summaryrefslogtreecommitdiffstats
path: root/src/internal/reflectlite
diff options
context:
space:
mode:
Diffstat (limited to 'src/internal/reflectlite')
-rw-r--r--src/internal/reflectlite/all_test.go1038
-rw-r--r--src/internal/reflectlite/asm.s5
-rw-r--r--src/internal/reflectlite/export_test.go117
-rw-r--r--src/internal/reflectlite/reflect_mirror_test.go132
-rw-r--r--src/internal/reflectlite/set_test.go101
-rw-r--r--src/internal/reflectlite/swapper.go78
-rw-r--r--src/internal/reflectlite/tostring_test.go98
-rw-r--r--src/internal/reflectlite/type.go974
-rw-r--r--src/internal/reflectlite/value.go477
9 files changed, 3020 insertions, 0 deletions
diff --git a/src/internal/reflectlite/all_test.go b/src/internal/reflectlite/all_test.go
new file mode 100644
index 0000000..bb3cad4
--- /dev/null
+++ b/src/internal/reflectlite/all_test.go
@@ -0,0 +1,1038 @@
+// Copyright 2009 The Go Authors. All rights reserved.
+// Use of this source code is governed by a BSD-style
+// license that can be found in the LICENSE file.
+
+package reflectlite_test
+
+import (
+ "encoding/base64"
+ "fmt"
+ . "internal/reflectlite"
+ "math"
+ "reflect"
+ "runtime"
+ "testing"
+ "unsafe"
+)
+
+func ToValue(v Value) reflect.Value {
+ return reflect.ValueOf(ToInterface(v))
+}
+
+func TypeString(t Type) string {
+ return fmt.Sprintf("%T", ToInterface(Zero(t)))
+}
+
+type integer int
+type T struct {
+ a int
+ b float64
+ c string
+ d *int
+}
+
+type pair struct {
+ i any
+ s string
+}
+
+func assert(t *testing.T, s, want string) {
+ t.Helper()
+ if s != want {
+ t.Errorf("have %#q want %#q", s, want)
+ }
+}
+
+var typeTests = []pair{
+ {struct{ x int }{}, "int"},
+ {struct{ x int8 }{}, "int8"},
+ {struct{ x int16 }{}, "int16"},
+ {struct{ x int32 }{}, "int32"},
+ {struct{ x int64 }{}, "int64"},
+ {struct{ x uint }{}, "uint"},
+ {struct{ x uint8 }{}, "uint8"},
+ {struct{ x uint16 }{}, "uint16"},
+ {struct{ x uint32 }{}, "uint32"},
+ {struct{ x uint64 }{}, "uint64"},
+ {struct{ x float32 }{}, "float32"},
+ {struct{ x float64 }{}, "float64"},
+ {struct{ x int8 }{}, "int8"},
+ {struct{ x (**int8) }{}, "**int8"},
+ {struct{ x (**integer) }{}, "**reflectlite_test.integer"},
+ {struct{ x ([32]int32) }{}, "[32]int32"},
+ {struct{ x ([]int8) }{}, "[]int8"},
+ {struct{ x (map[string]int32) }{}, "map[string]int32"},
+ {struct{ x (chan<- string) }{}, "chan<- string"},
+ {struct {
+ x struct {
+ c chan *int32
+ d float32
+ }
+ }{},
+ "struct { c chan *int32; d float32 }",
+ },
+ {struct{ x (func(a int8, b int32)) }{}, "func(int8, int32)"},
+ {struct {
+ x struct {
+ c func(chan *integer, *int8)
+ }
+ }{},
+ "struct { c func(chan *reflectlite_test.integer, *int8) }",
+ },
+ {struct {
+ x struct {
+ a int8
+ b int32
+ }
+ }{},
+ "struct { a int8; b int32 }",
+ },
+ {struct {
+ x struct {
+ a int8
+ b int8
+ c int32
+ }
+ }{},
+ "struct { a int8; b int8; c int32 }",
+ },
+ {struct {
+ x struct {
+ a int8
+ b int8
+ c int8
+ d int32
+ }
+ }{},
+ "struct { a int8; b int8; c int8; d int32 }",
+ },
+ {struct {
+ x struct {
+ a int8
+ b int8
+ c int8
+ d int8
+ e int32
+ }
+ }{},
+ "struct { a int8; b int8; c int8; d int8; e int32 }",
+ },
+ {struct {
+ x struct {
+ a int8
+ b int8
+ c int8
+ d int8
+ e int8
+ f int32
+ }
+ }{},
+ "struct { a int8; b int8; c int8; d int8; e int8; f int32 }",
+ },
+ {struct {
+ x struct {
+ a int8 `reflect:"hi there"`
+ }
+ }{},
+ `struct { a int8 "reflect:\"hi there\"" }`,
+ },
+ {struct {
+ x struct {
+ a int8 `reflect:"hi \x00there\t\n\"\\"`
+ }
+ }{},
+ `struct { a int8 "reflect:\"hi \\x00there\\t\\n\\\"\\\\\"" }`,
+ },
+ {struct {
+ x struct {
+ f func(args ...int)
+ }
+ }{},
+ "struct { f func(...int) }",
+ },
+ // {struct {
+ // x (interface {
+ // a(func(func(int) int) func(func(int)) int)
+ // b()
+ // })
+ // }{},
+ // "interface { reflectlite_test.a(func(func(int) int) func(func(int)) int); reflectlite_test.b() }",
+ // },
+ {struct {
+ x struct {
+ int32
+ int64
+ }
+ }{},
+ "struct { int32; int64 }",
+ },
+}
+
+var valueTests = []pair{
+ {new(int), "132"},
+ {new(int8), "8"},
+ {new(int16), "16"},
+ {new(int32), "32"},
+ {new(int64), "64"},
+ {new(uint), "132"},
+ {new(uint8), "8"},
+ {new(uint16), "16"},
+ {new(uint32), "32"},
+ {new(uint64), "64"},
+ {new(float32), "256.25"},
+ {new(float64), "512.125"},
+ {new(complex64), "532.125+10i"},
+ {new(complex128), "564.25+1i"},
+ {new(string), "stringy cheese"},
+ {new(bool), "true"},
+ {new(*int8), "*int8(0)"},
+ {new(**int8), "**int8(0)"},
+ {new([5]int32), "[5]int32{0, 0, 0, 0, 0}"},
+ {new(**integer), "**reflectlite_test.integer(0)"},
+ {new(map[string]int32), "map[string]int32{<can't iterate on maps>}"},
+ {new(chan<- string), "chan<- string"},
+ {new(func(a int8, b int32)), "func(int8, int32)(arg)"},
+ {new(struct {
+ c chan *int32
+ d float32
+ }),
+ "struct { c chan *int32; d float32 }{chan *int32, 0}",
+ },
+ {new(struct{ c func(chan *integer, *int8) }),
+ "struct { c func(chan *reflectlite_test.integer, *int8) }{func(chan *reflectlite_test.integer, *int8)(arg)}",
+ },
+ {new(struct {
+ a int8
+ b int32
+ }),
+ "struct { a int8; b int32 }{0, 0}",
+ },
+ {new(struct {
+ a int8
+ b int8
+ c int32
+ }),
+ "struct { a int8; b int8; c int32 }{0, 0, 0}",
+ },
+}
+
+func testType(t *testing.T, i int, typ Type, want string) {
+ s := TypeString(typ)
+ if s != want {
+ t.Errorf("#%d: have %#q, want %#q", i, s, want)
+ }
+}
+
+func testReflectType(t *testing.T, i int, typ Type, want string) {
+ s := TypeString(typ)
+ if s != want {
+ t.Errorf("#%d: have %#q, want %#q", i, s, want)
+ }
+}
+
+func TestTypes(t *testing.T) {
+ for i, tt := range typeTests {
+ testReflectType(t, i, Field(ValueOf(tt.i), 0).Type(), tt.s)
+ }
+}
+
+func TestSetValue(t *testing.T) {
+ for i, tt := range valueTests {
+ v := ValueOf(tt.i).Elem()
+ switch v.Kind() {
+ case Int:
+ v.Set(ValueOf(int(132)))
+ case Int8:
+ v.Set(ValueOf(int8(8)))
+ case Int16:
+ v.Set(ValueOf(int16(16)))
+ case Int32:
+ v.Set(ValueOf(int32(32)))
+ case Int64:
+ v.Set(ValueOf(int64(64)))
+ case Uint:
+ v.Set(ValueOf(uint(132)))
+ case Uint8:
+ v.Set(ValueOf(uint8(8)))
+ case Uint16:
+ v.Set(ValueOf(uint16(16)))
+ case Uint32:
+ v.Set(ValueOf(uint32(32)))
+ case Uint64:
+ v.Set(ValueOf(uint64(64)))
+ case Float32:
+ v.Set(ValueOf(float32(256.25)))
+ case Float64:
+ v.Set(ValueOf(512.125))
+ case Complex64:
+ v.Set(ValueOf(complex64(532.125 + 10i)))
+ case Complex128:
+ v.Set(ValueOf(complex128(564.25 + 1i)))
+ case String:
+ v.Set(ValueOf("stringy cheese"))
+ case Bool:
+ v.Set(ValueOf(true))
+ }
+ s := valueToString(v)
+ if s != tt.s {
+ t.Errorf("#%d: have %#q, want %#q", i, s, tt.s)
+ }
+ }
+}
+
+func TestCanSetField(t *testing.T) {
+ type embed struct{ x, X int }
+ type Embed struct{ x, X int }
+ type S1 struct {
+ embed
+ x, X int
+ }
+ type S2 struct {
+ *embed
+ x, X int
+ }
+ type S3 struct {
+ Embed
+ x, X int
+ }
+ type S4 struct {
+ *Embed
+ x, X int
+ }
+
+ type testCase struct {
+ index []int
+ canSet bool
+ }
+ tests := []struct {
+ val Value
+ cases []testCase
+ }{{
+ val: ValueOf(&S1{}),
+ cases: []testCase{
+ {[]int{0}, false},
+ {[]int{0, 0}, false},
+ {[]int{0, 1}, true},
+ {[]int{1}, false},
+ {[]int{2}, true},
+ },
+ }, {
+ val: ValueOf(&S2{embed: &embed{}}),
+ cases: []testCase{
+ {[]int{0}, false},
+ {[]int{0, 0}, false},
+ {[]int{0, 1}, true},
+ {[]int{1}, false},
+ {[]int{2}, true},
+ },
+ }, {
+ val: ValueOf(&S3{}),
+ cases: []testCase{
+ {[]int{0}, true},
+ {[]int{0, 0}, false},
+ {[]int{0, 1}, true},
+ {[]int{1}, false},
+ {[]int{2}, true},
+ },
+ }, {
+ val: ValueOf(&S4{Embed: &Embed{}}),
+ cases: []testCase{
+ {[]int{0}, true},
+ {[]int{0, 0}, false},
+ {[]int{0, 1}, true},
+ {[]int{1}, false},
+ {[]int{2}, true},
+ },
+ }}
+
+ for _, tt := range tests {
+ t.Run(tt.val.Type().Name(), func(t *testing.T) {
+ for _, tc := range tt.cases {
+ f := tt.val
+ for _, i := range tc.index {
+ if f.Kind() == Ptr {
+ f = f.Elem()
+ }
+ f = Field(f, i)
+ }
+ if got := f.CanSet(); got != tc.canSet {
+ t.Errorf("CanSet() = %v, want %v", got, tc.canSet)
+ }
+ }
+ })
+ }
+}
+
+var _i = 7
+
+var valueToStringTests = []pair{
+ {123, "123"},
+ {123.5, "123.5"},
+ {byte(123), "123"},
+ {"abc", "abc"},
+ {T{123, 456.75, "hello", &_i}, "reflectlite_test.T{123, 456.75, hello, *int(&7)}"},
+ {new(chan *T), "*chan *reflectlite_test.T(&chan *reflectlite_test.T)"},
+ {[10]int{1, 2, 3, 4, 5, 6, 7, 8, 9, 10}, "[10]int{1, 2, 3, 4, 5, 6, 7, 8, 9, 10}"},
+ {&[10]int{1, 2, 3, 4, 5, 6, 7, 8, 9, 10}, "*[10]int(&[10]int{1, 2, 3, 4, 5, 6, 7, 8, 9, 10})"},
+ {[]int{1, 2, 3, 4, 5, 6, 7, 8, 9, 10}, "[]int{1, 2, 3, 4, 5, 6, 7, 8, 9, 10}"},
+ {&[]int{1, 2, 3, 4, 5, 6, 7, 8, 9, 10}, "*[]int(&[]int{1, 2, 3, 4, 5, 6, 7, 8, 9, 10})"},
+}
+
+func TestValueToString(t *testing.T) {
+ for i, test := range valueToStringTests {
+ s := valueToString(ValueOf(test.i))
+ if s != test.s {
+ t.Errorf("#%d: have %#q, want %#q", i, s, test.s)
+ }
+ }
+}
+
+func TestPtrSetNil(t *testing.T) {
+ var i int32 = 1234
+ ip := &i
+ vip := ValueOf(&ip)
+ vip.Elem().Set(Zero(vip.Elem().Type()))
+ if ip != nil {
+ t.Errorf("got non-nil (%d), want nil", *ip)
+ }
+}
+
+func TestMapSetNil(t *testing.T) {
+ m := make(map[string]int)
+ vm := ValueOf(&m)
+ vm.Elem().Set(Zero(vm.Elem().Type()))
+ if m != nil {
+ t.Errorf("got non-nil (%p), want nil", m)
+ }
+}
+
+func TestAll(t *testing.T) {
+ testType(t, 1, TypeOf((int8)(0)), "int8")
+ testType(t, 2, TypeOf((*int8)(nil)).Elem(), "int8")
+
+ typ := TypeOf((*struct {
+ c chan *int32
+ d float32
+ })(nil))
+ testType(t, 3, typ, "*struct { c chan *int32; d float32 }")
+ etyp := typ.Elem()
+ testType(t, 4, etyp, "struct { c chan *int32; d float32 }")
+}
+
+func TestInterfaceValue(t *testing.T) {
+ var inter struct {
+ E any
+ }
+ inter.E = 123.456
+ v1 := ValueOf(&inter)
+ v2 := Field(v1.Elem(), 0)
+ // assert(t, TypeString(v2.Type()), "interface {}")
+ v3 := v2.Elem()
+ assert(t, TypeString(v3.Type()), "float64")
+
+ i3 := ToInterface(v2)
+ if _, ok := i3.(float64); !ok {
+ t.Error("v2.Interface() did not return float64, got ", TypeOf(i3))
+ }
+}
+
+func TestFunctionValue(t *testing.T) {
+ var x any = func() {}
+ v := ValueOf(x)
+ if fmt.Sprint(ToInterface(v)) != fmt.Sprint(x) {
+ t.Fatalf("TestFunction returned wrong pointer")
+ }
+ assert(t, TypeString(v.Type()), "func()")
+}
+
+var appendTests = []struct {
+ orig, extra []int
+}{
+ {make([]int, 2, 4), []int{22}},
+ {make([]int, 2, 4), []int{22, 33, 44}},
+}
+
+func sameInts(x, y []int) bool {
+ if len(x) != len(y) {
+ return false
+ }
+ for i, xx := range x {
+ if xx != y[i] {
+ return false
+ }
+ }
+ return true
+}
+
+func TestBigUnnamedStruct(t *testing.T) {
+ b := struct{ a, b, c, d int64 }{1, 2, 3, 4}
+ v := ValueOf(b)
+ b1 := ToInterface(v).(struct {
+ a, b, c, d int64
+ })
+ if b1.a != b.a || b1.b != b.b || b1.c != b.c || b1.d != b.d {
+ t.Errorf("ValueOf(%v).Interface().(*Big) = %v", b, b1)
+ }
+}
+
+type big struct {
+ a, b, c, d, e int64
+}
+
+func TestBigStruct(t *testing.T) {
+ b := big{1, 2, 3, 4, 5}
+ v := ValueOf(b)
+ b1 := ToInterface(v).(big)
+ if b1.a != b.a || b1.b != b.b || b1.c != b.c || b1.d != b.d || b1.e != b.e {
+ t.Errorf("ValueOf(%v).Interface().(big) = %v", b, b1)
+ }
+}
+
+type Basic struct {
+ x int
+ y float32
+}
+
+type NotBasic Basic
+
+type DeepEqualTest struct {
+ a, b any
+ eq bool
+}
+
+// Simple functions for DeepEqual tests.
