summaryrefslogtreecommitdiffstats
path: root/src/crypto/internal/edwards25519/scalar.go
diff options
context:
space:
mode:
Diffstat (limited to '')
-rw-r--r--src/crypto/internal/edwards25519/scalar.go343
1 files changed, 343 insertions, 0 deletions
diff --git a/src/crypto/internal/edwards25519/scalar.go b/src/crypto/internal/edwards25519/scalar.go
new file mode 100644
index 0000000..d34ecea
--- /dev/null
+++ b/src/crypto/internal/edwards25519/scalar.go
@@ -0,0 +1,343 @@
+// Copyright (c) 2016 The Go Authors. All rights reserved.
+// Use of this source code is governed by a BSD-style
+// license that can be found in the LICENSE file.
+
+package edwards25519
+
+import (
+ "encoding/binary"
+ "errors"
+)
+
+// A Scalar is an integer modulo
+//
+// l = 2^252 + 27742317777372353535851937790883648493
+//
+// which is the prime order of the edwards25519 group.
+//
+// This type works similarly to math/big.Int, and all arguments and
+// receivers are allowed to alias.
+//
+// The zero value is a valid zero element.
+type Scalar struct {
+ // s is the scalar in the Montgomery domain, in the format of the
+ // fiat-crypto implementation.
+ s fiatScalarMontgomeryDomainFieldElement
+}
+
+// The field implementation in scalar_fiat.go is generated by the fiat-crypto
+// project (https://github.com/mit-plv/fiat-crypto) at version v0.0.9 (23d2dbc)
+// from a formally verified model.
+//
+// fiat-crypto code comes under the following license.
+//
+// Copyright (c) 2015-2020 The fiat-crypto Authors. All rights reserved.
+//
+// Redistribution and use in source and binary forms, with or without
+// modification, are permitted provided that the following conditions are
+// met:
+//
+// 1. Redistributions of source code must retain the above copyright
+// notice, this list of conditions and the following disclaimer.
+//
+// THIS SOFTWARE IS PROVIDED BY the fiat-crypto authors "AS IS"
+// AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO,
+// THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
+// PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL Berkeley Software Design,
+// Inc. BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
+// EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
+// PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
+// PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
+// LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
+// NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
+// SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
+//
+
+// NewScalar returns a new zero Scalar.
+func NewScalar() *Scalar {
+ return &Scalar{}
+}
+
+// MultiplyAdd sets s = x * y + z mod l, and returns s. It is equivalent to
+// using Multiply and then Add.
+func (s *Scalar) MultiplyAdd(x, y, z *Scalar) *Scalar {
+ // Make a copy of z in case it aliases s.
+ zCopy := new(Scalar).Set(z)
+ return s.Multiply(x, y).Add(s, zCopy)
+}
+
+// Add sets s = x + y mod l, and returns s.
+func (s *Scalar) Add(x, y *Scalar) *Scalar {
+ // s = 1 * x + y mod l
+ fiatScalarAdd(&s.s, &x.s, &y.s)
+ return s
+}
+
+// Subtract sets s = x - y mod l, and returns s.
+func (s *Scalar) Subtract(x, y *Scalar) *Scalar {
+ // s = -1 * y + x mod l
+ fiatScalarSub(&s.s, &x.s, &y.s)
+ return s
+}
+
+// Negate sets s = -x mod l, and returns s.
+func (s *Scalar) Negate(x *Scalar) *Scalar {
+ // s = -1 * x + 0 mod l
+ fiatScalarOpp(&s.s, &x.s)
+ return s
+}
+
+// Multiply sets s = x * y mod l, and returns s.
+func (s *Scalar) Multiply(x, y *Scalar) *Scalar {
+ // s = x * y + 0 mod l
+ fiatScalarMul(&s.s, &x.s, &y.s)
+ return s
+}
+
+// Set sets s = x, and returns s.
+func (s *Scalar) Set(x *Scalar) *Scalar {
+ *s = *x
+ return s
+}
+
+// SetUniformBytes sets s = x mod l, where x is a 64-byte little-endian integer.
+// If x is not of the right length, SetUniformBytes returns nil and an error,
+// and the receiver is unchanged.
+//
+// SetUniformBytes can be used to set s to an uniformly distributed value given
+// 64 uniformly distributed random bytes.
+func (s *Scalar) SetUniformBytes(x []byte) (*Scalar, error) {
+ if len(x) != 64 {
+ return nil, errors.New("edwards25519: invalid SetUniformBytes input length")
+ }
+
+ // We have a value x of 512 bits, but our fiatScalarFromBytes function
+ // expects an input lower than l, which is a little over 252 bits.
