diff options
Diffstat (limited to 'src/math/bits/bits.go')
-rw-r--r-- | src/math/bits/bits.go | 599 |
1 files changed, 599 insertions, 0 deletions
diff --git a/src/math/bits/bits.go b/src/math/bits/bits.go new file mode 100644 index 0000000..c1c7b79 --- /dev/null +++ b/src/math/bits/bits.go @@ -0,0 +1,599 @@ +// Copyright 2017 The Go Authors. All rights reserved. +// Use of this source code is governed by a BSD-style +// license that can be found in the LICENSE file. + +//go:generate go run make_tables.go + +// Package bits implements bit counting and manipulation +// functions for the predeclared unsigned integer types. +// +// Functions in this package may be implemented directly by +// the compiler, for better performance. For those functions +// the code in this package will not be used. Which +// functions are implemented by the compiler depends on the +// architecture and the Go release. +package bits + +const uintSize = 32 << (^uint(0) >> 63) // 32 or 64 + +// UintSize is the size of a uint in bits. +const UintSize = uintSize + +// --- LeadingZeros --- + +// LeadingZeros returns the number of leading zero bits in x; the result is UintSize for x == 0. +func LeadingZeros(x uint) int { return UintSize - Len(x) } + +// LeadingZeros8 returns the number of leading zero bits in x; the result is 8 for x == 0. +func LeadingZeros8(x uint8) int { return 8 - Len8(x) } + +// LeadingZeros16 returns the number of leading zero bits in x; the result is 16 for x == 0. +func LeadingZeros16(x uint16) int { return 16 - Len16(x) } + +// LeadingZeros32 returns the number of leading zero bits in x; the result is 32 for x == 0. +func LeadingZeros32(x uint32) int { return 32 - Len32(x) } + +// LeadingZeros64 returns the number of leading zero bits in x; the result is 64 for x == 0. +func LeadingZeros64(x uint64) int { return 64 - Len64(x) } + +// --- TrailingZeros --- + +// See http://supertech.csail.mit.edu/papers/debruijn.pdf +const deBruijn32 = 0x077CB531 + +var deBruijn32tab = [32]byte{ + 0, 1, 28, 2, 29, 14, 24, 3, 30, 22, 20, 15, 25, 17, 4, 8, + 31, 27, 13, 23, 21, 19, 16, 7, 26, 12, 18, 6, 11, 5, 10, 9, +} + +const deBruijn64 = 0x03f79d71b4ca8b09 + +var deBruijn64tab = [64]byte{ + 0, 1, 56, 2, 57, 49, 28, 3, 61, 58, 42, 50, 38, 29, 17, 4, + 62, 47, 59, 36, 45, 43, 51, 22, 53, 39, 33, 30, 24, 18, 12, 5, + 63, 55, 48, 27, 60, 41, 37, 16, 46, 35, 44, 21, 52, 32, 23, 11, + 54, 26, 40, 15, 34, 20, 31, 10, 25, 14, 19, 9, 13, 8, 7, 6, +} + +// TrailingZeros returns the number of trailing zero bits in x; the result is UintSize for x == 0. +func TrailingZeros(x uint) int { + if UintSize == 32 { + return TrailingZeros32(uint32(x)) + } + return TrailingZeros64(uint64(x)) +} + +// TrailingZeros8 returns the number of trailing zero bits in x; the result is 8 for x == 0. +func TrailingZeros8(x uint8) int { + return int(ntz8tab[x]) +} + +// TrailingZeros16 returns the number of trailing zero bits in x; the result is 16 for x == 0. +func TrailingZeros16(x uint16) int { + if x == 0 { + return 16 + } + // see comment in TrailingZeros64 + return int(deBruijn32tab[uint32(x&-x)*deBruijn32>>(32-5)]) +} + +// TrailingZeros32 returns the number of trailing zero bits in x; the result is 32 for x == 0. +func TrailingZeros32(x uint32) int { + if x == 0 { + return 32 + } + // see comment in TrailingZeros64 + return int(deBruijn32tab[(x&-x)*deBruijn32>>(32-5)]) +} + +// TrailingZeros64 returns the number of trailing zero bits in x; the result is 64 for x == 0. +func TrailingZeros64(x uint64) int { + if x == 0 { + return 64 + } + // If popcount is fast, replace code below with return popcount(^x & (x - 1)). + // + // x & -x leaves only the right-most bit set in the word. Let k be the + // index of that bit. Since only a single bit is set, the value is two + // to the power of k. Multiplying by