf8.RuneError
+ }
+ return IndexRune(s, r)
+ }
+ if len(s) > 8 {
+ if as, isASCII := makeASCIISet(chars); isASCII {
+ for i := 0; i < len(s); i++ {
+ if as.contains(s[i]) {
+ return i
+ }
+ }
+ return -1
+ }
+ }
+ for i, c := range s {
+ if IndexRune(chars, c) >= 0 {
+ return i
+ }
+ }
+ return -1
+}
+
+// LastIndexAny returns the index of the last instance of any Unicode code
+// point from chars in s, or -1 if no Unicode code point from chars is
+// present in s.
+func LastIndexAny(s, chars string) int {
+ if chars == "" {
+ // Avoid scanning all of s.
+ return -1
+ }
+ if len(s) == 1 {
+ rc := rune(s[0])
+ if rc >= utf8.RuneSelf {
+ rc = utf8.RuneError
+ }
+ if IndexRune(chars, rc) >= 0 {
+ return 0
+ }
+ return -1
+ }
+ if len(s) > 8 {
+ if as, isASCII := makeASCIISet(chars); isASCII {
+ for i := len(s) - 1; i >= 0; i-- {
+ if as.contains(s[i]) {
+ return i
+ }
+ }
+ return -1
+ }
+ }
+ if len(chars) == 1 {
+ rc := rune(chars[0])
+ if rc >= utf8.RuneSelf {
+ rc = utf8.RuneError
+ }
+ for i := len(s); i > 0; {
+ r, size := utf8.DecodeLastRuneInString(s[:i])
+ i -= size
+ if rc == r {
+ return i
+ }
+ }
+ return -1
+ }
+ for i := len(s); i > 0; {
+ r, size := utf8.DecodeLastRuneInString(s[:i])
+ i -= size
+ if IndexRune(chars, r) >= 0 {
+ return i
+ }
+ }
+ return -1
+}
+
+// LastIndexByte returns the index of the last instance of c in s, or -1 if c is not present in s.
+func LastIndexByte(s string, c byte) int {
+ for i := len(s) - 1; i >= 0; i-- {
+ if s[i] == c {
+ return i
+ }
+ }
+ return -1
+}
+
+// Generic split: splits after each instance of sep,
+// including sepSave bytes of sep in the subarrays.
+func genSplit(s, sep string, sepSave, n int) []string {
+ if n == 0 {
+ return nil
+ }
+ if sep == "" {
+ return explode(s, n)
+ }
+ if n < 0 {
+ n = Count(s, sep) + 1
+ }
+
+ if n > len(s)+1 {
+ n = len(s) + 1
+ }
+ a := make([]string, n)
+ n--
+ i := 0
+ for i < n {
+ m := Index(s, sep)
+ if m < 0 {
+ break
+ }
+ a[i] = s[:m+sepSave]
+ s = s[m+len(sep):]
+ i++
+ }
+ a[i] = s
+ return a[:i+1]
+}
+
+// SplitN slices s into substrings separated by sep and returns a slice of
+// the substrings between those separators.
+//
+// The count determines the number of substrings to return:
+//
+// n > 0: at most n substrings; the last substring will be the unsplit remainder.
+// n == 0: the result is nil (zero substrings)
+// n < 0: all substrings
+//
+// Edge cases for s and sep (for example, empty strings) are handled
+// as described in the documentation for Split.
+//
+// To split around the first instance of a separator, see Cut.
+func SplitN(s, sep string, n int) []string { return genSplit(s, sep, 0, n) }
+
+// SplitAfterN slices s into substrings after each instance of sep and
+// returns a slice of those substrings.
+//
+// The count determines the number of substrings to return:
+//
+// n > 0: at most n substrings; the last substring will be the unsplit remainder.
+// n == 0: the result is nil (zero substrings)
+// n < 0: all substrings
+//
+// Edge cases for s and sep (for example, empty strings) are handled
+// as described in the documentation for SplitAfter.
+func SplitAfterN(s, sep string, n int) []string {
+ return genSplit(s, sep, len(sep), n)
+}
+
+// Split slices s into all substrings separated by sep and returns a slice of
+// the substrings between those separators.
+//
+// If s does not contain sep and sep is not empty, Split returns a
+// slice of length 1 whose only element is s.
+//
+// If sep is empty, Split splits after each UTF-8 sequence. If both s
+// and sep are empty, Split returns an empty slice.
