diff options
Diffstat (limited to 'src/crypto/ecdsa/ecdsa_s390x.go')
-rw-r--r-- | src/crypto/ecdsa/ecdsa_s390x.go | 177 |
1 files changed, 177 insertions, 0 deletions
diff --git a/src/crypto/ecdsa/ecdsa_s390x.go b/src/crypto/ecdsa/ecdsa_s390x.go new file mode 100644 index 0000000..49f645a --- /dev/null +++ b/src/crypto/ecdsa/ecdsa_s390x.go @@ -0,0 +1,177 @@ +// Copyright 2020 The Go Authors. All rights reserved. +// Use of this source code is governed by a BSD-style +// license that can be found in the LICENSE file. + +package ecdsa + +import ( + "crypto/elliptic" + "errors" + "internal/cpu" + "io" + "math/big" +) + +// kdsa invokes the "compute digital signature authentication" +// instruction with the given function code and 4096 byte +// parameter block. +// +// The return value corresponds to the condition code set by the +// instruction. Interrupted invocations are handled by the +// function. +// +//go:noescape +func kdsa(fc uint64, params *[4096]byte) (errn uint64) + +// testingDisableKDSA forces the generic fallback path. It must only be set in tests. +var testingDisableKDSA bool + +// canUseKDSA checks if KDSA instruction is available, and if it is, it checks +// the name of the curve to see if it matches the curves supported(P-256, P-384, P-521). +// Then, based on the curve name, a function code and a block size will be assigned. +// If KDSA instruction is not available or if the curve is not supported, canUseKDSA +// will set ok to false. +func canUseKDSA(c elliptic.Curve) (functionCode uint64, blockSize int, ok bool) { + if testingDisableKDSA { + return 0, 0, false + } + if !cpu.S390X.HasECDSA { + return 0, 0, false + } + switch c.Params().Name { + case "P-256": + return 1, 32, true + case "P-384": + return 2, 48, true + case "P-521": + return 3, 80, true + } + return 0, 0, false // A mismatch +} + +func hashToBytes(dst, hash []byte, c elliptic.Curve) { + l := len(dst) + if n := c.Params().N.BitLen(); n == l*8 { + // allocation free path for curves with a length that is a whole number of bytes + if len(hash) >= l { + // truncate hash + copy(dst, hash[:l]) + return + } + // pad hash with leading zeros + p := l - len(hash) + for i := 0; i < p; i++ { + dst[i] = 0 + } + copy(dst[p:], hash) + return + } + // TODO(mundaym): avoid hashToInt call here + hashToInt(hash, c).FillBytes(dst) +} + +func signAsm(priv *PrivateKey, csprng io.Reader, hash []byte) (sig []byte, err error) { + c := priv.Curve + functionCode, blockSize, ok := canUseKDSA(c) + if !ok { + return nil, errNoAsm + } + for { + var k *big.Int + k, err = randFieldElement(c, csprng) + if err != nil { + return nil, err + } + + // The parameter block looks like the following for sign. + // +---------------------+ + // | Signature(R) | + // +---------------------+ + // | Signature(S) | + // +---------------------+ + // | Hashed Message | + // +---------------------+ + // | Private Key | + // +---------------------+ + // | Random Number | + // +---------------------+ + // | | + // | ... | + // | | + // +---------------------+ + // The common components(signatureR, signatureS, hashedMessage, privateKey and + // random number) each takes block size of bytes. The block size is different for + // different curves and is set by canUseKDSA function. + var params [4096]byte + + // Copy content into the parameter block. In the sign case, + // we copy hashed message, private key and random number into + // the parameter block. + hashToBytes(params[2*blockSize:3*blockSize], hash, c) + priv.D.FillBytes(params[3*blockSize : 4*blockSize]) + k.FillBytes(params[4*blockSize : 5*blockSize]) + // Convert verify function code into a sign function code by adding 8. + // We also need to set the 'deterministic' bit in the function code, by + // adding 128, in order to stop the instruction using its own random number + // generator in addition to the random number we supply. + switch kdsa(functionCode+136, ¶ms) { + case 0: // success + return encodeSignature(params[:blockSize], params[blockSize:2*blockSize]) + case 1: // error + return nil, errZeroParam + case 2: // retry + continue + } + panic("unreachable") + } +} + +func verifyAsm(pub *PublicKey, hash []byte, sig []byte) error { + c := pub.Curve + functionCode, blockSize, ok := canUseKDSA(c) + if !ok { + return errNoAsm + } + + r, s, err := parseSignature(sig) + if err != nil { + return err + } + if len(r) > blockSize || len(s) > blockSize { + return errors.New("invalid signature") + } + + // The parameter block looks like the following for verify: + // +---------------------+ + // | Signature(R) | + // +---------------------+ + // | Signature(S) | + // +---------------------+ + // | Hashed Message | + // +---------------------+ + // | Public Key X | + // +---------------------+ + // | Public Key Y | + // +---------------------+ + // | | + // | ... | + // | | + // +---------------------+ + // The common components(signatureR, signatureS, hashed message, public key X, + // and public key Y) each takes block size of bytes. The block size is different for + // different curves and is set by canUseKDSA function. + var params [4096]byte + + // Copy content into the parameter block. In the verify case, + // we copy signature (r), signature(s), hashed message, public key x component, + // and public key y component into the parameter block. + copy(params[0*blockSize+blockSize-len(r):], r) + copy(params[1*blockSize+blockSize-len(s):], s) + hashToBytes(params[2*blockSize:3*blockSize], hash, c) + pub.X.FillBytes(params[3*blockSize : 4*blockSize]) + pub.Y.FillBytes(params[4*blockSize : 5*blockSize]) + if kdsa(functionCode, ¶ms) != 0 { + return errors.New("invalid signature") + } + return nil +} |