diff options
Diffstat (limited to 'src/math/big/rat.go')
-rw-r--r-- | src/math/big/rat.go | 542 |
1 files changed, 542 insertions, 0 deletions
diff --git a/src/math/big/rat.go b/src/math/big/rat.go new file mode 100644 index 0000000..700a643 --- /dev/null +++ b/src/math/big/rat.go @@ -0,0 +1,542 @@ +// Copyright 2010 The Go Authors. All rights reserved. +// Use of this source code is governed by a BSD-style +// license that can be found in the LICENSE file. + +// This file implements multi-precision rational numbers. + +package big + +import ( + "fmt" + "math" +) + +// A Rat represents a quotient a/b of arbitrary precision. +// The zero value for a Rat represents the value 0. +// +// Operations always take pointer arguments (*Rat) rather +// than Rat values, and each unique Rat value requires +// its own unique *Rat pointer. To "copy" a Rat value, +// an existing (or newly allocated) Rat must be set to +// a new value using the Rat.Set method; shallow copies +// of Rats are not supported and may lead to errors. +type Rat struct { + // To make zero values for Rat work w/o initialization, + // a zero value of b (len(b) == 0) acts like b == 1. At + // the earliest opportunity (when an assignment to the Rat + // is made), such uninitialized denominators are set to 1. + // a.neg determines the sign of the Rat, b.neg is ignored. + a, b Int +} + +// NewRat creates a new Rat with numerator a and denominator b. +func NewRat(a, b int64) *Rat { + return new(Rat).SetFrac64(a, b) +} + +// SetFloat64 sets z to exactly f and returns z. +// If f is not finite, SetFloat returns nil. +func (z *Rat) SetFloat64(f float64) *Rat { + const expMask = 1<<11 - 1 + bits := math.Float64bits(f) + mantissa := bits & (1<<52 - 1) + exp := int((bits >> 52) & expMask) + switch exp { + case expMask: // non-finite + return nil + case 0: // denormal + exp -= 1022 + default: // normal + mantissa |= 1 << 52 + exp -= 1023 + } + + shift := 52 - exp + + // Optimization (?): partially pre-normalise. + for mantissa&1 == 0 && shift > 0 { + mantissa >>= 1 + shift-- + } + + z.a.SetUint64(mantissa) + z.a.neg = f < 0 + z.b.Set(intOne) + if shift > 0 { + z.b.Lsh(&z.b, uint(shift)) + } else { + z.a.Lsh(&z.a, uint(-shift)) + } + return z.norm() +} + +// quotToFloat32 returns the non-negative float32 value +// nearest to the quotient a/b, using round-to-even in +// halfway cases. It does not mutate its arguments. +// Preconditions: b is non-zero; a and b have no common factors. +func quotToFloat32(a, b nat) (f float32, exact bool) { + const ( + // float size in bits + Fsize = 32 + + // mantissa + Msize = 23 + Msize1 = Msize + 1 // incl. implicit 1 + Msize2 = Msize1 + 1 + + // exponent + Esize = Fsize - Msize1 + Ebias = 1<<(Esize-1) - 1 + Emin = 1 - Ebias + Emax = Ebias + ) + + // TODO(adonovan): specialize common degenerate cases: 1.0, integers. + alen := a.bitLen() + if alen == 0 { + return 0, true + } + blen := b.bitLen() + if blen == 0 { + panic("division by zero") + } + + // 1. Left-shift A or B such that quotient A/B is in [1<<Msize1, 1<<(Msize2+1) + // (Msize2 bits if A < B when they are left-aligned, Msize2+1 bits if A >= B). + // This is 2 or 3 more than the float32 mantissa field width of Msize: + // - the optional extra bit is shifted away in step 3 below. + // - the high-order 1 is omitted in "normal" representation; + // - the low-order 1 will be used during rounding then discarded. + exp := alen - blen + var a2, b2 nat + a2 = a2.set(a) + b2 = b2.set(b) + if shift := Msize2 - exp; shift > 0 { + a2 = a2.shl(a2, uint(shift)) + } else if shift < 0 { + b2 = b2.shl(b2, uint(-shift)) + } + + // 