+var (
+ fn1 func() // nil.
+ fn2 func() // nil.
+ fn3 = func() { fn1() } // Not nil.
+)
+
+type self struct{}
+
+type Loop *Loop
+type Loopy any
+
+var loop1, loop2 Loop
+var loopy1, loopy2 Loopy
+
+func init() {
+ loop1 = &loop2
+ loop2 = &loop1
+
+ loopy1 = &loopy2
+ loopy2 = &loopy1
+}
+
+var typeOfTests = []DeepEqualTest{
+ // Equalities
+ {nil, nil, true},
+ {1, 1, true},
+ {int32(1), int32(1), true},
+ {0.5, 0.5, true},
+ {float32(0.5), float32(0.5), true},
+ {"hello", "hello", true},
+ {make([]int, 10), make([]int, 10), true},
+ {&[3]int{1, 2, 3}, &[3]int{1, 2, 3}, true},
+ {Basic{1, 0.5}, Basic{1, 0.5}, true},
+ {error(nil), error(nil), true},
+ {map[int]string{1: "one", 2: "two"}, map[int]string{2: "two", 1: "one"}, true},
+ {fn1, fn2, true},
+
+ // Inequalities
+ {1, 2, false},
+ {int32(1), int32(2), false},
+ {0.5, 0.6, false},
+ {float32(0.5), float32(0.6), false},
+ {"hello", "hey", false},
+ {make([]int, 10), make([]int, 11), false},
+ {&[3]int{1, 2, 3}, &[3]int{1, 2, 4}, false},
+ {Basic{1, 0.5}, Basic{1, 0.6}, false},
+ {Basic{1, 0}, Basic{2, 0}, false},
+ {map[int]string{1: "one", 3: "two"}, map[int]string{2: "two", 1: "one"}, false},
+ {map[int]string{1: "one", 2: "txo"}, map[int]string{2: "two", 1: "one"}, false},
+ {map[int]string{1: "one"}, map[int]string{2: "two", 1: "one"}, false},
+ {map[int]string{2: "two", 1: "one"}, map[int]string{1: "one"}, false},
+ {nil, 1, false},
+ {1, nil, false},
+ {fn1, fn3, false},
+ {fn3, fn3, false},
+ {[][]int{{1}}, [][]int{{2}}, false},
+ {math.NaN(), math.NaN(), false},
+ {&[1]float64{math.NaN()}, &[1]float64{math.NaN()}, false},
+ {&[1]float64{math.NaN()}, self{}, true},
+ {[]float64{math.NaN()}, []float64{math.NaN()}, false},
+ {[]float64{math.NaN()}, self{}, true},
+ {map[float64]float64{math.NaN(): 1}, map[float64]float64{1: 2}, false},
+ {map[float64]float64{math.NaN(): 1}, self{}, true},
+
+ // Nil vs empty: not the same.
+ {[]int{}, []int(nil), false},
+ {[]int{}, []int{}, true},
+ {[]int(nil), []int(nil), true},
+ {map[int]int{}, map[int]int(nil), false},
+ {map[int]int{}, map[int]int{}, true},
+ {map[int]int(nil), map[int]int(nil), true},
+
+ // Mismatched types
+ {1, 1.0, false},
+ {int32(1), int64(1), false},
+ {0.5, "hello", false},
+ {[]int{1, 2, 3}, [3]int{1, 2, 3}, false},
+ {&[3]any{1, 2, 4}, &[3]any{1, 2, "s"}, false},
+ {Basic{1, 0.5}, NotBasic{1, 0.5}, false},
+ {map[uint]string{1: "one", 2: "two"}, map[int]string{2: "two", 1: "one"}, false},
+
+ // Possible loops.
+ {&loop1, &loop1, true},
+ {&loop1, &loop2, true},
+ {&loopy1, &loopy1, true},
+ {&loopy1, &loopy2, true},
+}
+
+func TestTypeOf(t *testing.T) {
+ // Special case for nil
+ if typ := TypeOf(nil); typ != nil {
+ t.Errorf("expected nil type for nil value; got %v", typ)
+ }
+ for _, test := range typeOfTests {
+ v := ValueOf(test.a)
+ if !v.IsValid() {
+ continue
+ }
+ typ := TypeOf(test.a)
+ if typ != v.Type() {
+ t.Errorf("TypeOf(%v) = %v, but ValueOf(%v).Type() = %v", test.a, typ, test.a, v.Type())
+ }
+ }
+}
+
+func Nil(a any, t *testing.T) {
+ n := Field(ValueOf(a), 0)
+ if !n.IsNil() {
+ t.Errorf("%v should be nil", a)
+ }
+}
+
+func NotNil(a any, t *testing.T) {
+ n := Field(ValueOf(a), 0)
+ if n.IsNil() {
+ t.Errorf("value of type %v should not be nil", TypeString(ValueOf(a).Type()))
+ }
+}
+
+func TestIsNil(t *testing.T) {
+ // These implement IsNil.
+ // Wrap in extra struct to hide interface type.
+ doNil := []any{
+ struct{ x *int }{},
+ struct{ x any }{},
+ struct{ x map[string]int }{},
+ struct{ x func() bool }{},
+ struct{ x chan int }{},
+ struct{ x []string }{},
+ struct{ x unsafe.Pointer }{},
+ }
+ for _, ts := range doNil {
+ ty := TField(TypeOf(ts), 0)
+ v := Zero(ty)
+ v.IsNil() // panics if not okay to call
+ }
+
+ // Check the implementations
+ var pi struct {
+ x *int
+ }
+ Nil(pi, t)
+ pi.x = new(int)
+ NotNil(pi, t)
+
+ var si struct {
+ x []int
+ }
+ Nil(si, t)
+ si.x = make([]int, 10)
+ NotNil(si, t)
+
+ var ci struct {
+ x chan int
+ }
+ Nil(ci, t)
+ ci.x = make(chan int)
+ NotNil(ci, t)
+
+ var mi struct {
+ x map[int]int
+ }
+ Nil(mi, t)
+ mi.x = make(map[int]int)
+ NotNil(mi, t)
+
+ var ii struct {
+ x any
+ }
+ Nil(ii, t)
+ ii.x = 2
+ NotNil(ii, t)
+
+ var fi struct {
+ x func(t *testing.T)
+ }
+ Nil(fi, t)
+ fi.x = TestIsNil
+ NotNil(fi, t)
+}
+
+// Indirect returns the value that v points to.
+// If v is a nil pointer, Indirect returns a zero Value.
+// If v is not a pointer, Indirect returns v.
+func Indirect(v Value) Value {
+ if v.Kind() != Ptr {
+ return v
+ }
+ return v.Elem()
+}
+
+func TestNilPtrValueSub(t *testing.T) {
+ var pi *int
+ if pv := ValueOf(pi); pv.Elem().IsValid() {
+ t.Error("ValueOf((*int)(nil)).Elem().IsValid()")
+ }
+}
+
+type Point struct {
+ x, y int
+}
+
+// This will be index 0.
+func (p Point) AnotherMethod(scale int) int {
+ return -1
+}
+
+// This will be index 1.
+func (p Point) Dist(scale int) int {
+ //println("Point.Dist", p.x, p.y, scale)
+ return p.x*p.x*scale + p.y*p.y*scale
+}
+
+// This will be index 2.
+func (p Point) GCMethod(k int) int {
+ runtime.GC()
+ return k + p.x
+}
+
+// This will be index 3.
+func (p Point) NoArgs() {
+ // Exercise no-argument/no-result paths.
+}
+
+// This will be index 4.
+func (p Point) TotalDist(points ...Point) int {
+ tot := 0
+ for _, q := range points {
+ dx := q.x - p.x
+ dy := q.y - p.y
+ tot += dx*dx + dy*dy // Should call Sqrt, but it's just a test.