+//
+// It is equivalent to SplitN with a count of -1.
+//
+// To split around the first instance of a separator, see Cut.
+func Split(s, sep string) []string { return genSplit(s, sep, 0, -1) }
+
+// SplitAfter slices s into all substrings after each instance of sep and
+// returns a slice of those substrings.
+//
+// If s does not contain sep and sep is not empty, SplitAfter returns
+// a slice of length 1 whose only element is s.
+//
+// If sep is empty, SplitAfter splits after each UTF-8 sequence. If
+// both s and sep are empty, SplitAfter returns an empty slice.
+//
+// It is equivalent to SplitAfterN with a count of -1.
+func SplitAfter(s, sep string) []string {
+ return genSplit(s, sep, len(sep), -1)
+}
+
+var asciiSpace = [256]uint8{'\t': 1, '\n': 1, '\v': 1, '\f': 1, '\r': 1, ' ': 1}
+
+// Fields splits the string s around each instance of one or more consecutive white space
+// characters, as defined by unicode.IsSpace, returning a slice of substrings of s or an
+// empty slice if s contains only white space.
+func Fields(s string) []string {
+ // First count the fields.
+ // This is an exact count if s is ASCII, otherwise it is an approximation.
+ n := 0
+ wasSpace := 1
+ // setBits is used to track which bits are set in the bytes of s.
+ setBits := uint8(0)
+ for i := 0; i < len(s); i++ {
+ r := s[i]
+ setBits |= r
+ isSpace := int(asciiSpace[r])
+ n += wasSpace & ^isSpace
+ wasSpace = isSpace
+ }
+
+ if setBits >= utf8.RuneSelf {
+ // Some runes in the input string are not ASCII.
+ return FieldsFunc(s, unicode.IsSpace)
+ }
+ // ASCII fast path
+ a := make([]string, n)
+ na := 0
+ fieldStart := 0
+ i := 0
+ // Skip spaces in the front of the input.
+ for i < len(s) && asciiSpace[s[i]] != 0 {
+ i++
+ }
+ fieldStart = i
+ for i < len(s) {
+ if asciiSpace[s[i]] == 0 {
+ i++
+ continue
+ }
+ a[na] = s[fieldStart:i]
+ na++
+ i++
+ // Skip spaces in between fields.
+ for i < len(s) && asciiSpace[s[i]] != 0 {
+ i++
+ }
+ fieldStart = i
+ }
+ if fieldStart < len(s) { // Last field might end at EOF.
+ a[na] = s[fieldStart:]
+ }
+ return a
+}
+
+// FieldsFunc splits the string s at each run of Unicode code points c satisfying f(c)
+// and returns an array of slices of s. If all code points in s satisfy f(c) or the
+// string is empty, an empty slice is returned.
+//
+// FieldsFunc makes no guarantees about the order in which it calls f(c)
+// and assumes that f always returns the same value for a given c.
+func FieldsFunc(s string, f func(rune) bool) []string {
+ // A span is used to record a slice of s of the form s[start:end].
+ // The start index is inclusive and the end index is exclusive.
+ type span struct {
+ start int
+ end int
+ }
+ spans := make([]span, 0, 32)
+
+ // Find the field start and end indices.
+ // Doing this in a separate pass (rather than slicing the string s
+ // and collecting the result substrings right away) is significantly
+ // more efficient, possibly due to cache effects.
+ start := -1 // valid span start if >= 0
+ for end, rune := range s {
+ if f(rune) {
+ if start >= 0 {
+ spans = append(spans, span{start, end})
+ // Set start to a negative value.
+ // Note: using -1 here consistently and reproducibly
+ // slows down this code by a several percent on amd64.
+ start = ^start
+ }
+ } else {
+ if start < 0 {
+ start = end
+ }
+ }
+ }
+
+ // Last field might end at EOF.
+ if start >= 0 {
+ spans = append(spans, span{start, len(s)})
+ }
+
+ // Create strings from recorded field indices.
+ a := make([]string, len(spans))
+ for i, span := range spans {
+ a[i] = s[span.start:span.end]
+ }
+
+ return a
+}
+
+// Join concatenates the elements of its first argument to create a single string. The separator
+// string sep is placed between elements in the resulting string.
