diff options
Diffstat (limited to '')
-rw-r--r-- | src/regexp/exec.go | 554 |
1 files changed, 554 insertions, 0 deletions
diff --git a/src/regexp/exec.go b/src/regexp/exec.go new file mode 100644 index 0000000..3fc4b68 --- /dev/null +++ b/src/regexp/exec.go @@ -0,0 +1,554 @@ +// Copyright 2011 The Go Authors. All rights reserved. +// Use of this source code is governed by a BSD-style +// license that can be found in the LICENSE file. + +package regexp + +import ( + "io" + "regexp/syntax" + "sync" +) + +// A queue is a 'sparse array' holding pending threads of execution. +// See https://research.swtch.com/2008/03/using-uninitialized-memory-for-fun-and.html +type queue struct { + sparse []uint32 + dense []entry +} + +// An entry is an entry on a queue. +// It holds both the instruction pc and the actual thread. +// Some queue entries are just place holders so that the machine +// knows it has considered that pc. Such entries have t == nil. +type entry struct { + pc uint32 + t *thread +} + +// A thread is the state of a single path through the machine: +// an instruction and a corresponding capture array. +// See https://swtch.com/~rsc/regexp/regexp2.html +type thread struct { + inst *syntax.Inst + cap []int +} + +// A machine holds all the state during an NFA simulation for p. +type machine struct { + re *Regexp // corresponding Regexp + p *syntax.Prog // compiled program + q0, q1 queue // two queues for runq, nextq + pool []*thread // pool of available threads + matched bool // whether a match was found + matchcap []int // capture information for the match + + inputs inputs +} + +type inputs struct { + // cached inputs, to avoid allocation + bytes inputBytes + string inputString + reader inputReader +} + +func (i *inputs) newBytes(b []byte) input { + i.bytes.str = b + return &i.bytes +} + +func (i *inputs) newString(s string) input { + i.string.str = s + return &i.string +} + +func (i *inputs) newReader(r io.RuneReader) input { + i.reader.r = r + i.reader.atEOT = false + i.reader.pos = 0 + return &i.reader +} + +func (i *inputs) clear() { + // We need to clear 1 of these. + // Avoid the expense of clearing the others (pointer write barrier). + if i.bytes.str != nil { + i.bytes.str = nil + } else if i.reader.r != nil { + i.reader.r = nil + } else { + i.string.str = "" + } +} + +func (i *inputs) init(r io.RuneReader, b []byte, s string) (input, int) { + if r != nil { + return i.newReader(r), 0 + } + if b != nil { + return i.newBytes(b), len(b) + } + return i.newString(s), len(s) +} + +func (m *machine) init(ncap int) { + for _, t := range m.pool { + t.cap = t.cap[:ncap] + } + m.matchcap = m.matchcap[:ncap] +} + +// alloc allocates a new thread with the given instruction. +// It uses the free pool if possible. +func (m *machine) alloc(i *syntax.Inst) *thread { + var t *thread + if n := len(m.pool); n > 0 { + t = m.pool[n-1] + m.pool = m.pool[:n-1] + } else { + t = new(thread) + t.cap = make([]int, len(m.matchcap), cap(m.matchcap)) + } + t.inst = i + return t +} + +// A lazyFlag is a lazily-evaluated syntax.EmptyOp, +// for checking zero-width flags like ^ $ \A \z \B \b. +// It records the pair of relevant runes and does not +// determine the implied flags until absolutely necessary +// (most of the time, that means never). +type lazyFlag uint64 + +func newLazyFlag(r1, r2 rune) lazyFlag { + return lazyFlag(uint64(r1)<<32 | uint64(uint32(r2))) +} + +func (f lazyFlag) match(op syntax.EmptyOp) bool { + if op == 0 { + return true + } + r1 := rune(f >> 32) + if op&syntax.EmptyBeginLine != 0 { + if r1 != '\n' && r1 >= 0 { + return false + } + op &^= syntax.EmptyBeginLine + } + if op&syntax.EmptyBeginText != 0 { + if r1 >= 0 { + return false + } + op &^= syntax.EmptyBeginText + } + if op == 0 { + return true + } + r2 := rune(f) + if op&syntax.EmptyEndLine != 0 { + if r2 != '\n' && r2 >= 0 { + return false + } + op &^= syntax.EmptyEndLine + } + if