+
+ }
+ return tot
+}
+
+type D1 struct {
+ d int
+}
+type D2 struct {
+ d int
+}
+
+func TestImportPath(t *testing.T) {
+ tests := []struct {
+ t Type
+ path string
+ }{
+ {TypeOf(&base64.Encoding{}).Elem(), "encoding/base64"},
+ {TypeOf(int(0)), ""},
+ {TypeOf(int8(0)), ""},
+ {TypeOf(int16(0)), ""},
+ {TypeOf(int32(0)), ""},
+ {TypeOf(int64(0)), ""},
+ {TypeOf(uint(0)), ""},
+ {TypeOf(uint8(0)), ""},
+ {TypeOf(uint16(0)), ""},
+ {TypeOf(uint32(0)), ""},
+ {TypeOf(uint64(0)), ""},
+ {TypeOf(uintptr(0)), ""},
+ {TypeOf(float32(0)), ""},
+ {TypeOf(float64(0)), ""},
+ {TypeOf(complex64(0)), ""},
+ {TypeOf(complex128(0)), ""},
+ {TypeOf(byte(0)), ""},
+ {TypeOf(rune(0)), ""},
+ {TypeOf([]byte(nil)), ""},
+ {TypeOf([]rune(nil)), ""},
+ {TypeOf(string("")), ""},
+ {TypeOf((*any)(nil)).Elem(), ""},
+ {TypeOf((*byte)(nil)), ""},
+ {TypeOf((*rune)(nil)), ""},
+ {TypeOf((*int64)(nil)), ""},
+ {TypeOf(map[string]int{}), ""},
+ {TypeOf((*error)(nil)).Elem(), ""},
+ {TypeOf((*Point)(nil)), ""},
+ {TypeOf((*Point)(nil)).Elem(), "internal/reflectlite_test"},
+ }
+ for _, test := range tests {
+ if path := test.t.PkgPath(); path != test.path {
+ t.Errorf("%v.PkgPath() = %q, want %q", test.t, path, test.path)
+ }
+ }
+}
+
+func noAlloc(t *testing.T, n int, f func(int)) {
+ if testing.Short() {
+ t.Skip("skipping malloc count in short mode")
+ }
+ if runtime.GOMAXPROCS(0) > 1 {
+ t.Skip("skipping; GOMAXPROCS>1")
+ }
+ i := -1
+ allocs := testing.AllocsPerRun(n, func() {
+ f(i)
+ i++
+ })
+ if allocs > 0 {
+ t.Errorf("%d iterations: got %v mallocs, want 0", n, allocs)
+ }
+}
+
+func TestAllocations(t *testing.T) {
+ noAlloc(t, 100, func(j int) {
+ var i any
+ var v Value
+
+ // We can uncomment this when compiler escape analysis
+ // is good enough to see that the integer assigned to i
+ // does not escape and therefore need not be allocated.
+ //
+ // i = 42 + j
+ // v = ValueOf(i)
+ // if int(v.Int()) != 42+j {
+ // panic("wrong int")
+ // }
+
+ i = func(j int) int { return j }
+ v = ValueOf(i)
+ if ToInterface(v).(func(int) int)(j) != j {
+ panic("wrong result")
+ }
+ })
+}
+
+func TestSetPanic(t *testing.T) {
+ ok := func(f func()) { f() }
+ bad := shouldPanic
+ clear := func(v Value) { v.Set(Zero(v.Type())) }
+
+ type t0 struct {
+ W int
+ }
+
+ type t1 struct {
+ Y int
+ t0
+ }
+
+ type T2 struct {
+ Z int
+ namedT0 t0
+ }
+
+ type T struct {
+ X int
+ t1
+ T2
+ NamedT1 t1
+ NamedT2 T2
+ namedT1 t1
+ namedT2 T2
+ }
+
+ // not addressable
+ v := ValueOf(T{})
+ bad(func() { clear(Field(v, 0)) }) // .X
+ bad(func() { clear(Field(v, 1)) }) // .t1
+ bad(func() { clear(Field(Field(v, 1), 0)) }) // .t1.Y
+ bad(func() { clear(Field(Field(v, 1), 1)) }) // .t1.t0
+ bad(func() { clear(Field(Field(Field(v, 1), 1), 0)) }) // .t1.t0.W
+ bad(func() { clear(Field(v, 2)) }) // .T2
+ bad(func() { clear(Field(Field(v, 2), 0)) }) // .T2.Z
+ bad(func() { clear(Field(Field(v, 2), 1)) }) // .T2.namedT0
+ bad(func() { clear(Field(Field(Field(v, 2), 1), 0)) }) // .T2.namedT0.W
+ bad(func() { clear(Field(v, 3)) }) // .NamedT1
+ bad(func() { clear(Field(Field(v, 3), 0)) }) // .NamedT1.Y
+ bad(func() { clear(Field(Field(v, 3), 1)) }) // .NamedT1.t0
+ bad(func() { clear(Field(Field(Field(v, 3), 1), 0)) }) // .NamedT1.t0.W
+ bad(func() { clear(Field(v, 4)) }) // .NamedT2
+ bad(func() { clear(Field(Field(v, 4), 0)) }) // .NamedT2.Z
+ bad(func() { clear(Field(Field(v, 4), 1)) }) // .NamedT2.namedT0
+ bad(func() { clear(Field(Field(Field(v, 4), 1), 0)) }) // .NamedT2.namedT0.W
+ bad(func() { clear(Field(v, 5)) }) // .namedT1
+ bad(func() { clear(Field(Field(v, 5), 0)) }) // .namedT1.Y
+ bad(func() { clear(Field(Field(v, 5), 1)) }) // .namedT1.t0
+ bad(func() { clear(Field(Field(Field(v, 5), 1), 0)) }) // .namedT1.t0.W
+ bad(func() { clear(Field(v, 6)) }) // .namedT2
+ bad(func() { clear(Field(Field(v, 6), 0)) }) // .namedT2.Z
+ bad(func() { clear(Field(Field(v, 6), 1)) }) // .namedT2.namedT0
+ bad(func() { clear(Field(Field(Field(v, 6), 1), 0)) }) // .namedT2.namedT0.W
+
+ // addressable
+ v = ValueOf(&T{}).Elem()
+ ok(func() { clear(Field(v, 0)) }) // .X
+ bad(func() { clear(Field(v, 1)) }) // .t1
+ ok(func() { clear(Field(Field(v, 1), 0)) }) // .t1.Y
+ bad(func() { clear(Field(Field(v, 1), 1)) }) // .t1.t0
+ ok(func() { clear(Field(Field(Field(v, 1), 1), 0)) }) // .t1.t0.W
+ ok(func() { clear(Field(v, 2)) }) // .T2
+ ok(func() { clear(Field(Field(v, 2), 0)) }) // .T2.Z
+ bad(func() { clear(Field(Field(v, 2), 1)) }) // .T2.namedT0
+ bad(func() { clear(Field(Field(Field(v, 2), 1), 0)) }) // .T2.namedT0.W
+ ok(func() { clear(Field(v, 3)) }) // .NamedT1
+ ok(func() { clear(Field(Field(v, 3), 0)) }) // .NamedT1.Y
+ bad(func() { clear(Field(Field(v, 3), 1)) }) // .NamedT1.t0
+ ok(func() { clear(Field(Field(Field(v, 3), 1), 0)) }) // .NamedT1.t0.W
+ ok(func() { clear(Field(v, 4)) }) // .NamedT2
+ ok(func() { clear(Field(Field(v, 4), 0)) }) // .NamedT2.Z
+ bad(func() { clear(Field(Field(v, 4), 1)) }) // .NamedT2.namedT0
+ bad(func() { clear(Field(Field(Field(v, 4), 1), 0)) }) // .NamedT2.namedT0.W
+ bad(func() { clear(Field(v, 5)) }) // .namedT1
+ bad(func() { clear(Field(Field(v, 5), 0)) }) // .namedT1.Y
+ bad(func() { clear(Field(Field(v, 5), 1)) }) // .namedT1.t0
+ bad(func() { clear(Field(Field(Field(v, 5), 1), 0)) }) // .namedT1.t0.W
+ bad(func() { clear(Field(v, 6)) }) // .namedT2
+ bad(func() { clear(Field(Field(v, 6), 0)) }) // .namedT2.Z
+ bad(func() { clear(Field(Field(v, 6), 1)) }) // .namedT2.namedT0
+ bad(func() { clear(Field(Field(Field(v, 6), 1), 0)) }) // .namedT2.namedT0.W
+}
+
+func shouldPanic(f func()) {
+ defer func() {
+ if recover() == nil {
+ panic("did not panic")
+ }
+ }()
+ f()
+}
+
+type S struct {
+ i1 int64
+ i2 int64
+}
+
+func TestBigZero(t *testing.T) {
+ const size = 1 << 10
+ var v [size]byte
+ z := ToInterface(Zero(ValueOf(v).Type())).([size]byte)
+ for i := 0; i < size; i++ {
+ if z[i] != 0 {
+ t.Fatalf("Zero object not all zero, index %d", i)
+ }
+ }
+}
+
+func TestInvalid(t *testing.T) {
+ // Used to have inconsistency between IsValid() and Kind() != Invalid.
+ type T struct{ v any }
+
+ v := Field(ValueOf(T{}), 0)
+ if v.IsValid() != true || v.Kind() != Interface {
+ t.Errorf("field: IsValid=%v, Kind=%v, want true, Interface", v.IsValid(), v.Kind())
+ }
+ v = v.Elem()
+ if v.IsValid() != false || v.Kind() != Invalid {
+ t.Errorf("field elem: IsValid=%v, Kind=%v, want false, Invalid", v.IsValid(), v.Kind())
+ }
+}
+
+type TheNameOfThisTypeIsExactly255BytesLongSoWhenTheCompilerPrependsTheReflectTestPackageNameAndExtraStarTheLinkerRuntimeAndReflectPackagesWillHaveToCorrectlyDecodeTheSecondLengthByte0123456789_0123456789_0123456789_0123456789_0123456789_012345678 int
+
+type nameTest struct {
+ v any
+ want string
+}
+
+type A struct{}
+type B[T any] struct{}
+
+var nameTests = []nameTest{
+ {(*int32)(nil), "int32"},
+ {(*D1)(nil), "D1"},
+ {(*[]D1)(nil), ""},
+ {(*chan D1)(nil), ""},
+ {(*func() D1)(nil), ""},
+ {(*<-chan D1)(nil), ""},
+ {(*chan<- D1)(nil), ""},
+ {(*any)(nil), ""},
+ {(*interface {
+ F()
+ })(nil), ""},
+ {(*TheNameOfThisTypeIsExactly255BytesLongSoWhenTheCompilerPrependsTheReflectTestPackageNameAndExtraStarTheLinkerRuntimeAndReflectPackagesWillHaveToCorrectlyDecodeTheSecondLengthByte0123456789_0123456789_0123456789_0123456789_0123456789_012345678)(nil), "TheNameOfThisTypeIsExactly255BytesLongSoWhenTheCompilerPrependsTheReflectTestPackageNameAndExtraStarTheLinkerRuntimeAndReflectPackagesWillHaveToCorrectlyDecodeTheSecondLengthByte0123456789_0123456789_0123456789_0123456789_0123456789_012345678"},
+ {(*B[A])(nil), "B[internal/reflectlite_test.A]"},
+ {(*B[B[A]])(nil), "B[internal/reflectlite_test.B[internal/reflectlite_test.A]]"},
+}
+
+func TestNames(t *testing.T) {
+ for _, test := range nameTests {
+ typ := TypeOf(test.v).Elem()
+ if got := typ.Name(); got != test.want {
+ t.Errorf("%v Name()=%q, want %q", typ, got, test.want)
+ }
+ }
+}
+
+// TestUnaddressableField tests that the reflect package will not allow
+// a type from another package to be used as a named type with an
+// unexported field.
+//
+// This ensures that unexported fields cannot be modified by other packages.
+func TestUnaddressableField(t *testing.T) {
+ var b Buffer // type defined in reflect, a different package
+ var localBuffer struct {
+ buf []byte
+ }
+ lv := ValueOf(&localBuffer).Elem()
+ rv := ValueOf(b)
+ shouldPanic(func() {
+ lv.Set(rv)
+ })
+}
+
+type Tint int
+
+type Tint2 = Tint
+
+type Talias1 struct {
+ byte
+ uint8
+ int
+ int32
+ rune
+}
+
+type Talias2 struct {
+ Tint
+ Tint2
+}
+
+func TestAliasNames(t *testing.T) {
+ t1 := Talias1{byte: 1, uint8: 2, int: 3, int32: 4, rune: 5}
+ out := fmt.Sprintf("%#v", t1)
+ want := "reflectlite_test.Talias1{byte:0x1, uint8:0x2, int:3, int32:4, rune:5}"
+ if out != want {
+ t.Errorf("Talias1 print:\nhave: %s\nwant: %s", out, want)
+ }
+
+ t2 := Talias2{Tint: 1, Tint2: 2}
+ out = fmt.Sprintf("%#v", t2)
+ want = "reflectlite_test.Talias2{Tint:1, Tint2:2}"
+ if out != want {
+ t.Errorf("Talias2 print:\nhave: %s\nwant: %s", out, want)
+ }
+}
diff --git a/src/internal/reflectlite/asm.s b/src/internal/reflectlite/asm.s
new file mode 100644
index 0000000..a7b69b6
--- /dev/null
+++ b/src/internal/reflectlite/asm.s
@@ -0,0 +1,5 @@
+// Copyright 2019 The Go Authors. All rights reserved.
+// Use of this source code is governed by a BSD-style
+// license that can be found in the LICENSE file.
+
+// Trigger build without complete flag. \ No newline at end of file
diff --git a/src/internal/reflectlite/export_test.go b/src/internal/reflectlite/export_test.go
new file mode 100644
index 0000000..e9a928b
--- /dev/null
+++ b/src/internal/reflectlite/export_test.go
@@ -0,0 +1,117 @@
+// Copyright 2019 The Go Authors. All rights reserved.
+// Use of this source code is governed by a BSD-style
+// license that can be found in the LICENSE file.