+ //
+ // Instead of writing a reduction function that operates on wider inputs, we
+ // can interpret x as the sum of three shorter values a, b, and c.
+ //
+ // x = a + b * 2^168 + c * 2^336 mod l
+ //
+ // We then precompute 2^168 and 2^336 modulo l, and perform the reduction
+ // with two multiplications and two additions.
+
+ s.setShortBytes(x[:21])
+ t := new(Scalar).setShortBytes(x[21:42])
+ s.Add(s, t.Multiply(t, scalarTwo168))
+ t.setShortBytes(x[42:])
+ s.Add(s, t.Multiply(t, scalarTwo336))
+
+ return s, nil
+}
+
+// scalarTwo168 and scalarTwo336 are 2^168 and 2^336 modulo l, encoded as a
+// fiatScalarMontgomeryDomainFieldElement, which is a little-endian 4-limb value
+// in the 2^256 Montgomery domain.
+var scalarTwo168 = &Scalar{s: [4]uint64{0x5b8ab432eac74798, 0x38afddd6de59d5d7,
+ 0xa2c131b399411b7c, 0x6329a7ed9ce5a30}}
+var scalarTwo336 = &Scalar{s: [4]uint64{0xbd3d108e2b35ecc5, 0x5c3a3718bdf9c90b,
+ 0x63aa97a331b4f2ee, 0x3d217f5be65cb5c}}
+
+// setShortBytes sets s = x mod l, where x is a little-endian integer shorter
+// than 32 bytes.
+func (s *Scalar) setShortBytes(x []byte) *Scalar {
+ if len(x) >= 32 {
+ panic("edwards25519: internal error: setShortBytes called with a long string")
+ }
+ var buf [32]byte
+ copy(buf[:], x)
+ fiatScalarFromBytes((*[4]uint64)(&s.s), &buf)
+ fiatScalarToMontgomery(&s.s, (*fiatScalarNonMontgomeryDomainFieldElement)(&s.s))
+ return s
+}
+
+// SetCanonicalBytes sets s = x, where x is a 32-byte little-endian encoding of
+// s, and returns s. If x is not a canonical encoding of s, SetCanonicalBytes
+// returns nil and an error, and the receiver is unchanged.
+func (s *Scalar) SetCanonicalBytes(x []byte) (*Scalar, error) {
+ if len(x) != 32 {
+ return nil, errors.New("invalid scalar length")
+ }
+ if !isReduced(x) {
+ return nil, errors.New("invalid scalar encoding")
+ }
+
+ fiatScalarFromBytes((*[4]uint64)(&s.s), (*[32]byte)(x))
+ fiatScalarToMontgomery(&s.s, (*fiatScalarNonMontgomeryDomainFieldElement)(&s.s))
+
+ return s, nil
+}
+
+// scalarMinusOneBytes is l - 1 in little endian.
+var scalarMinusOneBytes = [32]byte{236, 211, 245, 92, 26, 99, 18, 88, 214, 156, 247, 162, 222, 249, 222, 20, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 16}
+
+// isReduced returns whether the given scalar in 32-byte little endian encoded
+// form is reduced modulo l.
+func isReduced(s []byte) bool {
+ if len(s) != 32 {
+ return false
+ }
+
+ for i := len(s) - 1; i >= 0; i-- {
+ switch {
+ case s[i] > scalarMinusOneBytes[i]:
+ return false
+ case s[i] < scalarMinusOneBytes[i]:
+ return true
+ }
+ }
+ return true
+}
+
+// SetBytesWithClamping applies the buffer pruning described in RFC 8032,
+// Section 5.1.5 (also known as clamping) and sets s to the result. The input
+// must be 32 bytes, and it is not modified. If x is not of the right length,
+// SetBytesWithClamping returns nil and an error, and the receiver is unchanged.
+//
+// Note that since Scalar values are always reduced modulo the prime order of
+// the curve, the resulting value will not preserve any of the cofactor-clearing
+// properties that clamping is meant to provide. It will however work as
+// expected as long as it is applied to points on the prime order subgroup, like
+// in Ed25519. In fact, it is lost to history why RFC 8032 adopted the
+// irrelevant RFC 7748 clamping, but it is now required for compatibility.
+func (s *Scalar) SetBytesWithClamping(x []byte) (*Scalar, error) {
+ // The description above omits the purpose of the high bits of the clamping
+ // for brevity, but those are also lost to reductions, and are also
+ // irrelevant to edwards25519 as they protect against a specific
+ // implementation bug that was once observed in a generic Montgomery ladder.
+ if len(x) != 32 {
+ return nil, errors.New("edwards25519: invalid SetBytesWithClamping input length")
+ }
+
+ // We need to use the wide reduction from SetUniformBytes, since clamping
+ // sets the 2^254 bit, making the value higher than the order.
