summaryrefslogtreecommitdiffstats
path: root/src/crypto/rsa/rsa.go
diff options
context:
space:
mode:
Diffstat (limited to '')
-rw-r--r--src/crypto/rsa/rsa.go737
1 files changed, 737 insertions, 0 deletions
diff --git a/src/crypto/rsa/rsa.go b/src/crypto/rsa/rsa.go
new file mode 100644
index 0000000..63bc8da
--- /dev/null
+++ b/src/crypto/rsa/rsa.go
@@ -0,0 +1,737 @@
+// Copyright 2009 The Go Authors. All rights reserved.
+// Use of this source code is governed by a BSD-style
+// license that can be found in the LICENSE file.
+
+// Package rsa implements RSA encryption as specified in PKCS #1 and RFC 8017.
+//
+// RSA is a single, fundamental operation that is used in this package to
+// implement either public-key encryption or public-key signatures.
+//
+// The original specification for encryption and signatures with RSA is PKCS #1
+// and the terms "RSA encryption" and "RSA signatures" by default refer to
+// PKCS #1 version 1.5. However, that specification has flaws and new designs
+// should use version 2, usually called by just OAEP and PSS, where
+// possible.
+//
+// Two sets of interfaces are included in this package. When a more abstract
+// interface isn't necessary, there are functions for encrypting/decrypting
+// with v1.5/OAEP and signing/verifying with v1.5/PSS. If one needs to abstract
+// over the public key primitive, the PrivateKey type implements the
+// Decrypter and Signer interfaces from the crypto package.
+//
+// Operations in this package are implemented using constant-time algorithms,
+// except for [GenerateKey], [PrivateKey.Precompute], and [PrivateKey.Validate].
+// Every other operation only leaks the bit size of the involved values, which
+// all depend on the selected key size.
+package rsa
+
+import (
+ "crypto"
+ "crypto/internal/bigmod"
+ "crypto/internal/boring"
+ "crypto/internal/boring/bbig"
+ "crypto/internal/randutil"
+ "crypto/rand"
+ "crypto/subtle"
+ "encoding/binary"
+ "errors"
+ "hash"
+ "io"
+ "math"
+ "math/big"
+)
+
+var bigOne = big.NewInt(1)
+
+// A PublicKey represents the public part of an RSA key.
+type PublicKey struct {
+ N *big.Int // modulus
+ E int // public exponent
+}
+
+// Any methods implemented on PublicKey might need to also be implemented on
+// PrivateKey, as the latter embeds the former and will expose its methods.
+
+// Size returns the modulus size in bytes. Raw signatures and ciphertexts
+// for or by this public key will have the same size.
+func (pub *PublicKey) Size() int {
+ return (pub.N.BitLen() + 7) / 8
+}
+
+// Equal reports whether pub and x have the same value.
+func (pub *PublicKey) Equal(x crypto.PublicKey) bool {
+ xx, ok := x.(*PublicKey)
+ if !ok {
+ return false
+ }
+ return pub.N.Cmp(xx.N) == 0 && pub.E == xx.E
+}
+
+// OAEPOptions is an interface for passing options to OAEP decryption using the
+// crypto.Decrypter interface.
+type OAEPOptions struct {
+ // Hash is the hash function that will be used when generating the mask.
+ Hash crypto.Hash
+
+ // MGFHash is the hash function used for MGF1.
+ // If zero, Hash is used instead.
+ MGFHash crypto.Hash
+
+ // Label is an arbitrary byte string that must be equal to the value
+ // used when encrypting.
+ Label []byte
+}
+
+var (
+ errPublicModulus = errors.New("crypto/rsa: missing public modulus")
+ errPublicExponentSmall = errors.New("crypto/rsa: public exponent too small")
+ errPublicExponentLarge = errors.New("crypto/rsa: public exponent too large")
+)
+
+// checkPub sanity checks the public key before we use it.
+// We require pub.E to fit into a 32-bit integer so that we
+// do not have different behavior depending on whether
+// int is 32 or 64 bits. See also
+// https://www.imperialviolet.org/2012/03/16/rsae.html.