+
+package reflectlite
+
+import (
+ "unsafe"
+)
+
+// Field returns the i'th field of the struct v.
+// It panics if v's Kind is not Struct or i is out of range.
+func Field(v Value, i int) Value {
+ if v.kind() != Struct {
+ panic(&ValueError{"reflect.Value.Field", v.kind()})
+ }
+ tt := (*structType)(unsafe.Pointer(v.typ))
+ if uint(i) >= uint(len(tt.fields)) {
+ panic("reflect: Field index out of range")
+ }
+ field := &tt.fields[i]
+ typ := field.typ
+
+ // Inherit permission bits from v, but clear flagEmbedRO.
+ fl := v.flag&(flagStickyRO|flagIndir|flagAddr) | flag(typ.Kind())
+ // Using an unexported field forces flagRO.
+ if !field.name.isExported() {
+ if field.embedded() {
+ fl |= flagEmbedRO
+ } else {
+ fl |= flagStickyRO
+ }
+ }
+ // Either flagIndir is set and v.ptr points at struct,
+ // or flagIndir is not set and v.ptr is the actual struct data.
+ // In the former case, we want v.ptr + offset.
+ // In the latter case, we must have field.offset = 0,
+ // so v.ptr + field.offset is still the correct address.
+ ptr := add(v.ptr, field.offset, "same as non-reflect &v.field")
+ return Value{typ, ptr, fl}
+}
+
+func TField(typ Type, i int) Type {
+ t := typ.(*rtype)
+ if t.Kind() != Struct {
+ panic("reflect: Field of non-struct type")
+ }
+ tt := (*structType)(unsafe.Pointer(t))
+
+ return StructFieldType(tt, i)
+}
+
+// Field returns the i'th struct field.
+func StructFieldType(t *structType, i int) Type {
+ if i < 0 || i >= len(t.fields) {
+ panic("reflect: Field index out of bounds")
+ }
+ p := &t.fields[i]
+ return toType(p.typ)
+}
+
+// Zero returns a Value representing the zero value for the specified type.
+// The result is different from the zero value of the Value struct,
+// which represents no value at all.
+// For example, Zero(TypeOf(42)) returns a Value with Kind Int and value 0.
+// The returned value is neither addressable nor settable.
+func Zero(typ Type) Value {
+ if typ == nil {
+ panic("reflect: Zero(nil)")
+ }
+ t := typ.(*rtype)
+ fl := flag(t.Kind())
+ if ifaceIndir(t) {
+ return Value{t, unsafe_New(t), fl | flagIndir}
+ }
+ return Value{t, nil, fl}
+}
+
+// ToInterface returns v's current value as an interface{}.
+// It is equivalent to:
+//
+// var i interface{} = (v's underlying value)
+//
+// It panics if the Value was obtained by accessing
+// unexported struct fields.
+func ToInterface(v Value) (i any) {
+ return valueInterface(v)
+}
+
+type EmbedWithUnexpMeth struct{}
+
+func (EmbedWithUnexpMeth) f() {}
+
+type pinUnexpMeth interface {
+ f()
+}
+
+var pinUnexpMethI = pinUnexpMeth(EmbedWithUnexpMeth{})
+
+func FirstMethodNameBytes(t Type) *byte {
+ _ = pinUnexpMethI
+
+ ut := t.uncommon()
+ if ut == nil {
+ panic("type has no methods")
+ }
+ m := ut.methods()[0]
+ mname := t.(*rtype).nameOff(m.name)
+ if *mname.data(0, "name flag field")&(1<<2) == 0 {
+ panic("method name does not have pkgPath *string")
+ }
+ return mname.bytes
+}
+
+type Buffer struct {
+ buf []byte
+}
diff --git a/src/internal/reflectlite/reflect_mirror_test.go b/src/internal/reflectlite/reflect_mirror_test.go
new file mode 100644
index 0000000..9b28b13
--- /dev/null
+++ b/src/internal/reflectlite/reflect_mirror_test.go
@@ -0,0 +1,132 @@
+// Copyright 2019 The Go Authors. All rights reserved.
+// Use of this source code is governed by a BSD-style
+// license that can be found in the LICENSE file.
+
+package reflectlite_test
+
+import (
+ "fmt"
+ "go/ast"
+ "go/parser"
+ "go/token"
+ "io/fs"
+ "os"
+ "path/filepath"
+ "runtime"
+ "strings"
+ "sync"
+ "testing"
+)
+
+var typeNames = []string{
+ "rtype",
+ "uncommonType",
+ "arrayType",
+ "chanType",
+ "funcType",
+ "interfaceType",
+ "mapType",
+ "ptrType",
+ "sliceType",
+ "structType",
+}
+
+type visitor struct {
+ m map[string]map[string]bool
+}
+
+func newVisitor() visitor {
+ v := visitor{}
+ v.m = make(map[string]map[string]bool)
+
+ return v
+}
+func (v visitor) filter(name string) bool {
+ for _, typeName := range typeNames {
+ if typeName == name {
+ return true
+ }
+ }
+ return false
+}
+
+func (v visitor) Visit(n ast.Node) ast.Visitor {
+ switch x := n.(type) {
+ case *ast.TypeSpec:
+ if v.filter(x.Name.String()) {
+ if st, ok := x.Type.(*ast.StructType); ok {
+ v.m[x.Name.String()] = make(map[string]bool)
+ for _, field := range st.Fields.List {
+ k := fmt.Sprintf("%s", field.Type)
+ if len(field.Names) > 0 {
+ k = field.Names[0].Name
+ }
+ v.m[x.Name.String()][k] = true
+ }
+ }
+ }
+ }
+ return v
+}
+
+func loadTypes(path, pkgName string, v visitor) {
+ fset := token.NewFileSet()
+
+ filter := func(fi fs.FileInfo) bool {
+ return strings.HasSuffix(fi.Name(), ".go")
+ }
+ pkgs, err := parser.ParseDir(fset, path, filter, 0)
+ if err != nil {
+ panic(err)
+ }
+
+ pkg := pkgs[pkgName]
+
+ for _, f := range pkg.Files {
+ ast.Walk(v, f)
+ }
+}
+
+func TestMirrorWithReflect(t *testing.T) {
+ reflectDir := filepath.Join(runtime.GOROOT(), "src", "reflect")
+ if _, err := os.Stat(reflectDir); os.IsNotExist(err) {
+ // On some mobile builders, the test binary executes on a machine without a
+ // complete GOROOT source tree.
+ t.Skipf("GOROOT source not present")
+ }
+
+ var wg sync.WaitGroup
+ rl, r := newVisitor(), newVisitor()
+
+ for _, tc := range []struct {
+ path, pkg string
+ v visitor
+ }{
+ {".", "reflectlite", rl},
+ {reflectDir, "reflect", r},
+ } {
+ tc := tc
+ wg.Add(1)
+ go func() {
+ defer wg.Done()
+ loadTypes(tc.path, tc.pkg, tc.v)
+ }()
+ }
+ wg.Wait()
+
+ if len(rl.m) != len(r.m) {
+ t.Fatalf("number of types mismatch, reflect: %d, reflectlite: %d", len(r.m), len(rl.m))
+ }
+
+ for typName := range r.m {
+ if len(r.m[typName]) != len(rl.m[typName]) {
+ t.Errorf("type %s number of fields mismatch, reflect: %d, reflectlite: %d", typName, len(r.m[typName]), len(rl.m[typName]))
+ continue
+ }
+ for field := range r.m[typName] {
+ if _, ok := rl.m[typName][field]; !ok {
+ t.Errorf(`Field mismatch, reflect have "%s", relectlite does not.`, field)
+ }
+ }
+ }
+}
diff --git a/src/internal/reflectlite/set_test.go b/src/internal/reflectlite/set_test.go
new file mode 100644
index 0000000..ca7ea9b
--- /dev/null
+++ b/src/internal/reflectlite/set_test.go
@@ -0,0 +1,101 @@
+// Copyright 2011 The Go Authors. All rights reserved.
+// Use of this source code is governed by a BSD-style
+// license that can be found in the LICENSE file.
+
+package reflectlite_test
+
+import (
+ "bytes"
+ "go/ast"
+ "go/token"
+ . "internal/reflectlite"
+ "io"
+ "testing"
+)
+
+func TestImplicitSetConversion(t *testing.T) {
+ // Assume TestImplicitMapConversion covered the basics.
+ // Just make sure conversions are being applied at all.
+ var r io.Reader
+ b := new(bytes.Buffer)
+ rv := ValueOf(&r).Elem()
+ rv.Set(ValueOf(b))
+ if r != b {
+ t.Errorf("after Set: r=%T(%v)", r, r)
+ }
+}
+
+var implementsTests = []struct {
+ x any
+ t any
+ b bool
+}{
+ {new(*bytes.Buffer), new(io.Reader), true},
+ {new(bytes.Buffer), new(io.Reader), false},
+ {new(*bytes.Buffer), new(io.ReaderAt), false},
+ {new(*ast.Ident), new(ast.Expr), true},
+ {new(*notAnExpr), new(ast.Expr), false},
+ {new(*ast.Ident), new(notASTExpr), false},
+ {new(notASTExpr), new(ast.Expr), false},
+ {new(ast.Expr), new(notASTExpr), false},
+ {new(*notAnExpr), new(notASTExpr), true},
+ {new(mapError), new(error), true},
+ {new(*mapError), new(error), true},
+}
+
+type notAnExpr struct{}
+
+func (notAnExpr) Pos() token.Pos { return token.NoPos }
+func (notAnExpr) End() token.Pos { return token.NoPos }
+func (notAnExpr) exprNode() {}
+
+type notASTExpr interface {
+ Pos() token.Pos
+ End() token.Pos
+ exprNode()
+}
+
+type mapError map[string]string
+
+func (mapError) Error() string { return "mapError" }
+
+var _ error = mapError{}
+var _ error = new(mapError)
+
+func TestImplements(t *testing.T) {
+ for _, tt := range implementsTests {
+ xv := TypeOf(tt.x).Elem()
+ xt := TypeOf(tt.t).Elem()
+ if b := xv.Implements(xt); b != tt.b {
+ t.Errorf("(%s).Implements(%s) = %v, want %v", TypeString(xv), TypeString(xt), b, tt.b)
+ }
+ }
+}
+
+var assignableTests = []struct {
+ x any
+ t any
+ b bool
+}{
+ {new(chan int), new(<-chan int), true},
+ {new(<-chan int), new(chan int), false},
+ {new(*int), new(IntPtr), true},
+ {new(IntPtr), new(*int), true},
+ {new(IntPtr), new(IntPtr1), false},
+ {new(Ch), new(<-chan any), true},
+ // test runs implementsTests too
+}
+
+type IntPtr *int
+type IntPtr1 *int
+type Ch <-chan any
+
+func TestAssignableTo(t *testing.T) {
+ for i, tt := range append(assignableTests, implementsTests...) {
+ xv := TypeOf(tt.x).Elem()
+ xt := TypeOf(tt.t).Elem()
+ if b := xv.AssignableTo(xt); b != tt.b {
+ t.Errorf("%d:AssignableTo: got %v, want %v", i, b, tt.b)
+ }
+ }
+}
diff --git a/src/internal/reflectlite/swapper.go b/src/internal/reflectlite/swapper.go
new file mode 100644
index 0000000..fc402bb
--- /dev/null
+++ b/src/internal/reflectlite/swapper.go
@@ -0,0 +1,78 @@
+// Copyright 2016 The Go Authors. All rights reserved.
+// Use of this source code is governed by a BSD-style
+// license that can be found in the LICENSE file.
+
+package reflectlite
+
+import (
+ "internal/goarch"
+ "internal/unsafeheader"
+ "unsafe"
+)
+
+// Swapper returns a function that swaps the elements in the provided
+// slice.
+//
+// Swapper panics if the provided interface is not a slice.
+func Swapper(slice any) func(i, j int) {
+ v := ValueOf(slice)
+ if v.Kind() != Slice {
+ panic(&ValueError{Method: "Swapper", Kind: v.Kind()})
+ }
+ // Fast path for slices of size 0 and 1. Nothing to swap.