+func Join(elems []string, sep string) string {
+ switch len(elems) {
+ case 0:
+ return ""
+ case 1:
+ return elems[0]
+ }
+ n := len(sep) * (len(elems) - 1)
+ for i := 0; i < len(elems); i++ {
+ n += len(elems[i])
+ }
+
+ var b Builder
+ b.Grow(n)
+ b.WriteString(elems[0])
+ for _, s := range elems[1:] {
+ b.WriteString(sep)
+ b.WriteString(s)
+ }
+ return b.String()
+}
+
+// HasPrefix tests whether the string s begins with prefix.
+func HasPrefix(s, prefix string) bool {
+ return len(s) >= len(prefix) && s[0:len(prefix)] == prefix
+}
+
+// HasSuffix tests whether the string s ends with suffix.
+func HasSuffix(s, suffix string) bool {
+ return len(s) >= len(suffix) && s[len(s)-len(suffix):] == suffix
+}
+
+// Map returns a copy of the string s with all its characters modified
+// according to the mapping function. If mapping returns a negative value, the character is
+// dropped from the string with no replacement.
+func Map(mapping func(rune) rune, s string) string {
+ // In the worst case, the string can grow when mapped, making
+ // things unpleasant. But it's so rare we barge in assuming it's
+ // fine. It could also shrink but that falls out naturally.
+
+ // The output buffer b is initialized on demand, the first
+ // time a character differs.
+ var b Builder
+
+ for i, c := range s {
+ r := mapping(c)
+ if r == c && c != utf8.RuneError {
+ continue
+ }
+
+ var width int
+ if c == utf8.RuneError {
+ c, width = utf8.DecodeRuneInString(s[i:])
+ if width != 1 && r == c {
+ continue
+ }
+ } else {
+ width = utf8.RuneLen(c)
+ }
+
+ b.Grow(len(s) + utf8.UTFMax)
+ b.WriteString(s[:i])
+ if r >= 0 {
+ b.WriteRune(r)
+ }
+
+ s = s[i+width:]
+ break
+ }
+
+ // Fast path for unchanged input
+ if b.Cap() == 0 { // didn't call b.Grow above
+ return s
+ }
+
+ for _, c := range s {
+ r := mapping(c)
+
+ if r >= 0 {
+ // common case
+ // Due to inlining, it is more performant to determine if WriteByte should be
+ // invoked rather than always call WriteRune
+ if r < utf8.RuneSelf {
+ b.WriteByte(byte(r))
+ } else {
+ // r is not a ASCII rune.
+ b.WriteRune(r)
+ }
+ }
+ }
+
+ return b.String()
+}
+
+// Repeat returns a new string consisting of count copies of the string s.
+//
+// It panics if count is negative or if the result of (len(s) * count)
+// overflows.
+func Repeat(s string, count int) string {
+ switch count {
+ case 0:
+ return ""
+ case 1:
+ return s
+ }
+
+ // Since we cannot return an error on overflow,
+ // we should panic if the repeat will generate
+ // an overflow.
+ // See golang.org/issue/16237.
+ if count < 0 {
+ panic("strings: negative Repeat count")
+ } else if len(s)*count/count != len(s) {
+ panic("strings: Repeat count causes overflow")
+ }
+
+ if len(s) == 0 {
+ return ""
+ }
+
+ n := len(s) * count
+
+ // Past a certain chunk size it is counterproductive to use
+ // larger chunks as the source of the write, as when the source
+ // is too large we are basically just thrashing the CPU D-cache.
+ // So if the result length is larger than an empirically-found
+ // limit (8KB), we stop growing the source string once the limit
+ // is reached and keep reusing the same source string - that
+ // should therefore be always resident in the L1 cache - until we
+ // have completed the construction of the result.
+ // This yields significant speedups (up to +100%) in cases where
+ // the result length is large (roughly, over L2 cache size).
+ const chunkLimit = 8 * 1024
+ chunkMax := n
+ if n > chunkLimit {
+ chunkMax = chunkLimit / len(s) * len(s)
+ if chunkMax == 0 {
+ chunkMax = len(s)
+ }
+ }
+
+ var b Builder
+ b.Grow(n)
+ b.WriteString(s)
+ for b.Len() < n {
+ chunk := n - b.Len()
+ if chunk > b.Len() {
+ chunk = b.Len()
+ }
+ if chunk > chunkMax {
+ chunk = chunkMax
+ }
+ b.WriteString(b.String()[:chunk])
+ }
+ return b.String()
+}
+
+// ToUpper returns s with all Unicode letters mapped to their upper case.