a power of two is equivalent to + // left shifting, in this case by k bits. The de Bruijn (64 bit) constant + // is such that all six bit, consecutive substrings are distinct. + // Therefore, if we have a left shifted version of this constant we can + // find by how many bits it was shifted by looking at which six bit + // substring ended up at the top of the word. + // (Knuth, volume 4, section 7.3.1) + return int(deBruijn64tab[(x&-x)*deBruijn64>>(64-6)]) +} + +// --- OnesCount --- + +const m0 = 0x5555555555555555 // 01010101 ... +const m1 = 0x3333333333333333 // 00110011 ... +const m2 = 0x0f0f0f0f0f0f0f0f // 00001111 ... +const m3 = 0x00ff00ff00ff00ff // etc. +const m4 = 0x0000ffff0000ffff + +// OnesCount returns the number of one bits ("population count") in x. +func OnesCount(x uint) int { + if UintSize == 32 { + return OnesCount32(uint32(x)) + } + return OnesCount64(uint64(x)) +} + +// OnesCount8 returns the number of one bits ("population count") in x. +func OnesCount8(x uint8) int { + return int(pop8tab[x]) +} + +// OnesCount16 returns the number of one bits ("population count") in x. +func OnesCount16(x uint16) int { + return int(pop8tab[x>>8] + pop8tab[x&0xff]) +} + +// OnesCount32 returns the number of one bits ("population count") in x. +func OnesCount32(x uint32) int { + return int(pop8tab[x>>24] + pop8tab[x>>16&0xff] + pop8tab[x>>8&0xff] + pop8tab[x&0xff]) +} + +// OnesCount64 returns the number of one bits ("population count") in x. +func OnesCount64(x uint64) int { + // Implementation: Parallel summing of adjacent bits. + // See "Hacker's Delight", Chap. 5: Counting Bits. + // The following pattern shows the general approach: + // + // x = x>>1&(m0&m) + x&(m0&m) + // x = x>>2&(m1&m) + x&(m1&m) + // x = x>>4&(m2&m) + x&(m2&m) + // x = x>>8&(m3&m) + x&(m3&m) + // x = x>>16&(m4&m) + x&(m4&m) + // x = x>>32&(m5&m) + x&(m5&m) + // return int(x) + // + // Masking (& operations) can be left away when there's no + // danger that a field's sum will carry over into the next + // field: Since the result cannot be > 64, 8 bits is enough + // and we can ignore the masks for the shifts by 8 and up. + // Per "Hacker's Delight", the first line can be simplified + // more, but it saves at best one instruction, so we leave + // it alone for clarity. + const m = 1<<64 - 1 + x = x>>1&(m0&m) + x&(m0&m) + x = x>>2&(m1&m) + x&(m1&m) + x = (x>>4 + x) & (m2 & m) + x += x >> 8 + x += x >> 16 + x += x >> 32 + return int(x) & (1<<7 - 1) +} + +// --- RotateLeft --- + +// RotateLeft returns the value of x rotated left by (k mod UintSize) bits. +// To rotate x right by k bits, call RotateLeft(x, -k). +// +// This function's execution time does not depend on the inputs. +func RotateLeft(x uint, k int) uint { + if UintSize == 32 { + return uint(RotateLeft32(uint32(x), k)) + } + return uint(RotateLeft64(uint64(x), k)) +} + +// RotateLeft8 returns the value of x rotated left by (k mod 8) bits. +// To rotate x right by k bits, call RotateLeft8(x, -k). +// +// This function's execution time does not depend on the inputs. +func RotateLeft8(x uint8, k int) uint8 { + const n = 8 + s := uint(k) & (n - 1) + return x<<s | x>>(n-s) +} + +// RotateLeft16 returns the value of x rotated left by (k mod 16) bits. +// To rotate x right by k bits, call RotateLeft16(x, -k). +// +// This function's execution time does not depend on the inputs. +func RotateLeft16(x uint16, k int) uint16 { + const n = 16 + s := uint(k) & (n - 1) + return x<<s | x>>(n-s) +} + +// RotateLeft32 returns the value of x rotated left by (k mod 32) bits. +// To rotate x right by k bits, call RotateLeft32(x, -k). +// +// This function's execution time does not depend on the inputs. +func RotateLeft32(x uint32, k int) uint32 { + const n = 32 + s := uint(k) & (n - 1) + return x<<s | x>>(n-s) +} + +// RotateLeft64 returns