+ var wideBytes [64]byte
+ copy(wideBytes[:], x[:])
+ wideBytes[0] &= 248
+ wideBytes[31] &= 63
+ wideBytes[31] |= 64
+ return s.SetUniformBytes(wideBytes[:])
+}
+
+// Bytes returns the canonical 32-byte little-endian encoding of s.
+func (s *Scalar) Bytes() []byte {
+ // This function is outlined to make the allocations inline in the caller
+ // rather than happen on the heap.
+ var encoded [32]byte
+ return s.bytes(&encoded)
+}
+
+func (s *Scalar) bytes(out *[32]byte) []byte {
+ var ss fiatScalarNonMontgomeryDomainFieldElement
+ fiatScalarFromMontgomery(&ss, &s.s)
+ fiatScalarToBytes(out, (*[4]uint64)(&ss))
+ return out[:]
+}
+
+// Equal returns 1 if s and t are equal, and 0 otherwise.
+func (s *Scalar) Equal(t *Scalar) int {
+ var diff fiatScalarMontgomeryDomainFieldElement
+ fiatScalarSub(&diff, &s.s, &t.s)
+ var nonzero uint64
+ fiatScalarNonzero(&nonzero, (*[4]uint64)(&diff))
+ nonzero |= nonzero >> 32
+ nonzero |= nonzero >> 16
+ nonzero |= nonzero >> 8
+ nonzero |= nonzero >> 4
+ nonzero |= nonzero >> 2
+ nonzero |= nonzero >> 1
+ return int(^nonzero) & 1
+}
+
+// nonAdjacentForm computes a width-w non-adjacent form for this scalar.
+//
+// w must be between 2 and 8, or nonAdjacentForm will panic.
+func (s *Scalar) nonAdjacentForm(w uint) [256]int8 {
+ // This implementation is adapted from the one
+ // in curve25519-dalek and is documented there:
+ // https://github.com/dalek-cryptography/curve25519-dalek/blob/f630041af28e9a405255f98a8a93adca18e4315b/src/scalar.rs#L800-L871
+ b := s.Bytes()
+ if b[31] > 127 {
+ panic("scalar has high bit set illegally")
+ }
+ if w < 2 {
+ panic("w must be at least 2 by the definition of NAF")
+ } else if w > 8 {
+ panic("NAF digits must fit in int8")
+ }
+
+ var naf [256]int8
+ var digits [5]uint64
+
+ for i := 0; i < 4; i++ {
+ digits[i] = binary.LittleEndian.Uint64(b[i*8:])
+ }
+
+ width := uint64(1 << w)
+ windowMask := uint64(width - 1)
+
+ pos := uint(0)
+ carry := uint64(0)
+ for pos < 256 {
+ indexU64 := pos / 64
+ indexBit := pos % 64
+ var bitBuf uint64
+ if indexBit < 64-w {
+ // This window's bits are contained in a single u64
+ bitBuf = digits[indexU64] >> indexBit
+ } else {
+ // Combine the current 64 bits with bits from the next 64
+ bitBuf = (digits[indexU64] >> indexBit) | (digits[1+indexU64] << (64 - indexBit))
+ }
+
+ // Add carry into the current window
+ window := carry + (bitBuf & windowMask)
+
+ if window&1 == 0 {
+ // If the window value is even, preserve the carry and continue.
+ // Why is the carry preserved?
+ // If carry == 0 and window & 1 == 0,
+ // then the next carry should be 0
+ // If carry == 1 and window & 1 == 0,
+ // then bit_buf & 1 == 1 so the next carry should be 1
+ pos += 1
+ continue
+ }
+
+ if window < width/2 {
+ carry = 0
+ naf[pos] = int8(window)
+ } else {
+ carry = 1
+ naf[pos] = int8(window) - int8(width)
+ }
+
+ pos += w
+ }
+ return naf
+}
+
+func (s *Scalar) signedRadix16() [64]int8 {
+ b := s.Bytes()
+ if b[31] > 127 {
+ panic("scalar has high bit set illegally")
+ }
+
+ var digits [64]int8
+
+ // Compute unsigned radix-16 digits:
+ for i := 0; i < 32; i++ {
+ digits[2*i] = int8(b[i] & 15)
+ digits[2*i+1] = int8((b[i] >> 4) & 15)
+ }
+
+ // Recenter coefficients:
+ for i := 0; i < 63; i++ {
+ carry := (digits[i] + 8) >> 4
+ digits[i] -= carry << 4
+ digits[i+1] += carry
+ }
+
+ return digits
+}