+func checkPub(pub *PublicKey) error {
+ if pub.N == nil {
+ return errPublicModulus
+ }
+ if pub.E < 2 {
+ return errPublicExponentSmall
+ }
+ if pub.E > 1<<31-1 {
+ return errPublicExponentLarge
+ }
+ return nil
+}
+
+// A PrivateKey represents an RSA key
+type PrivateKey struct {
+ PublicKey // public part.
+ D *big.Int // private exponent
+ Primes []*big.Int // prime factors of N, has >= 2 elements.
+
+ // Precomputed contains precomputed values that speed up RSA operations,
+ // if available. It must be generated by calling PrivateKey.Precompute and
+ // must not be modified.
+ Precomputed PrecomputedValues
+}
+
+// Public returns the public key corresponding to priv.
+func (priv *PrivateKey) Public() crypto.PublicKey {
+ return &priv.PublicKey
+}
+
+// Equal reports whether priv and x have equivalent values. It ignores
+// Precomputed values.
+func (priv *PrivateKey) Equal(x crypto.PrivateKey) bool {
+ xx, ok := x.(*PrivateKey)
+ if !ok {
+ return false
+ }
+ if !priv.PublicKey.Equal(&xx.PublicKey) || priv.D.Cmp(xx.D) != 0 {
+ return false
+ }
+ if len(priv.Primes) != len(xx.Primes) {
+ return false
+ }
+ for i := range priv.Primes {
+ if priv.Primes[i].Cmp(xx.Primes[i]) != 0 {
+ return false
+ }
+ }
+ return true
+}
+
+// Sign signs digest with priv, reading randomness from rand. If opts is a
+// *PSSOptions then the PSS algorithm will be used, otherwise PKCS #1 v1.5 will
+// be used. digest must be the result of hashing the input message using
+// opts.HashFunc().
+//
+// This method implements crypto.Signer, which is an interface to support keys
+// where the private part is kept in, for example, a hardware module. Common
+// uses should use the Sign* functions in this package directly.
+func (priv *PrivateKey) Sign(rand io.Reader, digest []byte, opts crypto.SignerOpts) ([]byte, error) {
+ if pssOpts, ok := opts.(*PSSOptions); ok {
+ return SignPSS(rand, priv, pssOpts.Hash, digest, pssOpts)
+ }
+
+ return SignPKCS1v15(rand, priv, opts.HashFunc(), digest)
+}
+
+// Decrypt decrypts ciphertext with priv. If opts is nil or of type
+// *PKCS1v15DecryptOptions then PKCS #1 v1.5 decryption is performed. Otherwise
+// opts must have type *OAEPOptions and OAEP decryption is done.
+func (priv *PrivateKey) Decrypt(rand io.Reader, ciphertext []byte, opts crypto.DecrypterOpts) (plaintext []byte, err error) {
+ if opts == nil {
+ return DecryptPKCS1v15(rand, priv, ciphertext)
+ }
+
+ switch opts := opts.(type) {
+ case *OAEPOptions:
+ if opts.MGFHash == 0 {
+ return decryptOAEP(opts.Hash.New(), opts.Hash.New(), rand, priv, ciphertext, opts.Label)
+ } else {
+ return decryptOAEP(opts.Hash.New(), opts.MGFHash.New(), rand, priv, ciphertext, opts.Label)
+ }
+
+ case *PKCS1v15DecryptOptions:
+ if l := opts.SessionKeyLen; l > 0 {
+ plaintext = make([]byte, l)
+ if _, err := io.ReadFull(rand, plaintext); err != nil {
+ return nil, err
+ }
+ if err := DecryptPKCS1v15SessionKey(rand, priv, ciphertext, plaintext); err != nil {
+ return nil, err
+ }
+ return plaintext, nil
+ } else {
+ return DecryptPKCS1v15(rand, priv, ciphertext)
+ }
+
+ default:
+ return nil, errors.New("crypto/rsa: invalid options for Decrypt")
+ }
+}
+
+type PrecomputedValues struct {
+ Dp, Dq *big.Int // D mod (P-1) (or mod Q-1)
+ Qinv *big.Int // Q^-1 mod P
+
+ // CRTValues is used for the 3rd and subsequent primes. Due to a
+ // historical accident, the CRT for the first two primes is handled
+ // differently in PKCS #1 and interoperability is sufficiently
+ // important that we mirror this.