+ switch v.Len() {
+ case 0:
+ return func(i, j int) { panic("reflect: slice index out of range") }
+ case 1:
+ return func(i, j int) {
+ if i != 0 || j != 0 {
+ panic("reflect: slice index out of range")
+ }
+ }
+ }
+
+ typ := v.Type().Elem().(*rtype)
+ size := typ.Size()
+ hasPtr := typ.ptrdata != 0
+
+ // Some common & small cases, without using memmove:
+ if hasPtr {
+ if size == goarch.PtrSize {
+ ps := *(*[]unsafe.Pointer)(v.ptr)
+ return func(i, j int) { ps[i], ps[j] = ps[j], ps[i] }
+ }
+ if typ.Kind() == String {
+ ss := *(*[]string)(v.ptr)
+ return func(i, j int) { ss[i], ss[j] = ss[j], ss[i] }
+ }
+ } else {
+ switch size {
+ case 8:
+ is := *(*[]int64)(v.ptr)
+ return func(i, j int) { is[i], is[j] = is[j], is[i] }
+ case 4:
+ is := *(*[]int32)(v.ptr)
+ return func(i, j int) { is[i], is[j] = is[j], is[i] }
+ case 2:
+ is := *(*[]int16)(v.ptr)
+ return func(i, j int) { is[i], is[j] = is[j], is[i] }
+ case 1:
+ is := *(*[]int8)(v.ptr)
+ return func(i, j int) { is[i], is[j] = is[j], is[i] }
+ }
+ }
+
+ s := (*unsafeheader.Slice)(v.ptr)
+ tmp := unsafe_New(typ) // swap scratch space
+
+ return func(i, j int) {
+ if uint(i) >= uint(s.Len) || uint(j) >= uint(s.Len) {
+ panic("reflect: slice index out of range")
+ }
+ val1 := arrayAt(s.Data, i, size, "i < s.Len")
+ val2 := arrayAt(s.Data, j, size, "j < s.Len")
+ typedmemmove(typ, tmp, val1)
+ typedmemmove(typ, val1, val2)
+ typedmemmove(typ, val2, tmp)
+ }
+}
diff --git a/src/internal/reflectlite/tostring_test.go b/src/internal/reflectlite/tostring_test.go
new file mode 100644
index 0000000..966b0bd
--- /dev/null
+++ b/src/internal/reflectlite/tostring_test.go
@@ -0,0 +1,98 @@
+// Copyright 2009 The Go Authors. All rights reserved.
+// Use of this source code is governed by a BSD-style
+// license that can be found in the LICENSE file.
+
+// Formatting of reflection types and values for debugging.
+// Not defined as methods so they do not need to be linked into most binaries;
+// the functions are not used by the library itself, only in tests.
+
+package reflectlite_test
+
+import (
+ . "internal/reflectlite"
+ "reflect"
+ "strconv"
+)
+
+// valueToString returns a textual representation of the reflection value val.
+// For debugging only.
+func valueToString(v Value) string {
+ return valueToStringImpl(reflect.ValueOf(ToInterface(v)))
+}
+
+func valueToStringImpl(val reflect.Value) string {
+ var str string
+ if !val.IsValid() {
+ return "<zero Value>"
+ }
+ typ := val.Type()
+ switch val.Kind() {
+ case reflect.Int, reflect.Int8, reflect.Int16, reflect.Int32, reflect.Int64:
+ return strconv.FormatInt(val.Int(), 10)
+ case reflect.Uint, reflect.Uint8, reflect.Uint16, reflect.Uint32, reflect.Uint64, reflect.Uintptr:
+ return strconv.FormatUint(val.Uint(), 10)
+ case reflect.Float32, reflect.Float64:
+ return strconv.FormatFloat(val.Float(), 'g', -1, 64)
+ case reflect.Complex64, reflect.Complex128:
+ c := val.Complex()
+ return strconv.FormatFloat(real(c), 'g', -1, 64) + "+" + strconv.FormatFloat(imag(c), 'g', -1, 64) + "i"
+ case reflect.String:
+ return val.String()
+ case reflect.Bool:
+ if val.Bool() {
+ return "true"
+ } else {
+ return "false"
+ }
+ case reflect.Pointer:
+ v := val
+ str = typ.String() + "("
+ if v.IsNil() {
+ str += "0"
+ } else {
+ str += "&" + valueToStringImpl(v.Elem())
+ }
+ str += ")"
+ return str
+ case reflect.Array, reflect.Slice:
+ v := val
+ str += typ.String()
+ str += "{"
+ for i := 0; i < v.Len(); i++ {
+ if i > 0 {
+ str += ", "
+ }
+ str += valueToStringImpl(v.Index(i))
+ }
+ str += "}"
+ return str
+ case reflect.Map:
+ str += typ.String()
+ str += "{"
+ str += "<can't iterate on maps>"
+ str += "}"
+ return str
+ case reflect.Chan:
+ str = typ.String()
+ return str
+ case reflect.Struct:
+ t := typ
+ v := val
+ str += t.String()
+ str += "{"
+ for i, n := 0, v.NumField(); i < n; i++ {
+ if i > 0 {
+ str += ", "
+ }
+ str += valueToStringImpl(v.Field(i))
+ }
+ str += "}"
+ return str
+ case reflect.Interface:
+ return typ.String() + "(" + valueToStringImpl(val.Elem()) + ")"
+ case reflect.Func:
+ return typ.String() + "(arg)"
+ default:
+ panic("valueToString: can't print type " + typ.String())
+ }
+}
diff --git a/src/internal/reflectlite/type.go b/src/internal/reflectlite/type.go
new file mode 100644
index 0000000..43440b1
--- /dev/null
+++ b/src/internal/reflectlite/type.go
@@ -0,0 +1,974 @@
+// Copyright 2009 The Go Authors. All rights reserved.
+// Use of this source code is governed by a BSD-style
+// license that can be found in the LICENSE file.
+
+// Package reflectlite implements lightweight version of reflect, not using
+// any package except for "runtime" and "unsafe".
+package reflectlite
+
+import "unsafe"
+
+// Type is the representation of a Go type.
+//
+// Not all methods apply to all kinds of types. Restrictions,
+// if any, are noted in the documentation for each method.
+// Use the Kind method to find out the kind of type before
+// calling kind-specific methods. Calling a method
+// inappropriate to the kind of type causes a run-time panic.
+//
+// Type values are comparable, such as with the == operator,
+// so they can be used as map keys.
+// Two Type values are equal if they represent identical types.
+type Type interface {
+ // Methods applicable to all types.
+
+ // Name returns the type's name within its package for a defined type.
+ // For other (non-defined) types it returns the empty string.
+ Name() string
+
+ // PkgPath returns a defined type's package path, that is, the import path
+ // that uniquely identifies the package, such as "encoding/base64".
+ // If the type was predeclared (string, error) or not defined (*T, struct{},
+ // []int, or A where A is an alias for a non-defined type), the package path
+ // will be the empty string.
+ PkgPath() string
+
+ // Size returns the number of bytes needed to store
+ // a value of the given type; it is analogous to unsafe.Sizeof.
+ Size() uintptr
+
+ // Kind returns the specific kind of this type.
+ Kind() Kind
+
+ // Implements reports whether the type implements the interface type u.
+ Implements(u Type) bool
+
+ // AssignableTo reports whether a value of the type is assignable to type u.
+ AssignableTo(u Type) bool
+
+ // Comparable reports whether values of this type are comparable.
+ Comparable() bool
+
+ // String returns a string representation of the type.
+ // The string representation may use shortened package names
+ // (e.g., base64 instead of "encoding/base64") and is not
+ // guaranteed to be unique among types. To test for type identity,
+ // compare the Types directly.
+ String() string
+
+ // Elem returns a type's element type.
+ // It panics if the type's Kind is not Ptr.
+ Elem() Type
+
+ common() *rtype
+ uncommon() *uncommonType
+}
+
+/*
+ * These data structures are known to the compiler (../../cmd/internal/reflectdata/reflect.go).
+ * A few are known to ../runtime/type.go to convey to debuggers.
+ * They are also known to ../runtime/type.go.
+ */
+
+// A Kind represents the specific kind of type that a Type represents.
+// The zero Kind is not a valid kind.
+type Kind uint
+
+const (
+ Invalid Kind = iota
+ Bool
+ Int
+ Int8
+ Int16
+ Int32
+ Int64
+ Uint
+ Uint8
+ Uint16
+ Uint32
+ Uint64
+ Uintptr
+ Float32
+ Float64
+ Complex64
+ Complex128
+ Array
+ Chan
+ Func
+ Interface
+ Map
+ Pointer
+ Slice
+ String
+ Struct
+ UnsafePointer
+)
+
+const Ptr = Pointer
+
+// tflag is used by an rtype to signal what extra type information is
+// available in the memory directly following the rtype value.
+//
+// tflag values must be kept in sync with copies in:
+//
+// cmd/compile/internal/reflectdata/reflect.go
+// cmd/link/internal/ld/decodesym.go
+// runtime/type.go
+type tflag uint8
+
+const (
+ // tflagUncommon means that there is a pointer, *uncommonType,
+ // just beyond the outer type structure.
+ //
+ // For example, if t.Kind() == Struct and t.tflag&tflagUncommon != 0,
+ // then t has uncommonType data and it can be accessed as:
+ //
+ // type tUncommon struct {
+ // structType
+ // u uncommonType
+ // }
+ // u := &(*tUncommon)(unsafe.Pointer(t)).u
+ tflagUncommon tflag = 1 << 0
+
+ // tflagExtraStar means the name in the str field has an
+ // extraneous '*' prefix. This is because for most types T in
+ // a program, the type *T also exists and reusing the str data
+ // saves binary size.
+ tflagExtraStar tflag = 1 << 1
+
+ // tflagNamed means the type has a name.
+ tflagNamed tflag = 1 << 2
+
+ // tflagRegularMemory means that equal and hash functions can treat
+ // this type as a single region of t.size bytes.
+ tflagRegularMemory tflag = 1 << 3
+)
+
+// rtype is the common implementation of most values.
+// It is embedded in other struct types.
+//
+// rtype must be kept in sync with ../runtime/type.go:/^type._type.
+type rtype struct {
+ size uintptr
+ ptrdata uintptr // number of bytes in the type that can contain pointers
+ hash uint32 // hash of type; avoids computation in hash tables
+ tflag tflag // extra type information flags
+ align uint8 // alignment of variable with this type
+ fieldAlign uint8 // alignment of struct field with this type
+ kind uint8 // enumeration for C
+ // function for comparing objects of this type
+ // (ptr to object A, ptr to object B) -> ==?
+ equal func(unsafe.Pointer, unsafe.Pointer) bool
+ gcdata *byte // garbage collection data
+ str nameOff // string form
+ ptrToThis typeOff // type for pointer to this type, may be zero
+}
+
+// Method on non-interface type
+type method struct {
+ name nameOff // name of method
+ mtyp typeOff // method type (without receiver)
+ ifn textOff // fn used in interface call (one-word receiver)
+ tfn textOff // fn used for normal method call
+}
+
+// uncommonType is present only for defined types or types with methods
+// (if T is a defined type, the uncommonTypes for T and *T have methods).
+// Using a pointer to this struct reduces the overall size required
+// to describe a non-defined type with no methods.
+type uncommonType struct {
+ pkgPath nameOff // import path; empty for built-in types like int, string
+ mcount uint16 // number of methods
+ xcount uint16 // number of exported methods
+ moff uint32 // offset from this uncommontype to [mcount]method
+ _ uint32 // unused
+}
+
+// chanDir represents a channel type's direction.
+type chanDir int
+
+const (
+ recvDir chanDir = 1 << iota // <-chan
+ sendDir // chan<-
+ bothDir = recvDir | sendDir // chan
+)
+
+// arrayType represents a fixed array type.
+type arrayType struct {
+ rtype
+ elem *rtype // array element type
+ slice *rtype // slice type
+ len uintptr
+}
+
+// chanType represents a channel type.
+type chanType struct {
+ rtype
+ elem *rtype // channel element type
+ dir uintptr // channel direction (chanDir)
+}
+
+// funcType represents a function type.
+//
+// A *rtype for each in and out parameter is stored in an array that
+// directly follows the funcType (and possibly its uncommonType). So
+// a function type with one method, one input, and one output is:
+//
+// struct {
+// funcType
+// uncommonType
+// [2]*rtype // [0] is in, [1] is out
+// }
+type funcType struct {
+ rtype
+ inCount uint16
+ outCount uint16 // top bit is set if last input parameter is ...
+}
+
+// imethod represents a method on an interface type
+type imethod struct {
+ name nameOff // name of method
+ typ typeOff // .(*FuncType) underneath
+}
+
+// interfaceType represents an interface type.
+type interfaceType struct {
+ rtype
+ pkgPath name // import path
+ methods []imethod // sorted by hash
+}
+
+// mapType represents a map type.
+type mapType struct {
+ rtype
+ key *rtype // map key type
+ elem *rtype // map element (value) type
+ bucket *rtype // internal bucket structure
+ // function for hashing keys (ptr to key, seed) -> hash
+ hasher func(unsafe.Pointer, uintptr) uintptr
+ keysize uint8 // size of key slot
+ valuesize uint8 // size of value slot
+ bucketsize uint16 // size of bucket
+ flags uint32
+}
+
+// ptrType represents a pointer type.
+type ptrType struct {
+ rtype
+ elem *rtype // pointer element (pointed at) type
+}
+
+// sliceType represents a slice type.