+func ToUpper(s string) string {
+ isASCII, hasLower := true, false
+ for i := 0; i < len(s); i++ {
+ c := s[i]
+ if c >= utf8.RuneSelf {
+ isASCII = false
+ break
+ }
+ hasLower = hasLower || ('a' <= c && c <= 'z')
+ }
+
+ if isASCII { // optimize for ASCII-only strings.
+ if !hasLower {
+ return s
+ }
+ var (
+ b Builder
+ pos int
+ )
+ b.Grow(len(s))
+ for i := 0; i < len(s); i++ {
+ c := s[i]
+ if 'a' <= c && c <= 'z' {
+ c -= 'a' - 'A'
+ if pos < i {
+ b.WriteString(s[pos:i])
+ }
+ b.WriteByte(c)
+ pos = i + 1
+ }
+ }
+ if pos < len(s) {
+ b.WriteString(s[pos:])
+ }
+ return b.String()
+ }
+ return Map(unicode.ToUpper, s)
+}
+
+// ToLower returns s with all Unicode letters mapped to their lower case.
+func ToLower(s string) string {
+ isASCII, hasUpper := true, false
+ for i := 0; i < len(s); i++ {
+ c := s[i]
+ if c >= utf8.RuneSelf {
+ isASCII = false
+ break
+ }
+ hasUpper = hasUpper || ('A' <= c && c <= 'Z')
+ }
+
+ if isASCII { // optimize for ASCII-only strings.
+ if !hasUpper {
+ return s
+ }
+ var (
+ b Builder
+ pos int
+ )
+ b.Grow(len(s))
+ for i := 0; i < len(s); i++ {
+ c := s[i]
+ if 'A' <= c && c <= 'Z' {
+ c += 'a' - 'A'
+ if pos < i {
+ b.WriteString(s[pos:i])
+ }
+ b.WriteByte(c)
+ pos = i + 1
+ }
+ }
+ if pos < len(s) {
+ b.WriteString(s[pos:])
+ }
+ return b.String()
+ }
+ return Map(unicode.ToLower, s)
+}
+
+// ToTitle returns a copy of the string s with all Unicode letters mapped to
+// their Unicode title case.
+func ToTitle(s string) string { return Map(unicode.ToTitle, s) }
+
+// ToUpperSpecial returns a copy of the string s with all Unicode letters mapped to their
+// upper case using the case mapping specified by c.
+func ToUpperSpecial(c unicode.SpecialCase, s string) string {
+ return Map(c.ToUpper, s)
+}
+
+// ToLowerSpecial returns a copy of the string s with all Unicode letters mapped to their
+// lower case using the case mapping specified by c.
+func ToLowerSpecial(c unicode.SpecialCase, s string) string {
+ return Map(c.ToLower, s)
+}
+
+// ToTitleSpecial returns a copy of the string s with all Unicode letters mapped to their
+// Unicode title case, giving priority to the special casing rules.
+func ToTitleSpecial(c unicode.SpecialCase, s string) string {
+ return Map(c.ToTitle, s)
+}
+
+// ToValidUTF8 returns a copy of the string s with each run of invalid UTF-8 byte sequences
+// replaced by the replacement string, which may be empty.
+func ToValidUTF8(s, replacement string) string {
+ var b Builder
+
+ for i, c := range s {
+ if c != utf8.RuneError {
+ continue
+ }
+
+ _, wid := utf8.DecodeRuneInString(s[i:])
+ if wid == 1 {
+ b.Grow(len(s) + len(replacement))
+ b.WriteString(s[:i])
+ s = s[i:]
+ break
+ }
+ }
+
+ // Fast path for unchanged input
+ if b.Cap() == 0 { // didn't call b.Grow above
+ return s
+ }
+
+ invalid := false // previous byte was from an invalid UTF-8 sequence
+ for i := 0; i < len(s); {
+ c := s[i]
+ if c < utf8.RuneSelf {
+ i++
+ invalid = false
+ b.WriteByte(c)
+ continue
+ }
+ _, wid := utf8.DecodeRuneInString(s[i:])
+ if wid == 1 {
+ i++
+ if !invalid {
+ invalid = true
+ b.WriteString(replacement)
+ }
+ continue
+ }
+ invalid = false
+ b.WriteString(s[i : i+wid])
+ i += wid
+ }
+
+ return b.String()
+}
+
+// isSeparator reports whether the rune could mark a word boundary.
