diff options
Diffstat (limited to 'src/math/big/sqrt.go')
-rw-r--r-- | src/math/big/sqrt.go | 130 |
1 files changed, 130 insertions, 0 deletions
diff --git a/src/math/big/sqrt.go b/src/math/big/sqrt.go new file mode 100644 index 0000000..b4b0374 --- /dev/null +++ b/src/math/big/sqrt.go @@ -0,0 +1,130 @@ +// Copyright 2017 The Go Authors. All rights reserved. +// Use of this source code is governed by a BSD-style +// license that can be found in the LICENSE file. + +package big + +import ( + "math" + "sync" +) + +var threeOnce struct { + sync.Once + v *Float +} + +func three() *Float { + threeOnce.Do(func() { + threeOnce.v = NewFloat(3.0) + }) + return threeOnce.v +} + +// Sqrt sets z to the rounded square root of x, and returns it. +// +// If z's precision is 0, it is changed to x's precision before the +// operation. Rounding is performed according to z's precision and +// rounding mode, but z's accuracy is not computed. Specifically, the +// result of z.Acc() is undefined. +// +// The function panics if z < 0. The value of z is undefined in that +// case. +func (z *Float) Sqrt(x *Float) *Float { + if debugFloat { + x.validate() + } + + if z.prec == 0 { + z.prec = x.prec + } + + if x.Sign() == -1 { + // following IEEE754-2008 (section 7.2) + panic(ErrNaN{"square root of negative operand"}) + } + + // handle ±0 and +∞ + if x.form != finite { + z.acc = Exact + z.form = x.form + z.neg = x.neg // IEEE754-2008 requires √±0 = ±0 + return z + } + + // MantExp sets the argument's precision to the receiver's, and + // when z.prec > x.prec this will lower z.prec. Restore it after + // the MantExp call. + prec := z.prec + b := x.MantExp(z) + z.prec = prec + + // Compute √(z·2**b) as + // √( z)·2**(½b) if b is even + // √(2z)·2**(⌊½b⌋) if b > 0 is odd + // √(½z)·2**(⌈½b⌉) if b < 0 is odd + switch b % 2 { + case 0: + // nothing to do + case 1: + z.exp++ + case -1: + z.exp-- + } + // 0.25 <= z < 2.0 + + // Solving 1/x² - z = 0 avoids Quo calls and is faster, especially + // for high precisions. + z.sqrtInverse(z) + + // re-attach halved exponent + return z.SetMantExp(z, b/2) +} + +// Compute √x (to z.prec precision) by solving +// +// 1/t² - x = 0 +// +// for t (using Newton's method), and then inverting. +func (z *Float) sqrtInverse(x *Float) { + // let + // f(t) = 1/t² - x + // then + // g(t) = f(t)/f'(t) = -½t(1 - xt²) + // and the next guess is given by + // t2 = t - g(t) = ½t(3 - xt²) + u := newFloat(z.prec) + v := newFloat(z.prec) + three := three() + ng := func(t *Float) *Float { + u.prec = t.prec + v.prec = t.prec + u.Mul(t, t) // u = t² + u.Mul(x, u) // = xt² + v.Sub(three, u) // v = 3 - xt² + u.Mul(t, v) // u = t(3 - xt²) + u.exp-- // = ½t(3 - xt²) + return t.Set(u) + } + + xf, _ := x.Float64() + sqi := newFloat(z.prec) + sqi.SetFloat64(1 / math.Sqrt(xf)) + for prec := z.prec + 32; sqi.prec < prec; { + sqi.prec *= 2 + sqi = ng(sqi) + } + // sqi = 1/√x + + // x/√x = √x + z.Mul(x, sqi) +} + +// newFloat returns a new *Float with space for twice the given +// precision. +func newFloat(prec2 uint32) *Float { + z := new(Float) + // nat.make ensures the slice length is > 0 + z.mant = z.mant.make(int(prec2/_W) * 2) + return z +} |