diff options
Diffstat (limited to 'src/crypto/ecdsa/ecdsa_legacy.go')
-rw-r--r-- | src/crypto/ecdsa/ecdsa_legacy.go | 188 |
1 files changed, 188 insertions, 0 deletions
diff --git a/src/crypto/ecdsa/ecdsa_legacy.go b/src/crypto/ecdsa/ecdsa_legacy.go new file mode 100644 index 0000000..12a40e4 --- /dev/null +++ b/src/crypto/ecdsa/ecdsa_legacy.go @@ -0,0 +1,188 @@ +// Copyright 2022 The Go Authors. All rights reserved. +// Use of this source code is governed by a BSD-style +// license that can be found in the LICENSE file. + +package ecdsa + +import ( + "crypto/elliptic" + "errors" + "io" + "math/big" + + "golang.org/x/crypto/cryptobyte" + "golang.org/x/crypto/cryptobyte/asn1" +) + +// This file contains a math/big implementation of ECDSA that is only used for +// deprecated custom curves. + +func generateLegacy(c elliptic.Curve, rand io.Reader) (*PrivateKey, error) { + k, err := randFieldElement(c, rand) + if err != nil { + return nil, err + } + + priv := new(PrivateKey) + priv.PublicKey.Curve = c + priv.D = k + priv.PublicKey.X, priv.PublicKey.Y = c.ScalarBaseMult(k.Bytes()) + return priv, nil +} + +// hashToInt converts a hash value to an integer. Per FIPS 186-4, Section 6.4, +// we use the left-most bits of the hash to match the bit-length of the order of +// the curve. This also performs Step 5 of SEC 1, Version 2.0, Section 4.1.3. +func hashToInt(hash []byte, c elliptic.Curve) *big.Int { + orderBits := c.Params().N.BitLen() + orderBytes := (orderBits + 7) / 8 + if len(hash) > orderBytes { + hash = hash[:orderBytes] + } + + ret := new(big.Int).SetBytes(hash) + excess := len(hash)*8 - orderBits + if excess > 0 { + ret.Rsh(ret, uint(excess)) + } + return ret +} + +var errZeroParam = errors.New("zero parameter") + +// Sign signs a hash (which should be the result of hashing a larger message) +// using the private key, priv. If the hash is longer than the bit-length of the +// private key's curve order, the hash will be truncated to that length. It +// returns the signature as a pair of integers. Most applications should use +// SignASN1 instead of dealing directly with r, s. +func Sign(rand io.Reader, priv *PrivateKey, hash []byte) (r, s *big.Int, err error) { + sig, err := SignASN1(rand, priv, hash) + if err != nil { + return nil, nil, err + } + + r, s = new(big.Int), new(big.Int) + var inner cryptobyte.String + input := cryptobyte.String(sig) + if !input.ReadASN1(&inner, asn1.SEQUENCE) || + !input.Empty() || + !inner.ReadASN1Integer(r) || + !inner.ReadASN1Integer(s) || + !inner.Empty() { + return nil, nil, errors.New("invalid ASN.1 from SignASN1") + } + return r, s, nil +} + +func signLegacy(priv *PrivateKey, csprng io.Reader, hash []byte) (sig []byte, err error) { + c := priv.Curve + + // SEC 1, Version 2.0, Section 4.1.3 + N := c.Params().N + if N.Sign() == 0 { + return nil, errZeroParam + } + var k, kInv, r, s *big.Int + for { + for { + k, err = randFieldElement(c, csprng) + if err != nil { + return nil, err + } + + kInv = new(big.Int).ModInverse(k, N) + + r, _ = c.ScalarBaseMult(k.Bytes()) + r.Mod(r, N) + if r.Sign() != 0 { + break + } + } + + e := hashToInt(hash, c) + s = new(big.Int).Mul(priv.D, r) + s.Add(s, e) + s.Mul(s, kInv) + s.Mod(s, N) // N != 0 + if s.Sign() != 0 { + break + } + } + + return encodeSignature(r.Bytes(), s.Bytes()) +} + +// Verify verifies the signature in r, s of hash using the public key, pub. Its +// return value records whether the signature is valid. Most applications should +// use VerifyASN1 instead of dealing directly with r, s. +func Verify(pub *PublicKey, hash []byte, r, s *big.Int) bool { + if r.Sign() <= 0 || s.Sign() <= 0 { + return false + } + sig, err := encodeSignature(r.Bytes(), s.Bytes()) + if err != nil { + return false + } + return VerifyASN1(pub, hash, sig) +} + +func verifyLegacy(pub *PublicKey, hash []byte, sig []byte) bool { + rBytes, sBytes, err := parseSignature(sig) + if err != nil { + return false + } + r, s := new(big.Int).SetBytes(rBytes), new(big.Int).SetBytes(sBytes) + + c := pub.Curve + N := c.Params().N + + if r.Sign() <= 0 || s.Sign() <= 0 { + return false + } + if r.Cmp(N) >= 0 || s.Cmp(N) >= 0 { + return false + } + + // SEC 1, Version 2.0, Section 4.1.4 + e := hashToInt(hash, c) + w := new(big.Int).ModInverse(s, N) + + u1 := e.Mul(e, w) + u1.Mod(u1, N) + u2 := w.Mul(r, w) + u2.Mod(u2, N) + + x1, y1 := c.ScalarBaseMult(u1.Bytes()) + x2, y2 := c.ScalarMult(pub.X, pub.Y, u2.Bytes()) + x, y := c.Add(x1, y1, x2, y2) + + if x.Sign() == 0 && y.Sign() == 0 { + return false + } + x.Mod(x, N) + return x.Cmp(r) == 0 +} + +var one = new(big.Int).SetInt64(1) + +// randFieldElement returns a random element of the order of the given +// curve using the procedure given in FIPS 186-4, Appendix B.5.2. +func randFieldElement(c elliptic.Curve, rand io.Reader) (k *big.Int, err error) { + // See randomPoint for notes on the algorithm. This has to match, or s390x + // signatures will come out different from other architectures, which will + // break TLS recorded tests. + for { + N := c.Params().N + b := make([]byte, (N.BitLen()+7)/8) + if _, err = io.ReadFull(rand, b); err != nil { + return + } + if excess := len(b)*8 - N.BitLen(); excess > 0 { + b[0] >>= excess + } + k = new(big.Int).SetBytes(b) + if k.Sign() != 0 && k.Cmp(N) < 0 { + return + } + } +} |