+// TODO: update when package unicode captures more of the properties.
+func isSeparator(r rune) bool {
+ // ASCII alphanumerics and underscore are not separators
+ if r <= 0x7F {
+ switch {
+ case '0' <= r && r <= '9':
+ return false
+ case 'a' <= r && r <= 'z':
+ return false
+ case 'A' <= r && r <= 'Z':
+ return false
+ case r == '_':
+ return false
+ }
+ return true
+ }
+ // Letters and digits are not separators
+ if unicode.IsLetter(r) || unicode.IsDigit(r) {
+ return false
+ }
+ // Otherwise, all we can do for now is treat spaces as separators.
+ return unicode.IsSpace(r)
+}
+
+// Title returns a copy of the string s with all Unicode letters that begin words
+// mapped to their Unicode title case.
+//
+// Deprecated: The rule Title uses for word boundaries does not handle Unicode
+// punctuation properly. Use golang.org/x/text/cases instead.
+func Title(s string) string {
+ // Use a closure here to remember state.
+ // Hackish but effective. Depends on Map scanning in order and calling
+ // the closure once per rune.
+ prev := ' '
+ return Map(
+ func(r rune) rune {
+ if isSeparator(prev) {
+ prev = r
+ return unicode.ToTitle(r)
+ }
+ prev = r
+ return r
+ },
+ s)
+}
+
+// TrimLeftFunc returns a slice of the string s with all leading
+// Unicode code points c satisfying f(c) removed.
+func TrimLeftFunc(s string, f func(rune) bool) string {
+ i := indexFunc(s, f, false)
+ if i == -1 {
+ return ""
+ }
+ return s[i:]
+}
+
+// TrimRightFunc returns a slice of the string s with all trailing
+// Unicode code points c satisfying f(c) removed.
+func TrimRightFunc(s string, f func(rune) bool) string {
+ i := lastIndexFunc(s, f, false)
+ if i >= 0 && s[i] >= utf8.RuneSelf {
+ _, wid := utf8.DecodeRuneInString(s[i:])
+ i += wid
+ } else {
+ i++
+ }
+ return s[0:i]
+}
+
+// TrimFunc returns a slice of the string s with all leading
+// and trailing Unicode code points c satisfying f(c) removed.
+func TrimFunc(s string, f func(rune) bool) string {
+ return TrimRightFunc(TrimLeftFunc(s, f), f)
+}
+
+// IndexFunc returns the index into s of the first Unicode
+// code point satisfying f(c), or -1 if none do.
+func IndexFunc(s string, f func(rune) bool) int {
+ return indexFunc(s, f, true)
+}
+
+// LastIndexFunc returns the index into s of the last
+// Unicode code point satisfying f(c), or -1 if none do.
+func LastIndexFunc(s string, f func(rune) bool) int {
+ return lastIndexFunc(s, f, true)
+}
+
+// indexFunc is the same as IndexFunc except that if
+// truth==false, the sense of the predicate function is
+// inverted.
+func indexFunc(s string, f func(rune) bool, truth bool) int {
+ for i, r := range s {
+ if f(r) == truth {
+ return i
+ }
+ }
+ return -1
+}
+
+// lastIndexFunc is the same as LastIndexFunc except that if
+// truth==false, the sense of the predicate function is
+// inverted.
+func lastIndexFunc(s string, f func(rune) bool, truth bool) int {
+ for i := len(s); i > 0; {
+ r, size := utf8.DecodeLastRuneInString(s[0:i])
+ i -= size
+ if f(r) == truth {
+ return i
+ }
+ }
+ return -1
+}
+
+// asciiSet is a 32-byte value, where each bit represents the presence of a
+// given ASCII character in the set. The 128-bits of the lower 16 bytes,
+// starting with the least-significant bit of the lowest word to the
+// most-significant bit of the highest word, map to the full range of all
+// 128 ASCII characters. The 128-bits of the upper 16 bytes will be zeroed,
+// ensuring that any non-ASCII character will be reported as not in the set.
+// This allocates a total of 32 bytes even though the upper half
+// is unused to avoid bounds checks in asciiSet.contains.
+type asciiSet [8]uint32
+
+// makeASCIISet creates a set of ASCII characters and reports whether all
+// characters in chars are ASCII.