the value of x rotated left by (k mod 64) bits. +// To rotate x right by k bits, call RotateLeft64(x, -k). +// +// This function's execution time does not depend on the inputs. +func RotateLeft64(x uint64, k int) uint64 { + const n = 64 + s := uint(k) & (n - 1) + return x<<s | x>>(n-s) +} + +// --- Reverse --- + +// Reverse returns the value of x with its bits in reversed order. +func Reverse(x uint) uint { + if UintSize == 32 { + return uint(Reverse32(uint32(x))) + } + return uint(Reverse64(uint64(x))) +} + +// Reverse8 returns the value of x with its bits in reversed order. +func Reverse8(x uint8) uint8 { + return rev8tab[x] +} + +// Reverse16 returns the value of x with its bits in reversed order. +func Reverse16(x uint16) uint16 { + return uint16(rev8tab[x>>8]) | uint16(rev8tab[x&0xff])<<8 +} + +// Reverse32 returns the value of x with its bits in reversed order. +func Reverse32(x uint32) uint32 { + const m = 1<<32 - 1 + x = x>>1&(m0&m) | x&(m0&m)<<1 + x = x>>2&(m1&m) | x&(m1&m)<<2 + x = x>>4&(m2&m) | x&(m2&m)<<4 + return ReverseBytes32(x) +} + +// Reverse64 returns the value of x with its bits in reversed order. +func Reverse64(x uint64) uint64 { + const m = 1<<64 - 1 + x = x>>1&(m0&m) | x&(m0&m)<<1 + x = x>>2&(m1&m) | x&(m1&m)<<2 + x = x>>4&(m2&m) | x&(m2&m)<<4 + return ReverseBytes64(x) +} + +// --- ReverseBytes --- + +// ReverseBytes returns the value of x with its bytes in reversed order. +// +// This function's execution time does not depend on the inputs. +func ReverseBytes(x uint) uint { + if UintSize == 32 { + return uint(ReverseBytes32(uint32(x))) + } + return uint(ReverseBytes64(uint64(x))) +} + +// ReverseBytes16 returns the value of x with its bytes in reversed order. +// +// This function's execution time does not depend on the inputs. +func ReverseBytes16(x uint16) uint16 { + return x>>8 | x<<8 +} + +// ReverseBytes32 returns the value of x with its bytes in reversed order. +// +// This function's execution time does not depend on the inputs. +func ReverseBytes32(x uint32) uint32 { + const m = 1<<32 - 1 + x = x>>8&(m3&m) | x&(m3&m)<<8 + return x>>16 | x<<16 +} + +// ReverseBytes64 returns the value of x with its bytes in reversed order. +// +// This function's execution time does not depend on the inputs. +func ReverseBytes64(x uint64) uint64 { + const m = 1<<64 - 1 + x = x>>8&(m3&m) | x&(m3&m)<<8 + x = x>>16&(m4&m) | x&(m4&m)<<16 + return x>>32 | x<<32 +} + +// --- Len --- + +// Len returns the minimum number of bits required to represent x; the result is 0 for x == 0. +func Len(x uint) int { + if UintSize == 32 { + return Len32(uint32(x)) + } + return Len64(uint64(x)) +} + +// Len8 returns the minimum number of bits required to represent x; the result is 0 for x == 0. +func Len8(x uint8) int { + return int(len8tab[x]) +} + +// Len16 returns the minimum number of bits required to represent x; the result is 0 for x == 0. +func Len16(x uint16) (n int) { + if x >= 1<<8 { + x >>= 8 + n = 8 + } + return n + int(len8tab[x]) +} + +// Len32 returns the minimum number of bits required to represent x; the result is 0 for x == 0. +func Len32(x uint32) (n int) { + if x >= 1<<16 { + x >>= 16 + n = 16 + } + if x >= 1<<8 { + x >>= 8 + n += 8 + } + return n + int(len8tab[x]) +} + +// Len64 returns the minimum number of bits required to represent x; the result is 0 for x == 0. +func Len64(x uint64) (n int) { + if x >= 1<<32 { + x >>= 32 + n = 32 + } + if x >= 1<<16 { + x >>= 16 + n += 16 + } + if x >= 1<<8 { + x >>= 8 + n += 8 + } + return n + int(len8tab[x]) +} + +// --- Add with carry --- + +// Add returns the sum with carry of x, y and carry: sum = x + y + carry. +// The carry input must be 0 or 1; otherwise the behavior is undefined. +// The carryOut output is guaranteed to be 0 or 1. +// +// This function's execution time does not depend on the