summaryrefslogtreecommitdiffstats
path: root/src/crypto/ecdsa/ecdsa_legacy.go
diff options
context:
space:
mode:
Diffstat (limited to 'src/crypto/ecdsa/ecdsa_legacy.go')
-rw-r--r--src/crypto/ecdsa/ecdsa_legacy.go188
1 files changed, 188 insertions, 0 deletions
diff --git a/src/crypto/ecdsa/ecdsa_legacy.go b/src/crypto/ecdsa/ecdsa_legacy.go
new file mode 100644
index 0000000..12a40e4
--- /dev/null
+++ b/src/crypto/ecdsa/ecdsa_legacy.go
@@ -0,0 +1,188 @@
+// Copyright 2022 The Go Authors. All rights reserved.
+// Use of this source code is governed by a BSD-style
+// license that can be found in the LICENSE file.
+
+package ecdsa
+
+import (
+ "crypto/elliptic"
+ "errors"
+ "io"
+ "math/big"
+
+ "golang.org/x/crypto/cryptobyte"
+ "golang.org/x/crypto/cryptobyte/asn1"
+)
+
+// This file contains a math/big implementation of ECDSA that is only used for
+// deprecated custom curves.
+
+func generateLegacy(c elliptic.Curve, rand io.Reader) (*PrivateKey, error) {
+ k, err := randFieldElement(c, rand)
+ if err != nil {
+ return nil, err
+ }
+
+ priv := new(PrivateKey)
+ priv.PublicKey.Curve = c
+ priv.D = k
+ priv.PublicKey.X, priv.PublicKey.Y = c.ScalarBaseMult(k.Bytes())
+ return priv, nil
+}
+
+// hashToInt converts a hash value to an integer. Per FIPS 186-4, Section 6.4,
+// we use the left-most bits of the hash to match the bit-length of the order of
+// the curve. This also performs Step 5 of SEC 1, Version 2.0, Section 4.1.3.
+func hashToInt(hash []byte, c elliptic.Curve) *big.Int {
+ orderBits := c.Params().N.BitLen()
+ orderBytes := (orderBits + 7) / 8
+ if len(hash) > orderBytes {
+ hash = hash[:orderBytes]
+ }
+
+ ret := new(big.Int).SetBytes(hash)
+ excess := len(hash)*8 - orderBits
+ if excess > 0 {
+ ret.Rsh(ret, uint(excess))
+ }
+ return ret
+}
+
+var errZeroParam = errors.New("zero parameter")
+
+// Sign signs a hash (which should be the result of hashing a larger message)
+// using the private key, priv. If the hash is longer than the bit-length of the
+// private key's curve order, the hash will be truncated to that length. It
+// returns the signature as a pair of integers. Most applications should use
+// SignASN1 instead of dealing directly with r, s.
+func Sign(rand io.Reader, priv *PrivateKey, hash []byte) (r, s *big.Int, err error) {
+ sig, err := SignASN1(rand, priv, hash)
+ if err != nil {
+ return nil, nil, err
+ }
+
+ r, s = new(big.Int), new(big.Int)
+ var inner cryptobyte.String
+ input := cryptobyte.String(sig)
+ if !input.ReadASN1(&inner, asn1.SEQUENCE) ||
+ !input.Empty() ||
+ !inner.ReadASN1Integer(r) ||
+ !inner.ReadASN1Integer(s) ||
+ !inner.Empty() {
+ return nil, nil, errors.New("invalid ASN.1 from SignASN1")
+ }
+ return r, s, nil
+}
+
+func signLegacy(priv *PrivateKey, csprng io.Reader, hash []byte) (sig []byte, err error) {
+ c := priv.Curve
+
+ // SEC 1, Version 2.0, Section 4.1.3
+ N := c.Params().N
+ if N.Sign() == 0 {
+ return nil, errZeroParam
+ }
+ var k, kInv, r, s *big.Int
+ for {
+ for {
+ k, err = randFieldElement(c, csprng)
+ if err != nil {
+ return nil, err
+ }
+
+ kInv = new(big.Int).ModInverse(k, N)
+
+ r, _ = c.ScalarBaseMult(k.Bytes())
+ r.Mod(r, N)
+ if r.Sign() != 0 {
+ break
+ }
+ }
+
+ e := hashToInt(hash, c)
+ s = new(big.Int).Mul(priv.D, r)
+ s.Add(s, e)
+ s.Mul(s, kInv)
+ s.Mod(s, N) // N != 0
+ if s.Sign() != 0 {
+ break
+ }
+ }
+
+ return encodeSignature(r.Bytes(), s.Bytes())
+}
+
+// Verify verifies the signature in r, s of hash using the public key, pub. Its
+// return value records whether the signature is valid. Most applications should
+// use VerifyASN1 instead of dealing directly with r, s.
+func Verify(pub *PublicKey, hash []byte, r, s *big.Int) bool {
+ if r.Sign() <= 0 || s.Sign() <= 0 {
+ return false
+ }
+ sig, err := encodeSignature(r.Bytes(), s.Bytes())
+ if err != nil {
+ return false
+ }
+ return VerifyASN1(pub, hash, sig)
+}
+
+func verifyLegacy(pub *PublicKey, hash []byte, sig []byte) bool {
+ rBytes, sBytes, err := parseSignature(sig)
+ if err != nil {
+ return false
+ }
+ r, s := new(big.Int).SetBytes(rBytes), new(big.Int).SetBytes(sBytes)
+
+ c := pub.Curve
+ N := c.Params().N
+
+ if r.Sign() <= 0 || s.Sign() <= 0 {
+ return false
+ }
+ if r.Cmp(N) >= 0 || s.Cmp(N) >= 0 {
+ return false
+ }
+
+ // SEC 1, Version 2.0, Section 4.1.4
+ e := hashToInt(hash, c)
+ w := new(big.Int).ModInverse(s, N)
+
+ u1 := e.Mul(e, w)
+ u1.Mod(u1, N)
+ u2 := w.Mul(r, w)
+ u2.Mod(u2, N)
+
+ x1, y1 := c.ScalarBaseMult(u1.Bytes())
+ x2, y2 := c.ScalarMult(pub.X, pub.Y, u2.Bytes())
+ x, y := c.Add(x1, y1, x2, y2)
+
+ if x.Sign() == 0 && y.Sign() == 0 {
+ return false
+ }
+ x.Mod(x, N)
+ return x.Cmp(r) == 0
+}
+
+var one = new(big.Int).SetInt64(1)
+
+// randFieldElement returns a random element of the order of the given
+// curve using the procedure given in FIPS 186-4, Appendix B.5.2.
+func randFieldElement(c elliptic.Curve, rand io.Reader) (k *big.Int, err error) {
+ // See randomPoint for notes on the algorithm. This has to match, or s390x
+ // signatures will come out different from other architectures, which will
+ // break TLS recorded tests.
+ for {
+ N := c.Params().N
+ b := make([]byte, (N.BitLen()+7)/8)
+ if _, err = io.ReadFull(rand, b); err != nil {
+ return
+ }
+ if excess := len(b)*8 - N.BitLen(); excess > 0 {
+ b[0] >>= excess
+ }
+ k = new(big.Int).SetBytes(b)
+ if k.Sign() != 0 && k.Cmp(N) < 0 {
+ return
+ }
+ }
+}