+type sliceType struct {
+ rtype
+ elem *rtype // slice element type
+}
+
+// Struct field
+type structField struct {
+ name name // name is always non-empty
+ typ *rtype // type of field
+ offset uintptr // byte offset of field
+}
+
+func (f *structField) embedded() bool {
+ return f.name.embedded()
+}
+
+// structType represents a struct type.
+type structType struct {
+ rtype
+ pkgPath name
+ fields []structField // sorted by offset
+}
+
+// name is an encoded type name with optional extra data.
+//
+// The first byte is a bit field containing:
+//
+// 1<<0 the name is exported
+// 1<<1 tag data follows the name
+// 1<<2 pkgPath nameOff follows the name and tag
+//
+// The next two bytes are the data length:
+//
+// l := uint16(data[1])<<8 | uint16(data[2])
+//
+// Bytes [3:3+l] are the string data.
+//
+// If tag data follows then bytes 3+l and 3+l+1 are the tag length,
+// with the data following.
+//
+// If the import path follows, then 4 bytes at the end of
+// the data form a nameOff. The import path is only set for concrete
+// methods that are defined in a different package than their type.
+//
+// If a name starts with "*", then the exported bit represents
+// whether the pointed to type is exported.
+type name struct {
+ bytes *byte
+}
+
+func (n name) data(off int, whySafe string) *byte {
+ return (*byte)(add(unsafe.Pointer(n.bytes), uintptr(off), whySafe))
+}
+
+func (n name) isExported() bool {
+ return (*n.bytes)&(1<<0) != 0
+}
+
+func (n name) hasTag() bool {
+ return (*n.bytes)&(1<<1) != 0
+}
+
+func (n name) embedded() bool {
+ return (*n.bytes)&(1<<3) != 0
+}
+
+// readVarint parses a varint as encoded by encoding/binary.
+// It returns the number of encoded bytes and the encoded value.
+func (n name) readVarint(off int) (int, int) {
+ v := 0
+ for i := 0; ; i++ {
+ x := *n.data(off+i, "read varint")
+ v += int(x&0x7f) << (7 * i)
+ if x&0x80 == 0 {
+ return i + 1, v
+ }
+ }
+}
+
+func (n name) name() string {
+ if n.bytes == nil {
+ return ""
+ }
+ i, l := n.readVarint(1)
+ return unsafe.String(n.data(1+i, "non-empty string"), l)
+}
+
+func (n name) tag() string {
+ if !n.hasTag() {
+ return ""
+ }
+ i, l := n.readVarint(1)
+ i2, l2 := n.readVarint(1 + i + l)
+ return unsafe.String(n.data(1+i+l+i2, "non-empty string"), l2)
+}
+
+func (n name) pkgPath() string {
+ if n.bytes == nil || *n.data(0, "name flag field")&(1<<2) == 0 {
+ return ""
+ }
+ i, l := n.readVarint(1)
+ off := 1 + i + l
+ if n.hasTag() {
+ i2, l2 := n.readVarint(off)
+ off += i2 + l2
+ }
+ var nameOff int32
+ // Note that this field may not be aligned in memory,
+ // so we cannot use a direct int32 assignment here.
+ copy((*[4]byte)(unsafe.Pointer(&nameOff))[:], (*[4]byte)(unsafe.Pointer(n.data(off, "name offset field")))[:])
+ pkgPathName := name{(*byte)(resolveTypeOff(unsafe.Pointer(n.bytes), nameOff))}
+ return pkgPathName.name()
+}
+
+/*
+ * The compiler knows the exact layout of all the data structures above.
+ * The compiler does not know about the data structures and methods below.
+ */
+
+const (
+ kindDirectIface = 1 << 5
+ kindGCProg = 1 << 6 // Type.gc points to GC program
+ kindMask = (1 << 5) - 1
+)
+
+// String returns the name of k.
+func (k Kind) String() string {
+ if int(k) < len(kindNames) {
+ return kindNames[k]
+ }
+ return kindNames[0]
+}
+
+var kindNames = []string{
+ Invalid: "invalid",
+ Bool: "bool",
+ Int: "int",
+ Int8: "int8",
+ Int16: "int16",
+ Int32: "int32",
+ Int64: "int64",
+ Uint: "uint",
+ Uint8: "uint8",
+ Uint16: "uint16",
+ Uint32: "uint32",
+ Uint64: "uint64",
+ Uintptr: "uintptr",
+ Float32: "float32",
+ Float64: "float64",
+ Complex64: "complex64",
+ Complex128: "complex128",
+ Array: "array",
+ Chan: "chan",
+ Func: "func",
+ Interface: "interface",
+ Map: "map",
+ Ptr: "ptr",
+ Slice: "slice",
+ String: "string",
+ Struct: "struct",
+ UnsafePointer: "unsafe.Pointer",
+}
+
+func (t *uncommonType) methods() []method {
+ if t.mcount == 0 {
+ return nil
+ }
+ return (*[1 << 16]method)(add(unsafe.Pointer(t), uintptr(t.moff), "t.mcount > 0"))[:t.mcount:t.mcount]
+}
+
+func (t *uncommonType) exportedMethods() []method {
+ if t.xcount == 0 {
+ return nil
+ }
+ return (*[1 << 16]method)(add(unsafe.Pointer(t), uintptr(t.moff), "t.xcount > 0"))[:t.xcount:t.xcount]
+}
+
+// resolveNameOff resolves a name offset from a base pointer.
+// The (*rtype).nameOff method is a convenience wrapper for this function.
+// Implemented in the runtime package.
+func resolveNameOff(ptrInModule unsafe.Pointer, off int32) unsafe.Pointer
+
+// resolveTypeOff resolves an *rtype offset from a base type.
+// The (*rtype).typeOff method is a convenience wrapper for this function.
+// Implemented in the runtime package.
+func resolveTypeOff(rtype unsafe.Pointer, off int32) unsafe.Pointer
+
+type nameOff int32 // offset to a name
+type typeOff int32 // offset to an *rtype
+type textOff int32 // offset from top of text section
+
+func (t *rtype) nameOff(off nameOff) name {
+ return name{(*byte)(resolveNameOff(unsafe.Pointer(t), int32(off)))}
+}
+
+func (t *rtype) typeOff(off typeOff) *rtype {
+ return (*rtype)(resolveTypeOff(unsafe.Pointer(t), int32(off)))
+}
+
+func (t *rtype) uncommon() *uncommonType {
+ if t.tflag&tflagUncommon == 0 {
+ return nil
+ }
+ switch t.Kind() {
+ case Struct:
+ return &(*structTypeUncommon)(unsafe.Pointer(t)).u
+ case Ptr:
+ type u struct {
+ ptrType
+ u uncommonType
+ }
+ return &(*u)(unsafe.Pointer(t)).u
+ case Func:
+ type u struct {
+ funcType
+ u uncommonType
+ }
+ return &(*u)(unsafe.Pointer(t)).u
+ case Slice:
+ type u struct {
+ sliceType
+ u uncommonType
+ }
+ return &(*u)(unsafe.Pointer(t)).u
+ case Array:
+ type u struct {
+ arrayType
+ u uncommonType
+ }
+ return &(*u)(unsafe.Pointer(t)).u
+ case Chan:
+ type u struct {
+ chanType
+ u uncommonType
+ }
+ return &(*u)(unsafe.Pointer(t)).u
+ case Map:
+ type u struct {
+ mapType
+ u uncommonType
+ }
+ return &(*u)(unsafe.Pointer(t)).u
+ case Interface:
+ type u struct {
+ interfaceType
+ u uncommonType
+ }
+ return &(*u)(unsafe.Pointer(t)).u
+ default:
+ type u struct {
+ rtype
+ u uncommonType
+ }
+ return &(*u)(unsafe.Pointer(t)).u
+ }
+}
+
+func (t *rtype) String() string {
+ s := t.nameOff(t.str).name()
+ if t.tflag&tflagExtraStar != 0 {
+ return s[1:]
+ }
+ return s
+}
+
+func (t *rtype) Size() uintptr { return t.size }
+
+func (t *rtype) Kind() Kind { return Kind(t.kind & kindMask) }
+
+func (t *rtype) pointers() bool { return t.ptrdata != 0 }
+
+func (t *rtype) common() *rtype { return t }
+
+func (t *rtype) exportedMethods() []method {
+ ut := t.uncommon()
+ if ut == nil {
+ return nil
+ }
+ return ut.exportedMethods()
+}
+
+func (t *rtype) NumMethod() int {
+ if t.Kind() == Interface {
+ tt := (*interfaceType)(unsafe.Pointer(t))
+ return tt.NumMethod()
+ }
+ return len(t.exportedMethods())
+}
+
+func (t *rtype) PkgPath() string {
+ if t.tflag&tflagNamed == 0 {
+ return ""
+ }
+ ut := t.uncommon()
+ if ut == nil {
+ return ""
+ }
+ return t.nameOff(ut.pkgPath).name()
+}
+
+func (t *rtype) hasName() bool {
+ return t.tflag&tflagNamed != 0
+}
+
+func (t *rtype) Name() string {
+ if !t.hasName() {
+ return ""
+ }
+ s := t.String()
+ i := len(s) - 1
+ sqBrackets := 0
+ for i >= 0 && (s[i] != '.' || sqBrackets != 0) {
+ switch s[i] {
+ case ']':
+ sqBrackets++
+ case '[':
+ sqBrackets--
+ }
+ i--
+ }
+ return s[i+1:]
+}
+
+func (t *rtype) chanDir() chanDir {
+ if t.Kind() != Chan {
+ panic("reflect: chanDir of non-chan type")
+ }
+ tt := (*chanType)(unsafe.Pointer(t))
+ return chanDir(tt.dir)
+}
+
+func (t *rtype) Elem() Type {
+ switch t.Kind() {
+ case Array:
+ tt := (*arrayType)(unsafe.Pointer(t))
+ return toType(tt.elem)
+ case Chan:
+ tt := (*chanType)(unsafe.Pointer(t))
+ return toType(tt.elem)
+ case Map:
+ tt := (*mapType)(unsafe.Pointer(t))
+ return toType(tt.elem)
+ case Ptr:
+ tt := (*ptrType)(unsafe.Pointer(t))
+ return toType(tt.elem)
+ case Slice:
+ tt := (*sliceType)(unsafe.Pointer(t))
+ return toType(tt.elem)
+ }
+ panic("reflect: Elem of invalid type")
+}
+
+func (t *rtype) In(i int) Type {
+ if t.Kind() != Func {
+ panic("reflect: In of non-func type")
+ }
+ tt := (*funcType)(unsafe.Pointer(t))
+ return toType(tt.in()[i])
+}
+
+func (t *rtype) Key() Type {
+ if t.Kind() != Map {
+ panic("reflect: Key of non-map type")
+ }
+ tt := (*mapType)(unsafe.Pointer(t))
+ return toType(tt.key)
+}
+
+func (t *rtype) Len() int {
+ if t.Kind() != Array {
+ panic("reflect: Len of non-array type")
+ }
+ tt := (*arrayType)(unsafe.Pointer(t))
+ return int(tt.len)
+}
+
+func (t *rtype) NumField() int {
+ if t.Kind() != Struct {
+ panic("reflect: NumField of non-struct type")
+ }
+ tt := (*structType)(unsafe.Pointer(t))
+ return len(tt.fields)
+}
+
+func (t *rtype) NumIn() int {
+ if t.Kind() != Func {
+ panic("reflect: NumIn of non-func type")
+ }
+ tt := (*funcType)(unsafe.Pointer(t))
+ return int(tt.inCount)
+}
+
+func (t *rtype) NumOut() int {
+ if t.Kind() != Func {
+ panic("reflect: NumOut of non-func type")
+ }
+ tt := (*funcType)(unsafe.Pointer(t))
+ return len(tt.out())
+}
+
+func (t *rtype) Out(i int) Type {
+ if t.Kind() != Func {
+ panic("reflect: Out of non-func type")
+ }
+ tt := (*funcType)(unsafe.Pointer(t))
+ return toType(tt.out()[i])
+}
+
+func (t *funcType) in() []*rtype {
+ uadd := unsafe.Sizeof(*t)
+ if t.tflag&tflagUncommon != 0 {
+ uadd += unsafe.Sizeof(uncommonType{})
+ }
+ if t.inCount == 0 {
+ return nil
+ }
+ return (*[1 << 20]*rtype)(add(unsafe.Pointer(t), uadd, "t.inCount > 0"))[:t.inCount:t.inCount]
+}
+
+func (t *funcType) out() []*rtype {
+ uadd := unsafe.Sizeof(*t)
+ if t.tflag&tflagUncommon != 0 {
+ uadd += unsafe.Sizeof(uncommonType{})
+ }
+ outCount := t.outCount & (1<<15 - 1)
+ if outCount == 0 {
+ return nil
+ }
+ return (*[1 << 20]*rtype)(add(unsafe.Pointer(t), uadd, "outCount > 0"))[t.inCount : t.inCount+outCount : t.inCount+outCount]
+}
+
+// add returns p+x.