inputs. +func Add(x, y, carry uint) (sum, carryOut uint) { + if UintSize == 32 { + s32, c32 := Add32(uint32(x), uint32(y), uint32(carry)) + return uint(s32), uint(c32) + } + s64, c64 := Add64(uint64(x), uint64(y), uint64(carry)) + return uint(s64), uint(c64) +} + +// Add32 returns the sum with carry of x, y and carry: sum = x + y + carry. +// The carry input must be 0 or 1; otherwise the behavior is undefined. +// The carryOut output is guaranteed to be 0 or 1. +// +// This function's execution time does not depend on the inputs. +func Add32(x, y, carry uint32) (sum, carryOut uint32) { + sum64 := uint64(x) + uint64(y) + uint64(carry) + sum = uint32(sum64) + carryOut = uint32(sum64 >> 32) + return +} + +// Add64 returns the sum with carry of x, y and carry: sum = x + y + carry. +// The carry input must be 0 or 1; otherwise the behavior is undefined. +// The carryOut output is guaranteed to be 0 or 1. +// +// This function's execution time does not depend on the inputs. +func Add64(x, y, carry uint64) (sum, carryOut uint64) { + sum = x + y + carry + // The sum will overflow if both top bits are set (x & y) or if one of them + // is (x | y), and a carry from the lower place happened. If such a carry + // happens, the top bit will be 1 + 0 + 1 = 0 (&^ sum). + carryOut = ((x & y) | ((x | y) &^ sum)) >> 63 + return +} + +// --- Subtract with borrow --- + +// Sub returns the difference of x, y and borrow: diff = x - y - borrow. +// The borrow input must be 0 or 1; otherwise the behavior is undefined. +// The borrowOut output is guaranteed to be 0 or 1. +// +// This function's execution time does not depend on the inputs. +func Sub(x, y, borrow uint) (diff, borrowOut uint) { + if UintSize == 32 { + d32, b32 := Sub32(uint32(x), uint32(y), uint32(borrow)) + return uint(d32), uint(b32) + } + d64, b64 := Sub64(uint64(x), uint64(y), uint64(borrow)) + return uint(d64), uint(b64) +} + +// Sub32 returns the difference of x, y and borrow, diff = x - y - borrow. +// The borrow input must be 0 or 1; otherwise the behavior is undefined. +// The borrowOut output is guaranteed to be 0 or 1. +// +// This function's execution time does not depend on the inputs. +func Sub32(x, y, borrow uint32) (diff, borrowOut uint32) { + diff = x - y - borrow + // The difference will underflow if the top bit of x is not set and the top + // bit of y is set (^x & y) or if they are the same (^(x ^ y)) and a borrow + // from the lower place happens. If that borrow happens, the result will be + // 1 - 1 - 1 = 0 - 0 - 1 = 1 (& diff). + borrowOut = ((^x & y) | (^(x ^ y) & diff)) >> 31 + return +} + +// Sub64 returns the difference of x, y and borrow: diff = x - y - borrow. +// The borrow input must be 0 or 1; otherwise the behavior is undefined. +// The borrowOut output is guaranteed to be 0 or 1. +// +// This function's execution time does not depend on the inputs. +func Sub64(x, y, borrow uint64) (diff, borrowOut uint64) { + diff = x - y - borrow + // See Sub32 for the bit logic. + borrowOut = ((^x & y) | (^(x ^ y) & diff)) >> 63 + return +} + +// --- Full-width multiply --- + +// Mul returns the full-width product of x and y: (hi, lo) = x * y +// with the product bits' upper half returned in hi and the lower +// half returned in lo. +// +// This function's execution time does not depend on the inputs. +func Mul(x, y uint) (hi, lo uint) { + if UintSize == 32 { + h, l := Mul32(uint32(x), uint32(y)) + return uint(h), uint(l) + } + h, l := Mul64(uint64(x), uint64(y)) + return uint(h), uint(l) +} + +// Mul32 returns the 64-bit product of x and y: (hi, lo) = x * y +// with the product bits' upper half returned in hi and the lower +// half returned in lo. +// +// This function's execution time does not depend on the inputs. +func Mul32(x, y uint32) (hi, lo uint32) { + tmp := uint64(x) * uint64(y) + hi, lo = uint32(tmp>>32), uint32(tmp) + return +} + +// Mul64 returns the 128-bit product of x and y: (hi, lo) = x * y +// with the product bits' upper half returned in hi and the lower +// half returned in lo. +// +// This function's execution time does not depend on the inputs. +func Mul64(x, y uint64) (hi, lo uint64) { + const mask32 = 1<<32 - 1 + x0 := x & mask32 + x1 := x >> 32 + y0 := y & mask32 + y1 := y >> 32 + w0 := x0 * y0 + t := x1*y0 + w0>>32 + w1 := t & mask32 + w2 := t >> 32 + w1 += x0 * y1 + hi = x1*y1 + w2 + w1>>32 + lo = x * y + return +} + +// --- Full-width divide --- + +// Div returns the quotient and remainder of (hi, lo) divided by y: +// quo = (hi, lo)/y, rem = (hi, lo)%y with the dividend bits' upper +// half in parameter hi and the lower half in parameter lo. +// Div panics for y == 0 (division by zero) or y <= hi (quotient overflow). +func Div(hi, lo, y uint) (quo, rem uint) { + if UintSize == 32 { + q, r := Div32(uint32(hi), uint32(lo), uint32(y)) + return uint(q), uint(r) + } + q, r := Div64(uint64(hi), uint64(lo), uint64(y)) + return uint(q), uint(r) +} + +// Div32 returns the quotient and remainder of (hi, lo) divided by y: +// quo = (hi, lo)/y, rem = (hi, lo)%y with the dividend bits' upper +// half in parameter hi and the lower half in parameter lo. +// Div32 panics for y == 0 (division by zero) or y <= hi (quotient overflow). +func Div32(hi, lo, y uint32) (quo, rem uint32) { + if y != 0 && y <= hi { + panic(overflowError) + } + z := uint64(hi)<<32 | uint64(lo) + quo, rem = uint32(z/uint64(y)), uint32(z%uint64(y)) + return +} + +// Div64 returns the quotient and remainder of (hi, lo) divided by y: +// quo = (hi, lo)/y, rem = (hi, lo)%y with the dividend bits' upper +// half in parameter hi and the lower half in parameter lo. +// Div64 panics for y == 0 (division by zero) or y <= hi (quotient overflow). +func Div64(hi, lo, y uint64) (quo, rem uint64) { + if y == 0 { + panic(divideError) + } + if y <= hi { + panic(overflowError) + } + + // If high part is zero, we can directly return the results. + if hi == 0 { + return lo / y, lo % y + } + + s := uint(LeadingZeros64(y)) + y <<= s + + const ( + two32 = 1 << 32 + mask32 = two32 - 1 + ) + yn1 := y >> 32 + yn0 := y & mask32 + un32 := hi<<s | lo>>(64-s) + un10 := lo << s + un1 := un10 >> 32 + un0 := un10 & mask32 + q1 := un32 / yn1 + rhat := un32 - q1*yn1 + + for q1 >= two32 || q1*yn0 > two32*rhat+un1 { + q1-- + rhat += yn1 + if rhat >= two32 { + break + } + } + + un21 := un32*two32 + un1 - q1*y + q0 := un21 / yn1 + rhat = un21 - q0*yn1 + + for q0 >= two32 || q0*yn0 > two32*rhat+un0 { + q0-- + rhat += yn1 + if rhat >= two32 { + break + } + } + + return q1*two32 + q0, (un21*two32 + un0 - q0*y) >> s +} + +// Rem returns the remainder of (hi, lo) divided by y. Rem panics for +// y == 0 (division by zero) but, unlike Div, it doesn't panic on a +// quotient overflow. +func Rem(hi, lo, y uint) uint { + if UintSize == 32 { + return uint(Rem32(uint32(hi), uint32(lo), uint32(y))) + } + return uint(Rem64(uint64(hi), uint64(lo), uint64(y))) +} + +// Rem32 returns the remainder of (hi, lo) divided by y. Rem32 panics +// for y == 0 (division by zero) but, unlike Div32, it doesn't panic +// on a quotient overflow. +func Rem32(hi, lo, y uint32) uint32 { + return uint32((uint64(hi)<<32 | uint64(lo)) % uint64(y)) +} + +// Rem64 returns the remainder of (hi, lo) divided by y. Rem64 panics +// for y == 0 (division by zero) but, unlike Div64, it doesn't panic +// on a quotient overflow. +func Rem64(hi, lo, y uint64) uint64 { + // We scale down hi so that hi < y, then use Div64 to compute the + // rem with the guarantee that it won't panic on quotient overflow. + // Given that + // hi ≡ hi%y (mod y) + // we have + // hi<<64 + lo ≡ (hi%y)<<64 + lo (mod y) + _, rem := Div64(hi%y, lo, y) + return rem +} |