+ //
+ // Note: these values are still filled in by Precompute for
+ // backwards compatibility but are not used. Multi-prime RSA is very rare,
+ // and is implemented by this package without CRT optimizations to limit
+ // complexity.
+ CRTValues []CRTValue
+
+ n, p, q *bigmod.Modulus // moduli for CRT with Montgomery precomputed constants
+}
+
+// CRTValue contains the precomputed Chinese remainder theorem values.
+type CRTValue struct {
+ Exp *big.Int // D mod (prime-1).
+ Coeff *big.Int // R·Coeff ≡ 1 mod Prime.
+ R *big.Int // product of primes prior to this (inc p and q).
+}
+
+// Validate performs basic sanity checks on the key.
+// It returns nil if the key is valid, or else an error describing a problem.
+func (priv *PrivateKey) Validate() error {
+ if err := checkPub(&priv.PublicKey); err != nil {
+ return err
+ }
+
+ // Check that Πprimes == n.
+ modulus := new(big.Int).Set(bigOne)
+ for _, prime := range priv.Primes {
+ // Any primes ≤ 1 will cause divide-by-zero panics later.
+ if prime.Cmp(bigOne) <= 0 {
+ return errors.New("crypto/rsa: invalid prime value")
+ }
+ modulus.Mul(modulus, prime)
+ }
+ if modulus.Cmp(priv.N) != 0 {
+ return errors.New("crypto/rsa: invalid modulus")
+ }
+
+ // Check that de ≡ 1 mod p-1, for each prime.
+ // This implies that e is coprime to each p-1 as e has a multiplicative
+ // inverse. Therefore e is coprime to lcm(p-1,q-1,r-1,...) =
+ // exponent(ℤ/nℤ). It also implies that a^de ≡ a mod p as a^(p-1) ≡ 1
+ // mod p. Thus a^de ≡ a mod n for all a coprime to n, as required.
+ congruence := new(big.Int)
+ de := new(big.Int).SetInt64(int64(priv.E))
+ de.Mul(de, priv.D)
+ for _, prime := range priv.Primes {
+ pminus1 := new(big.Int).Sub(prime, bigOne)
+ congruence.Mod(de, pminus1)
+ if congruence.Cmp(bigOne) != 0 {
+ return errors.New("crypto/rsa: invalid exponents")
+ }
+ }
+ return nil
+}
+
+// GenerateKey generates an RSA keypair of the given bit size using the
+// random source random (for example, crypto/rand.Reader).
+func GenerateKey(random io.Reader, bits int) (*PrivateKey, error) {
+ return GenerateMultiPrimeKey(random, 2, bits)
+}
+
+// GenerateMultiPrimeKey generates a multi-prime RSA keypair of the given bit
+// size and the given random source.
+//
+// Table 1 in "[On the Security of Multi-prime RSA]" suggests maximum numbers of
+// primes for a given bit size.
+//
+// Although the public keys are compatible (actually, indistinguishable) from
+// the 2-prime case, the private keys are not. Thus it may not be possible to
+// export multi-prime private keys in certain formats or to subsequently import
+// them into other code.
+//
+// This package does not implement CRT optimizations for multi-prime RSA, so the
+// keys with more than two primes will have worse performance.
+//
+// Note: The use of this function with a number of primes different from
+// two is not recommended for the above security, compatibility, and performance
+// reasons. Use GenerateKey instead.
