summaryrefslogtreecommitdiffstats
path: root/src/math/expm1.go
diff options
context:
space:
mode:
Diffstat (limited to 'src/math/expm1.go')
-rw-r--r--src/math/expm1.go244
1 files changed, 244 insertions, 0 deletions
diff --git a/src/math/expm1.go b/src/math/expm1.go
new file mode 100644
index 0000000..ff1c82f
--- /dev/null
+++ b/src/math/expm1.go
@@ -0,0 +1,244 @@
+// Copyright 2010 The Go Authors. All rights reserved.
+// Use of this source code is governed by a BSD-style
+// license that can be found in the LICENSE file.
+
+package math
+
+// The original C code, the long comment, and the constants
+// below are from FreeBSD's /usr/src/lib/msun/src/s_expm1.c
+// and came with this notice. The go code is a simplified
+// version of the original C.
+//
+// ====================================================
+// Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
+//
+// Developed at SunPro, a Sun Microsystems, Inc. business.
+// Permission to use, copy, modify, and distribute this
+// software is freely granted, provided that this notice
+// is preserved.
+// ====================================================
+//
+// expm1(x)
+// Returns exp(x)-1, the exponential of x minus 1.
+//
+// Method
+// 1. Argument reduction:
+// Given x, find r and integer k such that
+//
+// x = k*ln2 + r, |r| <= 0.5*ln2 ~ 0.34658
+//
+// Here a correction term c will be computed to compensate
+// the error in r when rounded to a floating-point number.
+//
+// 2. Approximating expm1(r) by a special rational function on
+// the interval [0,0.34658]:
+// Since
+// r*(exp(r)+1)/(exp(r)-1) = 2+ r**2/6 - r**4/360 + ...
+// we define R1(r*r) by
+// r*(exp(r)+1)/(exp(r)-1) = 2+ r**2/6 * R1(r*r)
+// That is,
+// R1(r**2) = 6/r *((exp(r)+1)/(exp(r)-1) - 2/r)
+// = 6/r * ( 1 + 2.0*(1/(exp(r)-1) - 1/r))
+// = 1 - r**2/60 + r**4/2520 - r**6/100800 + ...
+// We use a special Reme algorithm on [0,0.347] to generate
+// a polynomial of degree 5 in r*r to approximate R1. The
+// maximum error of this polynomial approximation is bounded
+// by 2**-61. In other words,
+// R1(z) ~ 1.0 + Q1*z + Q2*z**2 + Q3*z**3 + Q4*z**4 + Q5*z**5
+// where Q1 = -1.6666666666666567384E-2,
+// Q2 = 3.9682539681370365873E-4,
+// Q3 = -9.9206344733435987357E-6,
+// Q4 = 2.5051361420808517002E-7,
+// Q5 = -6.2843505682382617102E-9;
+// (where z=r*r, and the values of Q1 to Q5 are listed below)
+// with error bounded by
+// | 5 | -61
+// | 1.0+Q1*z+...+Q5*z - R1(z) | <= 2
+// | |
+//
+// expm1(r) = exp(r)-1 is then computed by the following
+// specific way which minimize the accumulation rounding error:
+// 2 3
+// r r [ 3 - (R1 + R1*r/2) ]
+// expm1(r) = r + --- + --- * [--------------------]
+// 2 2 [ 6 - r*(3 - R1*r/2) ]
+//
+// To compensate the error in the argument reduction, we use
+// expm1(r+c) = expm1(r) + c + expm1(r)*c
+// ~ expm1(r) + c + r*c
+// Thus c+r*c will be added in as the correction terms for
+// expm1(r+c). Now rearrange the term to avoid optimization
+// screw up:
+// ( 2 2 )
+// ({ ( r [ R1 - (3 - R1*r/2) ] ) } r )
+// expm1(r+c)~r - ({r*(--- * [--------------------]-c)-c} - --- )
+// ({ ( 2 [ 6 - r*(3 - R1*r/2) ] ) } 2 )
+// ( )
+//
+// = r - E
+// 3. Scale back to obtain expm1(x):
+// From step 1, we have
+// expm1(x) = either 2**k*[expm1(r)+1] - 1
+// = or 2**k*[expm1(r) + (1-2**-k)]
+// 4. Implementation notes:
+// (A). To save one multiplication, we scale the coefficient Qi
+// to Qi*2**i, and replace z by (x**2)/2.
+// (B). To achieve maximum accuracy, we compute expm1(x) by
+// (i) if x < -56*ln2, return -1.0, (raise inexact if x!=inf)
+// (ii) if k=0, return r-E
+// (iii) if k=-1, return 0.5*(r-E)-0.5
+// (iv) if k=1 if r < -0.25, return 2*((r+0.5)- E)
+// else return 1.0+2.0*(r-E);
+// (v) if (k<-2||k>56) return 2**k(1-(E-r)) - 1 (or exp(x)-1)
+// (vi) if k <= 20, return 2**k((1-2**-k)-(E-r)), else
+// (vii) return 2**k(1-((E+2**-k)-r))
+//
+// Special cases:
+// expm1(INF) is INF, expm1(NaN) is NaN;
+// expm1(-INF) is -1, and
+// for finite argument, only expm1(0)=0 is exact.
+//
+// Accuracy:
+// according to an error analysis, the error is always less than
+// 1 ulp (unit in the last place).