+//
+// The whySafe string is ignored, so that the function still inlines
+// as efficiently as p+x, but all call sites should use the string to
+// record why the addition is safe, which is to say why the addition
+// does not cause x to advance to the very end of p's allocation
+// and therefore point incorrectly at the next block in memory.
+func add(p unsafe.Pointer, x uintptr, whySafe string) unsafe.Pointer {
+ return unsafe.Pointer(uintptr(p) + x)
+}
+
+// NumMethod returns the number of interface methods in the type's method set.
+func (t *interfaceType) NumMethod() int { return len(t.methods) }
+
+// TypeOf returns the reflection Type that represents the dynamic type of i.
+// If i is a nil interface value, TypeOf returns nil.
+func TypeOf(i any) Type {
+ eface := *(*emptyInterface)(unsafe.Pointer(&i))
+ return toType(eface.typ)
+}
+
+func (t *rtype) Implements(u Type) bool {
+ if u == nil {
+ panic("reflect: nil type passed to Type.Implements")
+ }
+ if u.Kind() != Interface {
+ panic("reflect: non-interface type passed to Type.Implements")
+ }
+ return implements(u.(*rtype), t)
+}
+
+func (t *rtype) AssignableTo(u Type) bool {
+ if u == nil {
+ panic("reflect: nil type passed to Type.AssignableTo")
+ }
+ uu := u.(*rtype)
+ return directlyAssignable(uu, t) || implements(uu, t)
+}
+
+func (t *rtype) Comparable() bool {
+ return t.equal != nil
+}
+
+// implements reports whether the type V implements the interface type T.
+func implements(T, V *rtype) bool {
+ if T.Kind() != Interface {
+ return false
+ }
+ t := (*interfaceType)(unsafe.Pointer(T))
+ if len(t.methods) == 0 {
+ return true
+ }
+
+ // The same algorithm applies in both cases, but the
+ // method tables for an interface type and a concrete type
+ // are different, so the code is duplicated.
+ // In both cases the algorithm is a linear scan over the two
+ // lists - T's methods and V's methods - simultaneously.
+ // Since method tables are stored in a unique sorted order
+ // (alphabetical, with no duplicate method names), the scan
+ // through V's methods must hit a match for each of T's
+ // methods along the way, or else V does not implement T.
+ // This lets us run the scan in overall linear time instead of
+ // the quadratic time a naive search would require.
+ // See also ../runtime/iface.go.
+ if V.Kind() == Interface {
+ v := (*interfaceType)(unsafe.Pointer(V))
+ i := 0
+ for j := 0; j < len(v.methods); j++ {
+ tm := &t.methods[i]
+ tmName := t.nameOff(tm.name)
+ vm := &v.methods[j]
+ vmName := V.nameOff(vm.name)
+ if vmName.name() == tmName.name() && V.typeOff(vm.typ) == t.typeOff(tm.typ) {
+ if !tmName.isExported() {
+ tmPkgPath := tmName.pkgPath()
+ if tmPkgPath == "" {
+ tmPkgPath = t.pkgPath.name()
+ }
+ vmPkgPath := vmName.pkgPath()
+ if vmPkgPath == "" {
+ vmPkgPath = v.pkgPath.name()
+ }
+ if tmPkgPath != vmPkgPath {
+ continue
+ }
+ }
+ if i++; i >= len(t.methods) {
+ return true
+ }
+ }
+ }
+ return false
+ }
+
+ v := V.uncommon()
+ if v == nil {
+ return false
+ }
+ i := 0
+ vmethods := v.methods()
+ for j := 0; j < int(v.mcount); j++ {
+ tm := &t.methods[i]
+ tmName := t.nameOff(tm.name)
+ vm := vmethods[j]
+ vmName := V.nameOff(vm.name)
+ if vmName.name() == tmName.name() && V.typeOff(vm.mtyp) == t.typeOff(tm.typ) {
+ if !tmName.isExported() {
+ tmPkgPath := tmName.pkgPath()
+ if tmPkgPath == "" {
+ tmPkgPath = t.pkgPath.name()
+ }
+ vmPkgPath := vmName.pkgPath()
+ if vmPkgPath == "" {
+ vmPkgPath = V.nameOff(v.pkgPath).name()
+ }
+ if tmPkgPath != vmPkgPath {
+ continue
+ }
+ }
+ if i++; i >= len(t.methods) {
+ return true
+ }
+ }
+ }
+ return false
+}
+
+// directlyAssignable reports whether a value x of type V can be directly
+// assigned (using memmove) to a value of type T.
+// https://golang.org/doc/go_spec.html#Assignability
+// Ignoring the interface rules (implemented elsewhere)
+// and the ideal constant rules (no ideal constants at run time).
+func directlyAssignable(T, V *rtype) bool {
+ // x's type V is identical to T?
+ if T == V {
+ return true
+ }
+
+ // Otherwise at least one of T and V must not be defined
+ // and they must have the same kind.
+ if T.hasName() && V.hasName() || T.Kind() != V.Kind() {
+ return false
+ }
+
+ // x's type T and V must have identical underlying types.
+ return haveIdenticalUnderlyingType(T, V, true)
+}
+
+func haveIdenticalType(T, V Type, cmpTags bool) bool {
+ if cmpTags {
+ return T == V
+ }
+
+ if T.Name() != V.Name() || T.Kind() != V.Kind() {
+ return false
+ }
+
+ return haveIdenticalUnderlyingType(T.common(), V.common(), false)
+}
+
+func haveIdenticalUnderlyingType(T, V *rtype, cmpTags bool) bool {
+ if T == V {
+ return true
+ }
+
+ kind := T.Kind()
+ if kind != V.Kind() {
+ return false
+ }
+
+ // Non-composite types of equal kind have same underlying type
+ // (the predefined instance of the type).
+ if Bool <= kind && kind <= Complex128 || kind == String || kind == UnsafePointer {
+ return true
+ }
+
+ // Composite types.
+ switch kind {
+ case Array:
+ return T.Len() == V.Len() && haveIdenticalType(T.Elem(), V.Elem(), cmpTags)
+
+ case Chan:
+ // Special case:
+ // x is a bidirectional channel value, T is a channel type,
+ // and x's type V and T have identical element types.
+ if V.chanDir() == bothDir && haveIdenticalType(T.Elem(), V.Elem(), cmpTags) {
+ return true
+ }
+
+ // Otherwise continue test for identical underlying type.
+ return V.chanDir() == T.chanDir() && haveIdenticalType(T.Elem(), V.Elem(), cmpTags)
+
+ case Func:
+ t := (*funcType)(unsafe.Pointer(T))
+ v := (*funcType)(unsafe.Pointer(V))
+ if t.outCount != v.outCount || t.inCount != v.inCount {
+ return false
+ }
+ for i := 0; i < t.NumIn(); i++ {
+ if !haveIdenticalType(t.In(i), v.In(i), cmpTags) {
+ return false
+ }
+ }
+ for i := 0; i < t.NumOut(); i++ {
+ if !haveIdenticalType(t.Out(i), v.Out(i), cmpTags) {
+ return false
+ }
+ }
+ return true
+
+ case Interface:
+ t := (*interfaceType)(unsafe.Pointer(T))
+ v := (*interfaceType)(unsafe.Pointer(V))
+ if len(t.methods) == 0 && len(v.methods) == 0 {
+ return true
+ }
+ // Might have the same methods but still
+ // need a run time conversion.
+ return false
+
+ case Map:
+ return haveIdenticalType(T.Key(), V.Key(), cmpTags) && haveIdenticalType(T.Elem(), V.Elem(), cmpTags)
+
+ case Ptr, Slice:
+ return haveIdenticalType(T.Elem(), V.Elem(), cmpTags)
+
+ case Struct:
+ t := (*structType)(unsafe.Pointer(T))
+ v := (*structType)(unsafe.Pointer(V))
+ if len(t.fields) != len(v.fields) {
+ return false
+ }
+ if t.pkgPath.name() != v.pkgPath.name() {
+ return false
+ }
+ for i := range t.fields {
+ tf := &t.fields[i]
+ vf := &v.fields[i]
+ if tf.name.name() != vf.name.name() {
+ return false
+ }
+ if !haveIdenticalType(tf.typ, vf.typ, cmpTags) {
+ return false
+ }
+ if cmpTags && tf.name.tag() != vf.name.tag() {
+ return false
+ }
+ if tf.offset != vf.offset {
+ return false
+ }
+ if tf.embedded() != vf.embedded() {
+ return false
+ }
+ }
+ return true
+ }
+
+ return false
+}
+
+type structTypeUncommon struct {
+ structType
+ u uncommonType
+}
+
+// toType converts from a *rtype to a Type that can be returned
+// to the client of package reflect. In gc, the only concern is that
+// a nil *rtype must be replaced by a nil Type, but in gccgo this
+// function takes care of ensuring that multiple *rtype for the same
+// type are coalesced into a single Type.
+func toType(t *rtype) Type {
+ if t == nil {
+ return nil
+ }
+ return t
+}
+
+// ifaceIndir reports whether t is stored indirectly in an interface value.
+func ifaceIndir(t *rtype) bool {
+ return t.kind&kindDirectIface == 0
+}
diff --git a/src/internal/reflectlite/value.go b/src/internal/reflectlite/value.go
new file mode 100644
index 0000000..b9bca3a
--- /dev/null
+++ b/src/internal/reflectlite/value.go
@@ -0,0 +1,477 @@
+// Copyright 2009 The Go Authors. All rights reserved.
+// Use of this source code is governed by a BSD-style
+// license that can be found in the LICENSE file.
+
+package reflectlite
+
+import (
+ "internal/goarch"
+ "internal/unsafeheader"
+ "runtime"
+ "unsafe"
+)
+
+// Value is the reflection interface to a Go value.
+//
+// Not all methods apply to all kinds of values. Restrictions,
+// if any, are noted in the documentation for each method.
+// Use the Kind method to find out the kind of value before
+// calling kind-specific methods. Calling a method
+// inappropriate to the kind of type causes a run time panic.
+//
+// The zero Value represents no value.
+// Its IsValid method returns false, its Kind method returns Invalid,
+// its String method returns "<invalid Value>", and all other methods panic.
+// Most functions and methods never return an invalid value.
+// If one does, its documentation states the conditions explicitly.
+//
+// A Value can be used concurrently by multiple goroutines provided that
+// the underlying Go value can be used concurrently for the equivalent
+// direct operations.
+//
+// To compare two Values, compare the results of the Interface method.
+// Using == on two Values does not compare the underlying values
+// they represent.
+type Value struct {
+ // typ holds the type of the value represented by a Value.
+ typ *rtype
+
+ // Pointer-valued data or, if flagIndir is set, pointer to data.
+ // Valid when either flagIndir is set or typ.pointers() is true.
+ ptr unsafe.Pointer
+
+ // flag holds metadata about the value.
+ // The lowest bits are flag bits:
+ // - flagStickyRO: obtained via unexported not embedded field, so read-only
+ // - flagEmbedRO: obtained via unexported embedded field, so read-only
+ // - flagIndir: val holds a pointer to the data
+ // - flagAddr: v.CanAddr is true (implies flagIndir)
+ // Value cannot represent method values.
+ // The next five bits give the Kind of the value.
+ // This repeats typ.Kind() except for method values.
+ // The remaining 23+ bits give a method number for method values.
+ // If flag.kind() != Func, code can assume that flagMethod is unset.
+ // If ifaceIndir(typ), code can assume that flagIndir is set.
+ flag
+
+ // A method value represents a curried method invocation
+ // like r.Read for some receiver r. The typ+val+flag bits describe
+ // the receiver r, but the flag's Kind bits say Func (methods are
+ // functions), and the top bits of the flag give the method number
+ // in r's type's method table.
+}
+
+type flag uintptr
+
+const (
+ flagKindWidth = 5 // there are 27 kinds
+ flagKindMask flag = 1<<flagKindWidth - 1
+ flagStickyRO flag = 1 << 5
+ flagEmbedRO flag = 1 << 6
+ flagIndir flag = 1 << 7
+ flagAddr flag = 1 << 8
+ flagMethod flag = 1 << 9
+ flagMethodShift = 10
+ flagRO flag = flagStickyRO | flagEmbedRO
+)
+
+func (f flag) kind() Kind {
+ return Kind(f & flagKindMask)
+}
+
+func (f flag) ro() flag {
+ if f&flagRO != 0 {
+ return flagStickyRO
+ }
+ return 0
+}
+
+// pointer returns the underlying pointer represented by v.