+//
+// [On the Security of Multi-prime RSA]: http://www.cacr.math.uwaterloo.ca/techreports/2006/cacr2006-16.pdf
+func GenerateMultiPrimeKey(random io.Reader, nprimes int, bits int) (*PrivateKey, error) {
+ randutil.MaybeReadByte(random)
+
+ if boring.Enabled && random == boring.RandReader && nprimes == 2 &&
+ (bits == 2048 || bits == 3072 || bits == 4096) {
+ bN, bE, bD, bP, bQ, bDp, bDq, bQinv, err := boring.GenerateKeyRSA(bits)
+ if err != nil {
+ return nil, err
+ }
+ N := bbig.Dec(bN)
+ E := bbig.Dec(bE)
+ D := bbig.Dec(bD)
+ P := bbig.Dec(bP)
+ Q := bbig.Dec(bQ)
+ Dp := bbig.Dec(bDp)
+ Dq := bbig.Dec(bDq)
+ Qinv := bbig.Dec(bQinv)
+ e64 := E.Int64()
+ if !E.IsInt64() || int64(int(e64)) != e64 {
+ return nil, errors.New("crypto/rsa: generated key exponent too large")
+ }
+ key := &PrivateKey{
+ PublicKey: PublicKey{
+ N: N,
+ E: int(e64),
+ },
+ D: D,
+ Primes: []*big.Int{P, Q},
+ Precomputed: PrecomputedValues{
+ Dp: Dp,
+ Dq: Dq,
+ Qinv: Qinv,
+ CRTValues: make([]CRTValue, 0), // non-nil, to match Precompute
+ n: bigmod.NewModulusFromBig(N),
+ p: bigmod.NewModulusFromBig(P),
+ q: bigmod.NewModulusFromBig(Q),
+ },
+ }
+ return key, nil
+ }
+
+ priv := new(PrivateKey)
+ priv.E = 65537
+
+ if nprimes < 2 {
+ return nil, errors.New("crypto/rsa: GenerateMultiPrimeKey: nprimes must be >= 2")
+ }
+
+ if bits < 64 {
+ primeLimit := float64(uint64(1) << uint(bits/nprimes))
+ // pi approximates the number of primes less than primeLimit
+ pi := primeLimit / (math.Log(primeLimit) - 1)
+ // Generated primes start with 11 (in binary) so we can only
+ // use a quarter of them.
+ pi /= 4
+ // Use a factor of two to ensure that key generation terminates
+ // in a reasonable amount of time.
+ pi /= 2
+ if pi <= float64(nprimes) {
+ return nil, errors.New("crypto/rsa: too few primes of given length to generate an RSA key")
+ }
+ }
+
+ primes := make([]*big.Int, nprimes)
+
+NextSetOfPrimes:
+ for {
+ todo := bits
+ // crypto/rand should set the top two bits in each prime.
+ // Thus each prime has the form
+ // p_i = 2^bitlen(p_i) × 0.11... (in base 2).
+ // And the product is:
+ // P = 2^todo × α
+ // where α is the product of nprimes numbers of the form 0.11...
+ //
+ // If α < 1/2 (which can happen for nprimes > 2), we need to
+ // shift todo to compensate for lost bits: the mean value of 0.11...
+ // is 7/8, so todo + shift - nprimes * log2(7/8) ~= bits - 1/2
+ // will give good results.
+ if nprimes >= 7 {
+ todo += (nprimes - 2) / 5
+ }
+ for i := 0; i < nprimes; i++ {
+ var err error
+ primes[i], err = rand.Prime(random, todo/(nprimes-i))
+ if err != nil {
+ return nil, err
+ }
+ todo -= primes[i].BitLen()
+ }
+
+ // Make sure that primes is pairwise unequal.
+ for i, prime := range primes {
+ for j := 0; j < i; j++ {
+ if prime.Cmp(primes[j]) == 0 {
+ continue NextSetOfPrimes
+ }
+ }
+ }
+
+ n := new(big.Int).Set(bigOne)
+ totient := new(big.Int).Set(bigOne)
+ pminus1 := new(big.Int)
+ for _, prime := range primes {
+ n.Mul(n, prime)
+ pminus1.Sub(prime, bigOne)
+ totient.Mul(totient, pminus1)
+ }
+ if n.BitLen() != bits {
+ // This should never happen for nprimes == 2 because
+ // crypto/rand should set the top two bits in each prime.
+ // For nprimes > 2 we hope it does not happen often.
+ continue NextSetOfPrimes
+ }
+
+ priv.D = new(big.Int)
+ e := big.NewInt(int64(priv.E))
+ ok := priv.D.ModInverse(e, totient)
+
+ if ok != nil {
+ priv.Primes = primes
+ priv.N = n
+ break
+ }
+ }
+
+ priv.Precompute()
+ return priv, nil
+}
+
+// incCounter increments a four byte, big-endian counter.