2. Compute quotient and remainder (q, r). NB: due to the + // extra shift, the low-order bit of q is logically the + // high-order bit of r. + var q nat + q, r := q.div(a2, a2, b2) // (recycle a2) + mantissa := low32(q) + haveRem := len(r) > 0 // mantissa&1 && !haveRem => remainder is exactly half + + // 3. If quotient didn't fit in Msize2 bits, redo division by b2<<1 + // (in effect---we accomplish this incrementally). + if mantissa>>Msize2 == 1 { + if mantissa&1 == 1 { + haveRem = true + } + mantissa >>= 1 + exp++ + } + if mantissa>>Msize1 != 1 { + panic(fmt.Sprintf("expected exactly %d bits of result", Msize2)) + } + + // 4. Rounding. + if Emin-Msize <= exp && exp <= Emin { + // Denormal case; lose 'shift' bits of precision. + shift := uint(Emin - (exp - 1)) // [1..Esize1) + lostbits := mantissa & (1<<shift - 1) + haveRem = haveRem || lostbits != 0 + mantissa >>= shift + exp = 2 - Ebias // == exp + shift + } + // Round q using round-half-to-even. + exact = !haveRem + if mantissa&1 != 0 { + exact = false + if haveRem || mantissa&2 != 0 { + if mantissa++; mantissa >= 1<<Msize2 { + // Complete rollover 11...1 => 100...0, so shift is safe + mantissa >>= 1 + exp++ + } + } + } + mantissa >>= 1 // discard rounding bit. Mantissa now scaled by 1<<Msize1. + + f = float32(math.Ldexp(float64(mantissa), exp-Msize1)) + if math.IsInf(float64(f), 0) { + exact = false + } + return +} + +// quotToFloat64 returns the non-negative float64 value +// nearest to the quotient a/b, using round-to-even in +// halfway cases. It does not mutate its arguments. +// Preconditions: b is non-zero; a and b have no common factors. +func quotToFloat64(a, b nat) (f float64, exact bool) { + const ( + // float size in bits + Fsize = 64 + + // mantissa + Msize = 52 + Msize1 = Msize + 1 // incl. implicit 1 + Msize2 = Msize1 + 1 + + // exponent + Esize = Fsize - Msize1 + Ebias = 1<<(Esize-1) - 1 + Emin = 1 - Ebias + Emax = Ebias + ) + + // TODO(adonovan): specialize common degenerate cases: 1.0, integers. + alen := a.bitLen() + if alen == 0 { + return 0, true + } + blen := b.bitLen() + if blen == 0 { + panic("division by zero") + } + + // 1. Left-shift A or B such that quotient A/B is in [1<<Msize1, 1<<(Msize2+1) + // (Msize2 bits if A < B when they are left-aligned, Msize2+1 bits if A >= B). + // This is 2 or 3 more than the float64 mantissa field width of Msize: + // - the optional extra bit is shifted away in step 3 below. + // - the high-order 1 is omitted in "normal" representation; + // - the low-order 1 will be used during rounding then discarded. + exp := alen - blen + var a2, b2 nat + a2 = a2.set(a) + b2 = b2.set(b) + if shift := Msize2 - exp; shift > 0 { + a2 = a2.shl(a2, uint(shift)) + } else if shift < 0 { + b2 = b2.shl(b2, uint(-shift)) + } + + // 2. Compute quotient and remainder (q, r). NB: due to the + // extra shift, the low-order bit of q is logically the + // high-order bit of r. + var q nat + q, r := q.div(a2, a2, b2) // (recycle a2) + mantissa := low64(q) + haveRem := len(r) > 0 // mantissa&1 && !haveRem => remainder is exactly half + + // 3. If quotient didn't fit in Msize2 bits, redo division by b2<<1 + // (in effect---we accomplish this incrementally). + if mantissa>>Msize2 == 1 { + if mantissa&1 == 1 { + haveRem = true + } + mantissa >>= 1 + exp++ + } + if mantissa>>Msize1 != 1 { + panic(fmt.Sprintf("expected exactly %d bits of result", Msize2)) + } + + // 4. Rounding. + if Emin-Msize <= exp && exp <= Emin { + // Denormal case; lose 'shift' bits of precision. + shift := uint(Emin - (exp - 1)) // [1..Esize1) + lostbits := mantissa & (1<<shift - 1) + haveRem = haveRem || lostbits != 0 + mantissa >>= shift + exp = 2 - Ebias // == exp + shift + } + // Round q using round-half-to-even. + exact = !haveRem + if mantissa&1 != 0 { + exact = false + if haveRem || mantissa&2 != 0 { + if mantissa++; mantissa >= 1<<Msize2 { + // Complete rollover 11...1 => 100...0, so shift is safe + mantissa >>= 1 + exp++ + } + } + } + mantissa >>= 1 // discard rounding bit. Mantissa now scaled by 1<<Msize1. + + f = math.Ldexp(float64(mantissa), exp-Msize1) + if math.IsInf(f, 0) { + exact = false + } + return +} + +// Float32 returns the nearest float32 value for x and a bool indicating +// whether f represents x exactly. If the magnitude of x is too large to +// be represented by a float32, f is an infinity and exact is false. +// The sign of f always matches the sign of x, even if f == 0. +func (x *Rat) Float32() (f float32, exact bool) { + b := x.b.abs + if len(b) == 0 { + b = natOne + } + f, exact = quotToFloat32(x.a.abs, b) + if x.a.neg { + f = -f + } + return +} + +// Float64 returns the nearest float64 value for x and a bool indicating +// whether f represents x exactly. If the magnitude of x is too large to +// be represented by a float64, f is an infinity and exact is false. +// The sign of f always matches the sign of x, even if f == 0. +func (x *Rat) Float64() (f float64, exact bool) { + b := x.b.abs + if len(b) == 0 { + b = natOne + } + f, exact = quotToFloat64(x.a.abs, b) + if x.a.neg { + f = -f + } + return +} + +// SetFrac sets z to a/b and returns z. +// If b == 0, SetFrac panics. +func (z *Rat) SetFrac(a, b *Int) *Rat { + z.a.neg = a.neg != b.neg + babs := b.abs + if len(babs) == 0 { + panic("division by zero") + } + if &z.a == b || alias(z.a.abs, babs) { + babs = nat(nil).set(babs) // make a copy + } + z.a.abs = z.a.abs.set(a.abs) + z.b.abs = z.b.abs.set(babs) + return z.norm() +} + +// SetFrac64 sets z to a/b and returns z. +// If b == 0, SetFrac64 panics. +func (z *Rat) SetFrac64(a, b int64) *Rat { + if b == 0 { + panic("division by zero") + } + z.a.SetInt64(a) + if b < 0 { + b = -b + z.a.neg = !z.a.neg + } + z.b.abs = z.b.abs.setUint64(uint64(b)) + return z.norm() +} + +// SetInt sets z to x (by making a copy of x) and returns z. +func (z *Rat) SetInt(x *Int) *Rat { + z.a.Set(x) + z.b.abs = z.b.abs.setWord(1) + return z +} + +// SetInt64 sets z to x and returns z. +func (z *Rat) SetInt64(x int64) *Rat { + z.a.SetInt64(x) + z.b.abs = z.b.abs.setWord(1) + return z +} + +// SetUint64 sets z to x and returns z. +func (z *Rat) SetUint64(x uint64) *Rat { + z.a.SetUint64(x) + z.b.abs = z.b.abs.setWord(1) + return z +} + +// Set sets z to x (by making a copy of x) and returns z. +func (z *Rat) Set(x *Rat) *Rat { + if z != x { + z.a.Set(&x.a) + z.b.Set(&x.b) + } + if len(z.b.abs) == 0 { + z.b.abs = z.b.abs.setWord(1) + } + return z +} + +// Abs sets z to |x| (the absolute value of x) and returns z. +func (z *Rat) Abs(x *Rat) *Rat { + z.Set(x) + z.a.neg = false + return z +} + +// Neg sets z to -x and returns z. +func (z *Rat) Neg(x *Rat) *Rat { + z.Set(x) + z.a.neg = len(z.a.abs) > 0 && !z.a.neg // 0 has no sign + return z +} + +// Inv sets z to 1/x and returns z. +// If x == 0, Inv panics. +func (z *Rat) Inv(x *Rat) *Rat { + if len(x.a.abs) == 0 { + panic("division by zero") + } + z.Set(x) + z.a.abs, z.b.abs = z.b.abs, z.a.abs + return z +} + +// Sign returns: +// +// -1 if x < 0 +// 0 if x == 0 +// +1 if x > 0 +func (x *Rat) Sign() int { + return x.a.Sign() +} + +// IsInt reports whether the denominator of x is 1. +func (x *Rat) IsInt() bool { + return len(x.b.abs) == 0 || x.b.abs.cmp(natOne) == 0 +} + +// Num returns the