+// v.Kind() must be Pointer, Map, Chan, Func, or UnsafePointer
+func (v Value) pointer() unsafe.Pointer {
+ if v.typ.size != goarch.PtrSize || !v.typ.pointers() {
+ panic("can't call pointer on a non-pointer Value")
+ }
+ if v.flag&flagIndir != 0 {
+ return *(*unsafe.Pointer)(v.ptr)
+ }
+ return v.ptr
+}
+
+// packEface converts v to the empty interface.
+func packEface(v Value) any {
+ t := v.typ
+ var i any
+ e := (*emptyInterface)(unsafe.Pointer(&i))
+ // First, fill in the data portion of the interface.
+ switch {
+ case ifaceIndir(t):
+ if v.flag&flagIndir == 0 {
+ panic("bad indir")
+ }
+ // Value is indirect, and so is the interface we're making.
+ ptr := v.ptr
+ if v.flag&flagAddr != 0 {
+ // TODO: pass safe boolean from valueInterface so
+ // we don't need to copy if safe==true?
+ c := unsafe_New(t)
+ typedmemmove(t, c, ptr)
+ ptr = c
+ }
+ e.word = ptr
+ case v.flag&flagIndir != 0:
+ // Value is indirect, but interface is direct. We need
+ // to load the data at v.ptr into the interface data word.
+ e.word = *(*unsafe.Pointer)(v.ptr)
+ default:
+ // Value is direct, and so is the interface.
+ e.word = v.ptr
+ }
+ // Now, fill in the type portion. We're very careful here not
+ // to have any operation between the e.word and e.typ assignments
+ // that would let the garbage collector observe the partially-built
+ // interface value.
+ e.typ = t
+ return i
+}
+
+// unpackEface converts the empty interface i to a Value.
+func unpackEface(i any) Value {
+ e := (*emptyInterface)(unsafe.Pointer(&i))
+ // NOTE: don't read e.word until we know whether it is really a pointer or not.
+ t := e.typ
+ if t == nil {
+ return Value{}
+ }
+ f := flag(t.Kind())
+ if ifaceIndir(t) {
+ f |= flagIndir
+ }
+ return Value{t, e.word, f}
+}
+
+// A ValueError occurs when a Value method is invoked on
+// a Value that does not support it. Such cases are documented
+// in the description of each method.
+type ValueError struct {
+ Method string
+ Kind Kind
+}
+
+func (e *ValueError) Error() string {
+ if e.Kind == 0 {
+ return "reflect: call of " + e.Method + " on zero Value"
+ }
+ return "reflect: call of " + e.Method + " on " + e.Kind.String() + " Value"
+}
+
+// methodName returns the name of the calling method,
+// assumed to be two stack frames above.
+func methodName() string {
+ pc, _, _, _ := runtime.Caller(2)
+ f := runtime.FuncForPC(pc)
+ if f == nil {
+ return "unknown method"
+ }
+ return f.Name()
+}
+
+// emptyInterface is the header for an interface{} value.
+type emptyInterface struct {
+ typ *rtype
+ word unsafe.Pointer
+}
+
+// mustBeExported panics if f records that the value was obtained using
+// an unexported field.
+func (f flag) mustBeExported() {
+ if f == 0 {
+ panic(&ValueError{methodName(), 0})
+ }
+ if f&flagRO != 0 {
+ panic("reflect: " + methodName() + " using value obtained using unexported field")
+ }
+}
+
+// mustBeAssignable panics if f records that the value is not assignable,
+// which is to say that either it was obtained using an unexported field
+// or it is not addressable.
+func (f flag) mustBeAssignable() {
+ if f == 0 {
+ panic(&ValueError{methodName(), Invalid})
+ }
+ // Assignable if addressable and not read-only.
+ if f&flagRO != 0 {
+ panic("reflect: " + methodName() + " using value obtained using unexported field")
+ }
+ if f&flagAddr == 0 {
+ panic("reflect: " + methodName() + " using unaddressable value")
+ }
+}
+
+// CanSet reports whether the value of v can be changed.
+// A Value can be changed only if it is addressable and was not
+// obtained by the use of unexported struct fields.
+// If CanSet returns false, calling Set or any type-specific
+// setter (e.g., SetBool, SetInt) will panic.
+func (v Value) CanSet() bool {
+ return v.flag&(flagAddr|flagRO) == flagAddr
+}
+
+// Elem returns the value that the interface v contains
+// or that the pointer v points to.
+// It panics if v's Kind is not Interface or Pointer.
+// It returns the zero Value if v is nil.
+func (v Value) Elem() Value {
+ k := v.kind()
+ switch k {
+ case Interface:
+ var eface any
+ if v.typ.NumMethod() == 0 {
+ eface = *(*any)(v.ptr)
+ } else {
+ eface = (any)(*(*interface {
+ M()
+ })(v.ptr))
+ }
+ x := unpackEface(eface)
+ if x.flag != 0 {
+ x.flag |= v.flag.ro()
+ }
+ return x
+ case Pointer:
+ ptr := v.ptr
+ if v.flag&flagIndir != 0 {
+ ptr = *(*unsafe.Pointer)(ptr)
+ }
+ // The returned value's address is v's value.
+ if ptr == nil {
+ return Value{}
+ }
+ tt := (*ptrType)(unsafe.Pointer(v.typ))
+ typ := tt.elem
+ fl := v.flag&flagRO | flagIndir | flagAddr
+ fl |= flag(typ.Kind())
+ return Value{typ, ptr, fl}
+ }
+ panic(&ValueError{"reflectlite.Value.Elem", v.kind()})
+}
+
+func valueInterface(v Value) any {
+ if v.flag == 0 {
+ panic(&ValueError{"reflectlite.Value.Interface", 0})
+ }
+
+ if v.kind() == Interface {
+ // Special case: return the element inside the interface.
+ // Empty interface has one layout, all interfaces with
+ // methods have a second layout.
+ if v.numMethod() == 0 {
+ return *(*any)(v.ptr)
+ }
+ return *(*interface {
+ M()
+ })(v.ptr)
+ }
+
+ // TODO: pass safe to packEface so we don't need to copy if safe==true?
+ return packEface(v)
+}
+
+// IsNil reports whether its argument v is nil. The argument must be
+// a chan, func, interface, map, pointer, or slice value; if it is
+// not, IsNil panics. Note that IsNil is not always equivalent to a
+// regular comparison with nil in Go. For example, if v was created
+// by calling ValueOf with an uninitialized interface variable i,
+// i==nil will be true but v.IsNil will panic as v will be the zero
+// Value.
+func (v Value) IsNil() bool {
+ k := v.kind()
+ switch k {
+ case Chan, Func, Map, Pointer, UnsafePointer:
+ // if v.flag&flagMethod != 0 {
+ // return false
+ // }
+ ptr := v.ptr
+ if v.flag&flagIndir != 0 {
+ ptr = *(*unsafe.Pointer)(ptr)
+ }
+ return ptr == nil
+ case Interface, Slice:
+ // Both interface and slice are nil if first word is 0.
+ // Both are always bigger than a word; assume flagIndir.
+ return *(*unsafe.Pointer)(v.ptr) == nil
+ }
+ panic(&ValueError{"reflectlite.Value.IsNil", v.kind()})
+}
+
+// IsValid reports whether v represents a value.
+// It returns false if v is the zero Value.
+// If IsValid returns false, all other methods except String panic.
+// Most functions and methods never return an invalid Value.
+// If one does, its documentation states the conditions explicitly.
+func (v Value) IsValid() bool {
+ return v.flag != 0
+}
+
+// Kind returns v's Kind.
+// If v is the zero Value (IsValid returns false), Kind returns Invalid.
+func (v Value) Kind() Kind {
+ return v.kind()
+}
+
+// implemented in runtime:
+func chanlen(unsafe.Pointer) int
+func maplen(unsafe.Pointer) int
+
+// Len returns v's length.
+// It panics if v's Kind is not Array, Chan, Map, Slice, or String.
+func (v Value) Len() int {
+ k := v.kind()
+ switch k {
+ case Array:
+ tt := (*arrayType)(unsafe.Pointer(v.typ))
+ return int(tt.len)
+ case Chan:
+ return chanlen(v.pointer())
+ case Map:
+ return maplen(v.pointer())
+ case Slice:
+ // Slice is bigger than a word; assume flagIndir.
+ return (*unsafeheader.Slice)(v.ptr).Len
+ case String:
+ // String is bigger than a word; assume flagIndir.
+ return (*unsafeheader.String)(v.ptr).Len
+ }
+ panic(&ValueError{"reflect.Value.Len", v.kind()})
+}
+
+// NumMethod returns the number of exported methods in the value's method set.
+func (v Value) numMethod() int {
+ if v.typ == nil {
+ panic(&ValueError{"reflectlite.Value.NumMethod", Invalid})
+ }
+ return v.typ.NumMethod()
+}
+
+// Set assigns x to the value v.
+// It panics if CanSet returns false.
+// As in Go, x's value must be assignable to v's type.
+func (v Value) Set(x Value) {
+ v.mustBeAssignable()
+ x.mustBeExported() // do not let unexported x leak
+ var target unsafe.Pointer
+ if v.kind() == Interface {
+ target = v.ptr
+ }
+ x = x.assignTo("reflectlite.Set", v.typ, target)
+ if x.flag&flagIndir != 0 {
+ typedmemmove(v.typ, v.ptr, x.ptr)
+ } else {
+ *(*unsafe.Pointer)(v.ptr) = x.ptr
+ }
+}
+
+// Type returns v's type.
+func (v Value) Type() Type {
+ f := v.flag
+ if f == 0 {
+ panic(&ValueError{"reflectlite.Value.Type", Invalid})
+ }
+ // Method values not supported.
+ return v.typ
+}
+
+/*
+ * constructors
+ */
+
+// implemented in package runtime
+func unsafe_New(*rtype) unsafe.Pointer
+
+// ValueOf returns a new Value initialized to the concrete value
+// stored in the interface i. ValueOf(nil) returns the zero Value.
+func ValueOf(i any) Value {
+ if i == nil {
+ return Value{}
+ }
+
+ // TODO: Maybe allow contents of a Value to live on the stack.
+ // For now we make the contents always escape to the heap. It
+ // makes life easier in a few places (see chanrecv/mapassign
+ // comment below).
+ escapes(i)
+
+ return unpackEface(i)
+}
+
+// assignTo returns a value v that can be assigned directly to typ.
+// It panics if v is not assignable to typ.
+// For a conversion to an interface type, target is a suggested scratch space to use.
+func (v Value) assignTo(context string, dst *rtype, target unsafe.Pointer) Value {
+ // if v.flag&flagMethod != 0 {
+ // v = makeMethodValue(context, v)
+ // }
+
+ switch {
+ case directlyAssignable(dst, v.typ):
+ // Overwrite type so that they match.
+ // Same memory layout, so no harm done.
+ fl := v.flag&(flagAddr|flagIndir) | v.flag.ro()
+ fl |= flag(dst.Kind())
+ return Value{dst, v.ptr, fl}
+
+ case implements(dst, v.typ):
+ if target == nil {
+ target = unsafe_New(dst)
+ }
+ if v.Kind() == Interface && v.IsNil() {
+ // A nil ReadWriter passed to nil Reader is OK,
+ // but using ifaceE2I below will panic.
+ // Avoid the panic by returning a nil dst (e.g., Reader) explicitly.
+ return Value{dst, nil, flag(Interface)}
+ }
+ x := valueInterface(v)
+ if dst.NumMethod() == 0 {
+ *(*any)(target) = x
+ } else {
+ ifaceE2I(dst, x, target)
+ }
+ return Value{dst, target, flagIndir | flag(Interface)}
+ }
+
+ // Failed.
+ panic(context + ": value of type " + v.typ.String() + " is not assignable to type " + dst.String())
+}
+
+// arrayAt returns the i-th element of p,
+// an array whose elements are eltSize bytes wide.
+// The array pointed at by p must have at least i+1 elements:
+// it is invalid (but impossible to check here) to pass i >= len,
+// because then the result will point outside the array.
+// whySafe must explain why i < len. (Passing "i < len" is fine;
+// the benefit is to surface this assumption at the call site.)
+func arrayAt(p unsafe.Pointer, i int, eltSize uintptr, whySafe string) unsafe.Pointer {
+ return add(p, uintptr(i)*eltSize, "i < len")
+}
+
+func ifaceE2I(t *rtype, src any, dst unsafe.Pointer)
+
+// typedmemmove copies a value of type t to dst from src.
+//
+//go:noescape
+func typedmemmove(t *rtype, dst, src unsafe.Pointer)
+
+// Dummy annotation marking that the value x escapes,
+// for use in cases where the reflect code is so clever that
+// the compiler cannot follow.
+func escapes(x any) {
+ if dummy.b {
+ dummy.x = x
+ }
+}
+
+var dummy struct {
+ b bool
+ x any
+}