+func incCounter(c *[4]byte) {
+ if c[3]++; c[3] != 0 {
+ return
+ }
+ if c[2]++; c[2] != 0 {
+ return
+ }
+ if c[1]++; c[1] != 0 {
+ return
+ }
+ c[0]++
+}
+
+// mgf1XOR XORs the bytes in out with a mask generated using the MGF1 function
+// specified in PKCS #1 v2.1.
+func mgf1XOR(out []byte, hash hash.Hash, seed []byte) {
+ var counter [4]byte
+ var digest []byte
+
+ done := 0
+ for done < len(out) {
+ hash.Write(seed)
+ hash.Write(counter[0:4])
+ digest = hash.Sum(digest[:0])
+ hash.Reset()
+
+ for i := 0; i < len(digest) && done < len(out); i++ {
+ out[done] ^= digest[i]
+ done++
+ }
+ incCounter(&counter)
+ }
+}
+
+// ErrMessageTooLong is returned when attempting to encrypt or sign a message
+// which is too large for the size of the key. When using SignPSS, this can also
+// be returned if the size of the salt is too large.
+var ErrMessageTooLong = errors.New("crypto/rsa: message too long for RSA key size")
+
+func encrypt(pub *PublicKey, plaintext []byte) ([]byte, error) {
+ boring.Unreachable()
+
+ N := bigmod.NewModulusFromBig(pub.N)
+ m, err := bigmod.NewNat().SetBytes(plaintext, N)
+ if err != nil {
+ return nil, err
+ }
+ e := intToBytes(pub.E)
+
+ return bigmod.NewNat().Exp(m, e, N).Bytes(N), nil
+}
+
+// intToBytes returns i as a big-endian slice of bytes with no leading zeroes,
+// leaking only the bit size of i through timing side-channels.
+func intToBytes(i int) []byte {
+ b := make([]byte, 8)
+ binary.BigEndian.PutUint64(b, uint64(i))
+ for len(b) > 1 && b[0] == 0 {
+ b = b[1:]
+ }
+ return b
+}
+
+// EncryptOAEP encrypts the given message with RSA-OAEP.
+//
+// OAEP is parameterised by a hash function that is used as a random oracle.
+// Encryption and decryption of a given message must use the same hash function
+// and sha256.New() is a reasonable choice.
+//
+// The random parameter is used as a source of entropy to ensure that
+// encrypting the same message twice doesn't result in the same ciphertext.
+//
+// The label parameter may contain arbitrary data that will not be encrypted,
+// but which gives important context to the message. For example, if a given
+// public key is used to encrypt two types of messages then distinct label
+// values could be used to ensure that a ciphertext for one purpose cannot be
+// used for another by an attacker. If not required it can be empty.
+//
+// The message must be no longer than the length of the public modulus minus
+// twice the hash length, minus a further 2.
+func EncryptOAEP(hash hash.Hash, random io.Reader, pub *PublicKey, msg []byte, label []byte) ([]byte, error) {
+ if err := checkPub(pub); err != nil {
+ return nil, err
+ }
+ hash.Reset()
+ k := pub.Size()
+ if len(msg) > k-2*hash.Size()-2 {
+ return nil, ErrMessageTooLong
+ }
+
+ if boring.Enabled && random == boring.RandReader {
+ bkey, err := boringPublicKey(pub)
+ if err != nil {
+ return nil, err
+ }
+ return boring.EncryptRSAOAEP(hash, hash, bkey, msg, label)
+ }
+ boring.UnreachableExceptTests()
+
+ hash.Write(label)
+ lHash := hash.Sum(nil)
+ hash.Reset()
+
+ em := make([]byte, k)
+ seed := em[1 : 1+hash.Size()]
+ db := em[1+hash.Size():]
+
+ copy(db[0:hash.Size()], lHash)
+ db[len(db)-len(msg)-1] = 1
+ copy(db[len(db)-len(msg):], msg)
+
+ _, err := io.ReadFull(random, seed)
+ if err != nil {
+ return nil, err
+ }
+
+ mgf1XOR(db, hash, seed)
+ mgf1XOR(seed, hash, db)
+
+ if boring.Enabled {
+ var bkey *boring.PublicKeyRSA
+ bkey, err = boringPublicKey(pub)
+ if err != nil {
+ return nil, err
+ }
+ return boring.EncryptRSANoPadding(bkey, em)
+ }
+
+ return encrypt(pub, em)
+}
+
+// ErrDecryption represents a failure to decrypt a message.