+//
+// Misc. info.
+// For IEEE double
+// if x > 7.09782712893383973096e+02 then expm1(x) overflow
+//
+// Constants:
+// The hexadecimal values are the intended ones for the following
+// constants. The decimal values may be used, provided that the
+// compiler will convert from decimal to binary accurately enough
+// to produce the hexadecimal values shown.
+//
+
+// Expm1 returns e**x - 1, the base-e exponential of x minus 1.
+// It is more accurate than Exp(x) - 1 when x is near zero.
+//
+// Special cases are:
+//
+// Expm1(+Inf) = +Inf
+// Expm1(-Inf) = -1
+// Expm1(NaN) = NaN
+//
+// Very large values overflow to -1 or +Inf.
+func Expm1(x float64) float64 {
+ if haveArchExpm1 {
+ return archExpm1(x)
+ }
+ return expm1(x)
+}
+
+func expm1(x float64) float64 {
+ const (
+ Othreshold = 7.09782712893383973096e+02 // 0x40862E42FEFA39EF
+ Ln2X56 = 3.88162421113569373274e+01 // 0x4043687a9f1af2b1
+ Ln2HalfX3 = 1.03972077083991796413e+00 // 0x3ff0a2b23f3bab73
+ Ln2Half = 3.46573590279972654709e-01 // 0x3fd62e42fefa39ef
+ Ln2Hi = 6.93147180369123816490e-01 // 0x3fe62e42fee00000
+ Ln2Lo = 1.90821492927058770002e-10 // 0x3dea39ef35793c76
+ InvLn2 = 1.44269504088896338700e+00 // 0x3ff71547652b82fe
+ Tiny = 1.0 / (1 << 54) // 2**-54 = 0x3c90000000000000
+ // scaled coefficients related to expm1
+ Q1 = -3.33333333333331316428e-02 // 0xBFA11111111110F4
+ Q2 = 1.58730158725481460165e-03 // 0x3F5A01A019FE5585
+ Q3 = -7.93650757867487942473e-05 // 0xBF14CE199EAADBB7
+ Q4 = 4.00821782732936239552e-06 // 0x3ED0CFCA86E65239
+ Q5 = -2.01099218183624371326e-07 // 0xBE8AFDB76E09C32D
+ )
+
+ // special cases
+ switch {
+ case IsInf(x, 1) || IsNaN(x):
+ return x
+ case IsInf(x, -1):
+ return -1
+ }
+
+ absx := x
+ sign := false
+ if x < 0 {
+ absx = -absx
+ sign = true
+ }
+
+ // filter out huge argument
+ if absx >= Ln2X56 { // if |x| >= 56 * ln2
+ if sign {
+ return -1 // x < -56*ln2, return -1
+ }
+ if absx >= Othreshold { // if |x| >= 709.78...
+ return Inf(1)
+ }
+ }
+
+ // argument reduction
+ var c float64
+ var k int
+ if absx > Ln2Half { // if |x| > 0.5 * ln2
+ var hi, lo float64
+ if absx < Ln2HalfX3 { // and |x| < 1.5 * ln2
+ if !sign {
+ hi = x - Ln2Hi
+ lo = Ln2Lo
+ k = 1
+ } else {
+ hi = x + Ln2Hi
+ lo = -Ln2Lo
+ k = -1
+ }
+ } else {
+ if !sign {
+ k = int(InvLn2*x + 0.5)
+ } else {
+ k = int(InvLn2*x - 0.5)
+ }
+ t := float64(k)
+ hi = x - t*Ln2Hi // t * Ln2Hi is exact here
+ lo = t * Ln2Lo
+ }
+ x = hi - lo
+ c = (hi - x) - lo
+ } else if absx < Tiny { // when |x| < 2**-54, return x
+ return x
+ } else {
+ k = 0
+ }
+
+ // x is now in primary range
+ hfx := 0.5 * x
+ hxs := x * hfx
+ r1 := 1 + hxs*(Q1+hxs*(Q2+hxs*(Q3+hxs*(Q4+hxs*Q5))))
+ t := 3 - r1*hfx
+ e := hxs * ((r1 - t) / (6.0 - x*t))
+ if k == 0 {
+ return x - (x*e - hxs) // c is 0
+ }
+ e = (x*(e-c) - c)
+ e -= hxs
+ switch {
+ case k == -1:
+ return 0.5*(x-e) - 0.5
+ case k == 1:
+ if x < -0.25 {
+ return -2 * (e - (x + 0.5))
+ }
+ return 1 + 2*(x-e)
+ case k <= -2 || k > 56: // suffice to return exp(x)-1
+ y := 1 - (e - x)
+ y = Float64frombits(Float64bits(y) + uint64(k)<<52) // add k to y's exponent
+ return y - 1
+ }
+ if k < 20 {
+ t := Float64frombits(0x3ff0000000000000 - (0x20000000000000 >> uint(k))) // t=1-2**-k
+ y := t - (e - x)
+ y = Float64frombits(Float64bits(y) + uint64(k)<<52) // add k to y's exponent
+ return y
+ }
+ t = Float64frombits(uint64(0x3ff-k) << 52) // 2**-k
+ y := x - (e + t)
+ y++
+ y = Float64frombits(Float64bits(y) + uint64(k)<<52) // add k to y's exponent
+ return y
+}