+func makeASCIISet(chars string) (as asciiSet, ok bool) {
+ for i := 0; i < len(chars); i++ {
+ c := chars[i]
+ if c >= utf8.RuneSelf {
+ return as, false
+ }
+ as[c/32] |= 1 << (c % 32)
+ }
+ return as, true
+}
+
+// contains reports whether c is inside the set.
+func (as *asciiSet) contains(c byte) bool {
+ return (as[c/32] & (1 << (c % 32))) != 0
+}
+
+// Trim returns a slice of the string s with all leading and
+// trailing Unicode code points contained in cutset removed.
+func Trim(s, cutset string) string {
+ if s == "" || cutset == "" {
+ return s
+ }
+ if len(cutset) == 1 && cutset[0] < utf8.RuneSelf {
+ return trimLeftByte(trimRightByte(s, cutset[0]), cutset[0])
+ }
+ if as, ok := makeASCIISet(cutset); ok {
+ return trimLeftASCII(trimRightASCII(s, &as), &as)
+ }
+ return trimLeftUnicode(trimRightUnicode(s, cutset), cutset)
+}
+
+// TrimLeft returns a slice of the string s with all leading
+// Unicode code points contained in cutset removed.
+//
+// To remove a prefix, use TrimPrefix instead.
+func TrimLeft(s, cutset string) string {
+ if s == "" || cutset == "" {
+ return s
+ }
+ if len(cutset) == 1 && cutset[0] < utf8.RuneSelf {
+ return trimLeftByte(s, cutset[0])
+ }
+ if as, ok := makeASCIISet(cutset); ok {
+ return trimLeftASCII(s, &as)
+ }
+ return trimLeftUnicode(s, cutset)
+}
+
+func trimLeftByte(s string, c byte) string {
+ for len(s) > 0 && s[0] == c {
+ s = s[1:]
+ }
+ return s
+}
+
+func trimLeftASCII(s string, as *asciiSet) string {
+ for len(s) > 0 {
+ if !as.contains(s[0]) {
+ break
+ }
+ s = s[1:]
+ }
+ return s
+}
+
+func trimLeftUnicode(s, cutset string) string {
+ for len(s) > 0 {
+ r, n := rune(s[0]), 1
+ if r >= utf8.RuneSelf {
+ r, n = utf8.DecodeRuneInString(s)
+ }
+ if !ContainsRune(cutset, r) {
+ break
+ }
+ s = s[n:]
+ }
+ return s
+}
+
+// TrimRight returns a slice of the string s, with all trailing
+// Unicode code points contained in cutset removed.
+//
+// To remove a suffix, use TrimSuffix instead.
+func TrimRight(s, cutset string) string {
+ if s == "" || cutset == "" {
+ return s
+ }
+ if len(cutset) == 1 && cutset[0] < utf8.RuneSelf {
+ return trimRightByte(s, cutset[0])
+ }
+ if as, ok := makeASCIISet(cutset); ok {
+ return trimRightASCII(s, &as)
+ }
+ return trimRightUnicode(s, cutset)
+}
+
+func trimRightByte(s string, c byte) string {
+ for len(s) > 0 && s[len(s)-1] == c {
+ s = s[:len(s)-1]
+ }
+ return s
+}
+
+func trimRightASCII(s string, as *asciiSet) string {
+ for len(s) > 0 {
+ if !as.contains(s[len(s)-1]) {
+ break
+ }
+ s = s[:len(s)-1]
+ }
+ return s
+}
+
+func trimRightUnicode(s, cutset string) string {
+ for len(s) > 0 {
+ r, n := rune(s[len(s)-1]), 1
+ if r >= utf8.RuneSelf {
+ r, n = utf8.DecodeLastRuneInString(s)
+ }
+ if !ContainsRune(cutset, r) {
+ break
+ }
+ s = s[:len(s)-n]
+ }
+ return s
+}
+
+// TrimSpace returns a slice of the string s, with all leading
+// and trailing white space removed, as defined by Unicode.