numerator of x; it may be <= 0. +// The result is a reference to x's numerator; it +// may change if a new value is assigned to x, and vice versa. +// The sign of the numerator corresponds to the sign of x. +func (x *Rat) Num() *Int { + return &x.a +} + +// Denom returns the denominator of x; it is always > 0. +// The result is a reference to x's denominator, unless +// x is an uninitialized (zero value) Rat, in which case +// the result is a new Int of value 1. (To initialize x, +// any operation that sets x will do, including x.Set(x).) +// If the result is a reference to x's denominator it +// may change if a new value is assigned to x, and vice versa. +func (x *Rat) Denom() *Int { + // Note that x.b.neg is guaranteed false. + if len(x.b.abs) == 0 { + // Note: If this proves problematic, we could + // panic instead and require the Rat to + // be explicitly initialized. + return &Int{abs: nat{1}} + } + return &x.b +} + +func (z *Rat) norm() *Rat { + switch { + case len(z.a.abs) == 0: + // z == 0; normalize sign and denominator + z.a.neg = false + fallthrough + case len(z.b.abs) == 0: + // z is integer; normalize denominator + z.b.abs = z.b.abs.setWord(1) + default: + // z is fraction; normalize numerator and denominator + neg := z.a.neg + z.a.neg = false + z.b.neg = false + if f := NewInt(0).lehmerGCD(nil, nil, &z.a, &z.b); f.Cmp(intOne) != 0 { + z.a.abs, _ = z.a.abs.div(nil, z.a.abs, f.abs) + z.b.abs, _ = z.b.abs.div(nil, z.b.abs, f.abs) + } + z.a.neg = neg + } + return z +} + +// mulDenom sets z to the denominator product x*y (by taking into +// account that 0 values for x or y must be interpreted as 1) and +// returns z. +func mulDenom(z, x, y nat) nat { + switch { + case len(x) == 0 && len(y) == 0: + return z.setWord(1) + case len(x) == 0: + return z.set(y) + case len(y) == 0: + return z.set(x) + } + return z.mul(x, y) +} + +// scaleDenom sets z to the product x*f. +// If f == 0 (zero value of denominator), z is set to (a copy of) x. +func (z *Int) scaleDenom(x *Int, f nat) { + if len(f) == 0 { + z.Set(x) + return + } + z.abs = z.abs.mul(x.abs, f) + z.neg = x.neg +} + +// Cmp compares x and y and returns: +// +// -1 if x < y +// 0 if x == y +// +1 if x > y +func (x *Rat) Cmp(y *Rat) int { + var a, b Int + a.scaleDenom(&x.a, y.b.abs) + b.scaleDenom(&y.a, x.b.abs) + return a.Cmp(&b) +} + +// Add sets z to the sum x+y and returns z. +func (z *Rat) Add(x, y *Rat) *Rat { + var a1, a2 Int + a1.scaleDenom(&x.a, y.b.abs) + a2.scaleDenom(&y.a, x.b.abs) + z.a.Add(&a1, &a2) + z.b.abs = mulDenom(z.b.abs, x.b.abs, y.b.abs) + return z.norm() +} + +// Sub sets z to the difference x-y and returns z. +func (z *Rat) Sub(x, y *Rat) *Rat { + var a1, a2 Int + a1.scaleDenom(&x.a, y.b.abs) + a2.scaleDenom(&y.a, x.b.abs) + z.a.Sub(&a1, &a2) + z.b.abs = mulDenom(z.b.abs, x.b.abs, y.b.abs) + return z.norm() +} + +// Mul sets z to the product x*y and returns z. +func (z *Rat) Mul(x, y *Rat) *Rat { + if x == y { + // a squared Rat is positive and can't be reduced (no need to call norm()) + z.a.neg = false + z.a.abs = z.a.abs.sqr(x.a.abs) + if len(x.b.abs) == 0 { + z.b.abs = z.b.abs.setWord(1) + } else { + z.b.abs = z.b.abs.sqr(x.b.abs) + } + return z + } + z.a.Mul(&x.a, &y.a) + z.b.abs = mulDenom(z.b.abs, x.b.abs, y.b.abs) + return z.norm() +} + +// Quo sets z to the quotient x/y and returns z. +// If y == 0, Quo panics. +func (z *Rat) Quo(x, y *Rat) *Rat { + if len(y.a.abs) == 0 { + panic("division by zero") + } + var a, b Int + a.scaleDenom(&x.a, y.b.abs) + b.scaleDenom(&y.a, x.b.abs) + z.a.abs = a.abs + z.b.abs = b.abs + z.a.neg = a.neg != b.neg + return z.norm() +} |