+// It is deliberately vague to avoid adaptive attacks.
+var ErrDecryption = errors.New("crypto/rsa: decryption error")
+
+// ErrVerification represents a failure to verify a signature.
+// It is deliberately vague to avoid adaptive attacks.
+var ErrVerification = errors.New("crypto/rsa: verification error")
+
+// Precompute performs some calculations that speed up private key operations
+// in the future.
+func (priv *PrivateKey) Precompute() {
+ if priv.Precomputed.n == nil && len(priv.Primes) == 2 {
+ priv.Precomputed.n = bigmod.NewModulusFromBig(priv.N)
+ priv.Precomputed.p = bigmod.NewModulusFromBig(priv.Primes[0])
+ priv.Precomputed.q = bigmod.NewModulusFromBig(priv.Primes[1])
+ }
+
+ // Fill in the backwards-compatibility *big.Int values.
+ if priv.Precomputed.Dp != nil {
+ return
+ }
+
+ priv.Precomputed.Dp = new(big.Int).Sub(priv.Primes[0], bigOne)
+ priv.Precomputed.Dp.Mod(priv.D, priv.Precomputed.Dp)
+
+ priv.Precomputed.Dq = new(big.Int).Sub(priv.Primes[1], bigOne)
+ priv.Precomputed.Dq.Mod(priv.D, priv.Precomputed.Dq)
+
+ priv.Precomputed.Qinv = new(big.Int).ModInverse(priv.Primes[1], priv.Primes[0])
+
+ r := new(big.Int).Mul(priv.Primes[0], priv.Primes[1])
+ priv.Precomputed.CRTValues = make([]CRTValue, len(priv.Primes)-2)
+ for i := 2; i < len(priv.Primes); i++ {
+ prime := priv.Primes[i]
+ values := &priv.Precomputed.CRTValues[i-2]
+
+ values.Exp = new(big.Int).Sub(prime, bigOne)
+ values.Exp.Mod(priv.D, values.Exp)
+
+ values.R = new(big.Int).Set(r)
+ values.Coeff = new(big.Int).ModInverse(r, prime)
+
+ r.Mul(r, prime)
+ }
+}
+
+const withCheck = true
+const noCheck = false
+
+// decrypt performs an RSA decryption of ciphertext into out. If check is true,
+// m^e is calculated and compared with ciphertext, in order to defend against
+// errors in the CRT computation.
+func decrypt(priv *PrivateKey, ciphertext []byte, check bool) ([]byte, error) {
+ if len(priv.Primes) <= 2 {
+ boring.Unreachable()
+ }
+
+ var (
+ err error
+ m, c *bigmod.Nat
+ N *bigmod.Modulus
+ t0 = bigmod.NewNat()
+ )
+ if priv.Precomputed.n == nil {
+ N = bigmod.NewModulusFromBig(priv.N)
+ c, err = bigmod.NewNat().SetBytes(ciphertext, N)
+ if err != nil {
+ return nil, ErrDecryption
+ }
+ m = bigmod.NewNat().Exp(c, priv.D.Bytes(), N)
+ } else {
+ N = priv.Precomputed.n
+ P, Q := priv.Precomputed.p, priv.Precomputed.q
+ Qinv, err := bigmod.NewNat().SetBytes(priv.Precomputed.Qinv.Bytes(), P)
+ if err != nil {
+ return nil, ErrDecryption
+ }
+ c, err = bigmod.NewNat().SetBytes(ciphertext, N)
+ if err != nil {
+ return nil, ErrDecryption
+ }
+
+ // m = c ^ Dp mod p
+ m = bigmod.NewNat().Exp(t0.Mod(c, P), priv.Precomputed.Dp.Bytes(), P)
+ // m2 = c ^ Dq mod q
+ m2 := bigmod.NewNat().Exp(t0.Mod(c, Q), priv.Precomputed.Dq.Bytes(), Q)
+ // m = m - m2 mod p
+ m.Sub(t0.Mod(m2, P), P)
+ // m = m * Qinv mod p
+ m.Mul(Qinv, P)
+ // m = m * q mod N
+ m.ExpandFor(N).Mul(t0.Mod(Q.Nat(), N), N)
+ // m = m + m2 mod N
+ m.Add(m2.ExpandFor(N), N)
+ }
+
+ if check {
+ c1 := bigmod.NewNat().Exp(m, intToBytes(priv.E), N)
+ if c1.Equal(c) != 1 {
+ return nil, ErrDecryption
+ }
+ }
+
+ return m.Bytes(N), nil
+}
+
+// DecryptOAEP decrypts ciphertext using RSA-OAEP.