+func TrimSpace(s string) string {
+ // Fast path for ASCII: look for the first ASCII non-space byte
+ start := 0
+ for ; start < len(s); start++ {
+ c := s[start]
+ if c >= utf8.RuneSelf {
+ // If we run into a non-ASCII byte, fall back to the
+ // slower unicode-aware method on the remaining bytes
+ return TrimFunc(s[start:], unicode.IsSpace)
+ }
+ if asciiSpace[c] == 0 {
+ break
+ }
+ }
+
+ // Now look for the first ASCII non-space byte from the end
+ stop := len(s)
+ for ; stop > start; stop-- {
+ c := s[stop-1]
+ if c >= utf8.RuneSelf {
+ // start has been already trimmed above, should trim end only
+ return TrimRightFunc(s[start:stop], unicode.IsSpace)
+ }
+ if asciiSpace[c] == 0 {
+ break
+ }
+ }
+
+ // At this point s[start:stop] starts and ends with an ASCII
+ // non-space bytes, so we're done. Non-ASCII cases have already
+ // been handled above.
+ return s[start:stop]
+}
+
+// TrimPrefix returns s without the provided leading prefix string.
+// If s doesn't start with prefix, s is returned unchanged.
+func TrimPrefix(s, prefix string) string {
+ if HasPrefix(s, prefix) {
+ return s[len(prefix):]
+ }
+ return s
+}
+
+// TrimSuffix returns s without the provided trailing suffix string.
+// If s doesn't end with suffix, s is returned unchanged.
+func TrimSuffix(s, suffix string) string {
+ if HasSuffix(s, suffix) {
+ return s[:len(s)-len(suffix)]
+ }
+ return s
+}
+
+// Replace returns a copy of the string s with the first n
+// non-overlapping instances of old replaced by new.
+// If old is empty, it matches at the beginning of the string
+// and after each UTF-8 sequence, yielding up to k+1 replacements
+// for a k-rune string.
+// If n < 0, there is no limit on the number of replacements.
+func Replace(s, old, new string, n int) string {
+ if old == new || n == 0 {
+ return s // avoid allocation
+ }
+
+ // Compute number of replacements.
+ if m := Count(s, old); m == 0 {
+ return s // avoid allocation
+ } else if n < 0 || m < n {
+ n = m
+ }
+
+ // Apply replacements to buffer.
+ var b Builder
+ b.Grow(len(s) + n*(len(new)-len(old)))
+ start := 0
+ for i := 0; i < n; i++ {
+ j := start
+ if len(old) == 0 {
+ if i > 0 {
+ _, wid := utf8.DecodeRuneInString(s[start:])
+ j += wid
+ }
+ } else {
+ j += Index(s[start:], old)
+ }
+ b.WriteString(s[start:j])
+ b.WriteString(new)
+ start = j + len(old)
+ }
+ b.WriteString(s[start:])
+ return b.String()
+}
+
+// ReplaceAll returns a copy of the string s with all
+// non-overlapping instances of old replaced by new.
+// If old is empty, it matches at the beginning of the string
+// and after each UTF-8 sequence, yielding up to k+1 replacements
+// for a k-rune string.
+func ReplaceAll(s, old, new string) string {
+ return Replace(s, old, new, -1)
+}
+
+// EqualFold reports whether s and t, interpreted as UTF-8 strings,
+// are equal under simple Unicode case-folding, which is a more general
+// form of case-insensitivity.
+func EqualFold(s, t string) bool {
+ // ASCII fast path
+ i := 0
+ for ; i < len(s) && i < len(t); i++ {
+ sr := s[i]
+ tr := t[i]
+ if sr|tr >= utf8.RuneSelf {
+ goto hasUnicode
+ }
+
+ // Easy case.
+ if tr == sr {
+ continue
+ }
+
+ // Make sr < tr to simplify what follows.
+ if tr < sr {
+ tr, sr = sr, tr
+ }
+ // ASCII only, sr/tr must be upper/lower case
+ if 'A' <= sr && sr <= 'Z' && tr == sr+'a'-'A' {
+ continue
+ }
+ return false
+ }
+ // Check if we've exhausted both strings.
+ return len(s) == len(t)
+
+hasUnicode:
+ s = s[i:]
+ t = t[i:]
+ for _, sr := range s {
+ // If t is exhausted the strings are not equal.
+ if len(t) == 0 {
+ return false
+ }
+
+ // Extract first rune from second string.
+ var tr rune
+ if t[0] < utf8.RuneSelf {
+ tr, t = rune(t[0]), t[1:]
+ } else {
+ r, size := utf8.DecodeRuneInString(t)
+ tr, t = r, t[size:]
+ }
+
+ // If they match, keep going; if not, return false.