+//
+// OAEP is parameterised by a hash function that is used as a random oracle.
+// Encryption and decryption of a given message must use the same hash function
+// and sha256.New() is a reasonable choice.
+//
+// The random parameter is legacy and ignored, and it can be as nil.
+//
+// The label parameter must match the value given when encrypting. See
+// EncryptOAEP for details.
+func DecryptOAEP(hash hash.Hash, random io.Reader, priv *PrivateKey, ciphertext []byte, label []byte) ([]byte, error) {
+ return decryptOAEP(hash, hash, random, priv, ciphertext, label)
+}
+
+func decryptOAEP(hash, mgfHash hash.Hash, random io.Reader, priv *PrivateKey, ciphertext []byte, label []byte) ([]byte, error) {
+ if err := checkPub(&priv.PublicKey); err != nil {
+ return nil, err
+ }
+ k := priv.Size()
+ if len(ciphertext) > k ||
+ k < hash.Size()*2+2 {
+ return nil, ErrDecryption
+ }
+
+ if boring.Enabled {
+ bkey, err := boringPrivateKey(priv)
+ if err != nil {
+ return nil, err
+ }
+ out, err := boring.DecryptRSAOAEP(hash, mgfHash, bkey, ciphertext, label)
+ if err != nil {
+ return nil, ErrDecryption
+ }
+ return out, nil
+ }
+
+ em, err := decrypt(priv, ciphertext, noCheck)
+ if err != nil {
+ return nil, err
+ }
+
+ hash.Write(label)
+ lHash := hash.Sum(nil)
+ hash.Reset()
+
+ firstByteIsZero := subtle.ConstantTimeByteEq(em[0], 0)
+
+ seed := em[1 : hash.Size()+1]
+ db := em[hash.Size()+1:]
+
+ mgf1XOR(seed, mgfHash, db)
+ mgf1XOR(db, mgfHash, seed)
+
+ lHash2 := db[0:hash.Size()]
+
+ // We have to validate the plaintext in constant time in order to avoid
+ // attacks like: J. Manger. A Chosen Ciphertext Attack on RSA Optimal
+ // Asymmetric Encryption Padding (OAEP) as Standardized in PKCS #1
+ // v2.0. In J. Kilian, editor, Advances in Cryptology.
+ lHash2Good := subtle.ConstantTimeCompare(lHash, lHash2)
+
+ // The remainder of the plaintext must be zero or more 0x00, followed
+ // by 0x01, followed by the message.
+ // lookingForIndex: 1 iff we are still looking for the 0x01
+ // index: the offset of the first 0x01 byte
+ // invalid: 1 iff we saw a non-zero byte before the 0x01.
+ var lookingForIndex, index, invalid int
+ lookingForIndex = 1
+ rest := db[hash.Size():]
+
+ for i := 0; i < len(rest); i++ {
+ equals0 := subtle.ConstantTimeByteEq(rest[i], 0)
+ equals1 := subtle.ConstantTimeByteEq(rest[i], 1)
+ index = subtle.ConstantTimeSelect(lookingForIndex&equals1, i, index)
+ lookingForIndex = subtle.ConstantTimeSelect(equals1, 0, lookingForIndex)
+ invalid = subtle.ConstantTimeSelect(lookingForIndex&^equals0, 1, invalid)
+ }
+
+ if firstByteIsZero&lHash2Good&^invalid&^lookingForIndex != 1 {
+ return nil, ErrDecryption
+ }
+
+ return rest[index+1:], nil
+}