+
+ // Easy case.
+ if tr == sr {
+ continue
+ }
+
+ // Make sr < tr to simplify what follows.
+ if tr < sr {
+ tr, sr = sr, tr
+ }
+ // Fast check for ASCII.
+ if tr < utf8.RuneSelf {
+ // ASCII only, sr/tr must be upper/lower case
+ if 'A' <= sr && sr <= 'Z' && tr == sr+'a'-'A' {
+ continue
+ }
+ return false
+ }
+
+ // General case. SimpleFold(x) returns the next equivalent rune > x
+ // or wraps around to smaller values.
+ r := unicode.SimpleFold(sr)
+ for r != sr && r < tr {
+ r = unicode.SimpleFold(r)
+ }
+ if r == tr {
+ continue
+ }
+ return false
+ }
+
+ // First string is empty, so check if the second one is also empty.
+ return len(t) == 0
+}
+
+// Index returns the index of the first instance of substr in s, or -1 if substr is not present in s.
+func Index(s, substr string) int {
+ n := len(substr)
+ switch {
+ case n == 0:
+ return 0
+ case n == 1:
+ return IndexByte(s, substr[0])
+ case n == len(s):
+ if substr == s {
+ return 0
+ }
+ return -1
+ case n > len(s):
+ return -1
+ case n <= bytealg.MaxLen:
+ // Use brute force when s and substr both are small
+ if len(s) <= bytealg.MaxBruteForce {
+ return bytealg.IndexString(s, substr)
+ }
+ c0 := substr[0]
+ c1 := substr[1]
+ i := 0
+ t := len(s) - n + 1
+ fails := 0
+ for i < t {
+ if s[i] != c0 {
+ // IndexByte is faster than bytealg.IndexString, so use it as long as
+ // we're not getting lots of false positives.
+ o := IndexByte(s[i+1:t], c0)
+ if o < 0 {
+ return -1
+ }
+ i += o + 1
+ }
+ if s[i+1] == c1 && s[i:i+n] == substr {
+ return i
+ }
+ fails++
+ i++
+ // Switch to bytealg.IndexString when IndexByte produces too many false positives.
+ if fails > bytealg.Cutover(i) {
+ r := bytealg.IndexString(s[i:], substr)
+ if r >= 0 {
+ return r + i
+ }
+ return -1
+ }
+ }
+ return -1
+ }
+ c0 := substr[0]
+ c1 := substr[1]
+ i := 0
+ t := len(s) - n + 1
+ fails := 0
+ for i < t {
+ if s[i] != c0 {
+ o := IndexByte(s[i+1:t], c0)
+ if o < 0 {
+ return -1
+ }
+ i += o + 1
+ }
+ if s[i+1] == c1 && s[i:i+n] == substr {
+ return i
+ }
+ i++
+ fails++
+ if fails >= 4+i>>4 && i < t {
+ // See comment in ../bytes/bytes.go.
+ j := bytealg.IndexRabinKarp(s[i:], substr)
+ if j < 0 {
+ return -1
+ }
+ return i + j
+ }
+ }
+ return -1
+}
+
+// Cut slices s around the first instance of sep,
+// returning the text before and after sep.
+// The found result reports whether sep appears in s.
+// If sep does not appear in s, cut returns s, "", false.
+func Cut(s, sep string) (before, after string, found bool) {
+ if i := Index(s, sep); i >= 0 {
+ return s[:i], s[i+len(sep):], true
+ }
+ return s, "", false
+}
+
+// CutPrefix returns s without the provided leading prefix string
+// and reports whether it found the prefix.
+// If s doesn't start with prefix, CutPrefix returns s, false.
+// If prefix is the empty string, CutPrefix returns s, true.
+func CutPrefix(s, prefix string) (after string, found bool) {
+ if !HasPrefix(s, prefix) {
+ return s, false
+ }
+ return s[len(prefix):], true
+}
+
+// CutSuffix returns s without the provided ending suffix string
+// and reports whether it found the suffix.
+// If s doesn't end with suffix, CutSuffix returns s, false.
+// If suffix is the empty string, CutSuffix returns s, true.
+func CutSuffix(s, suffix string) (before string, found bool) {
+ if !HasSuffix(s, suffix) {
+ return s, false
+ }
+ return s[:len(s)-len(suffix)], true
+}