op&syntax.EmptyEndText != 0 { + if r2 >= 0 { + return false + } + op &^= syntax.EmptyEndText + } + if op == 0 { + return true + } + if syntax.IsWordChar(r1) != syntax.IsWordChar(r2) { + op &^= syntax.EmptyWordBoundary + } else { + op &^= syntax.EmptyNoWordBoundary + } + return op == 0 +} + +// match runs the machine over the input starting at pos. +// It reports whether a match was found. +// If so, m.matchcap holds the submatch information. +func (m *machine) match(i input, pos int) bool { + startCond := m.re.cond + if startCond == ^syntax.EmptyOp(0) { // impossible + return false + } + m.matched = false + for i := range m.matchcap { + m.matchcap[i] = -1 + } + runq, nextq := &m.q0, &m.q1 + r, r1 := endOfText, endOfText + width, width1 := 0, 0 + r, width = i.step(pos) + if r != endOfText { + r1, width1 = i.step(pos + width) + } + var flag lazyFlag + if pos == 0 { + flag = newLazyFlag(-1, r) + } else { + flag = i.context(pos) + } + for { + if len(runq.dense) == 0 { + if startCond&syntax.EmptyBeginText != 0 && pos != 0 { + // Anchored match, past beginning of text. + break + } + if m.matched { + // Have match; finished exploring alternatives. + break + } + if len(m.re.prefix) > 0 && r1 != m.re.prefixRune && i.canCheckPrefix() { + // Match requires literal prefix; fast search for it. + advance := i.index(m.re, pos) + if advance < 0 { + break + } + pos += advance + r, width = i.step(pos) + r1, width1 = i.step(pos + width) + } + } + if !m.matched { + if len(m.matchcap) > 0 { + m.matchcap[0] = pos + } + m.add(runq, uint32(m.p.Start), pos, m.matchcap, &flag, nil) + } + flag = newLazyFlag(r, r1) + m.step(runq, nextq, pos, pos+width, r, &flag) + if width == 0 { + break + } + if len(m.matchcap) == 0 && m.matched { + // Found a match and not paying attention + // to where it is, so any match will do. + break + } + pos += width + r, width = r1, width1 + if r != endOfText { + r1, width1 = i.step(pos + width) + } + runq, nextq = nextq, runq + } + m.clear(nextq) + return m.matched +} + +// clear frees all threads on the thread queue. +func (m *machine) clear(q *queue) { + for _, d := range q.dense { + if d.t != nil { + m.pool = append(m.pool, d.t) + } + } + q.dense = q.dense[:0] +} + +// step executes one step of the machine, running each of the threads +// on runq and appending new threads to nextq. +// The step processes the rune c (which may be endOfText), +// which starts at position pos and ends at nextPos. +// nextCond gives the setting for the empty-width flags after c. +func (m *machine) step(runq, nextq *queue, pos, nextPos int, c rune, nextCond *lazyFlag) { + longest := m.re.longest + for j := 0; j < len(runq.dense); j++ { + d := &runq.dense[j] + t := d.t + if t == nil { + continue + } + if longest && m.matched && len(t.cap) > 0 && m.matchcap[0] < t.cap[0] { + m.pool = append(m.pool, t) + continue + } + i := t.inst + add := false + switch i.Op { + default: + panic("bad inst") + + case syntax.InstMatch: + if len(t.cap) > 0 && (!longest || !m.matched || m.matchcap[1] < pos) { + t.cap[1] = pos + copy(m.matchcap, t.cap) + } + if !longest { + // First-match mode: cut off all lower-priority threads. + for _, d := range runq.dense[j+1:] { + if d.t != nil { + m.pool = append(m.pool, d.t) + } + } + runq.dense = runq.dense[:0] + } + m.matched = true + + case syntax.InstRune: + add = i.MatchRune(c) + case syntax.InstRune1: + add = c == i.Rune[0] + case syntax.InstRuneAny: + add = true + case syntax.InstRuneAnyNotNL: + add = c != '\n' + } + if add { + t = m.add(nextq, i.Out, nextPos, t.cap, nextCond, t) + } + if t != nil { + m.pool = append(m.pool, t) + } + } + runq.dense = runq.dense[:0] +} + +// add adds an entry to q for pc, unless the q already has such an entry. +// It also recursively adds an entry for all instructions reachable from pc by following +// empty-width conditions satisfied by cond. pos gives the current position +// in the input. +func (m *machine) add(q *queue, pc uint32, pos int, cap []int, cond *lazyFlag, t *thread) *thread { +Again: + if pc == 0 { + return t + } + if j := q.sparse[pc]; j < uint32(len(q.dense)) && q.dense[j].pc == pc { + return t + } + + j := len(q.dense) + q.dense = q.dense[:j+1] + d := &q.dense[j] + d.t = nil + d.pc = pc + q.sparse[pc] = uint32(j) + + i := &m.p.Inst[pc] + switch i.Op { + default: + panic("unhandled") + case syntax.InstFail: + // nothing + case syntax.InstAlt, syntax.InstAltMatch: + t = m.add(q, i.Out, pos, cap, cond, t) + pc = i.Arg + goto Again + case syntax.InstEmptyWidth: + if cond.match(syntax.EmptyOp(i.Arg)) { + pc = i.Out + goto Again + } + case syntax.InstNop: + pc = i.Out + goto Again + case syntax.InstCapture: + if int(i.Arg) < len(cap) { + opos := cap[i.Arg] + cap[i.Arg] = pos + m.add(q, i.Out, pos, cap, cond, nil) + cap[i.Arg] = opos + } else { + pc = i.Out + goto Again + } + case syntax.InstMatch, syntax.InstRune, syntax.InstRune1, syntax.InstRuneAny, syntax.InstRuneAnyNotNL: + if t == nil { + t = m.alloc(i) + } else { + t.inst = i + } + if len(cap) > 0 && &t.cap[0] != &cap[0] { + copy(t.cap, cap) + } + d.t = t + t = nil + } + return t +} + +type onePassMachine struct { + inputs inputs + matchcap []int +} + +var onePassPool sync.Pool + +func newOnePassMachine() *onePassMachine { + m, ok := onePassPool.Get().(*onePassMachine) + if !ok { + m = new(onePassMachine) + } + return m +} + +func freeOnePassMachine(m *onePassMachine) { + m.inputs.clear() + onePassPool.Put(m) +} + +// doOnePass implements r.doExecute using the one-pass execution engine. +func (re *Regexp) doOnePass(ir io.RuneReader, ib []byte, is string, pos, ncap int, dstCap []int) []int { + startCond := re.cond + if startCond == ^syntax.EmptyOp(0) { // impossible + return nil + } + + m := newOnePassMachine() + if cap(m.matchcap) < ncap { + m.matchcap = make([]int, ncap) + } else { + m.matchcap = m.matchcap[:ncap] + } + + matched := false + for i := range m.matchcap { + m.matchcap[i] = -1 + } + + i, _ := m.inputs.init(ir, ib, is) + + r, r1 := endOfText, endOfText + width, width1 := 0, 0 + r, width = i.step(pos) + if r != endOfText { + r1, width1 = i.step(pos + width) + } + var flag lazyFlag + if pos == 0 { + flag = newLazyFlag(-1, r) + } else { + flag = i.context(pos) + } + pc := re.onepass.Start + inst := &re.onepass.Inst[pc] + // If there is a simple literal prefix, skip over it. + if pos == 0 && flag.match(syntax.EmptyOp(inst.Arg)) && + len(re.prefix) > 0 && i.canCheckPrefix() { + // Match requires literal prefix; fast search for it. + if !i.hasPrefix(re) { + goto Return + } + pos += len(re.prefix) + r, width = i.step(pos) + r1, width1 = i.step(pos + width) + flag = i.context(pos) + pc = int(re.prefixEnd) + } + for { + inst = &re.onepass.Inst[pc] + pc = int(inst.Out) + switch inst.Op { + default: + panic("bad inst") + case syntax.InstMatch: + matched = true + if len(m.matchcap) > 0 { + m.matchcap[0] = 0 + m.matchcap[1] = pos + } + goto Return + case syntax.InstRune: + if !inst.MatchRune(r) { + goto Return + } + case syntax.InstRune1: + if r != inst.Rune[0] { + goto Return + } + case syntax.InstRuneAny: + // Nothing + case syntax.InstRuneAnyNotNL: + if r == '\n' { + goto Return + } + // peek at the input rune to see which branch of the Alt to take + case syntax.InstAlt, syntax.InstAltMatch: + pc = int(onePassNext(inst, r)) + continue + case syntax.InstFail: + goto Return + case syntax.InstNop: + continue + case syntax.InstEmptyWidth: + if !flag.match(syntax.EmptyOp(inst.Arg)) { + goto Return + } + continue + case syntax.InstCapture: + if int(inst.Arg) < len(m.matchcap) { + m.matchcap[inst.Arg] = pos + } + continue + } + if width == 0 { + break + } + flag = newLazyFlag(r, r1) + pos += width + r, width = r1, width1 + if r != endOfText { + r1, width1 = i.step(pos + width) + } + } + +Return: + if !matched { + freeOnePassMachine(m) + return nil + } + + dstCap = append(dstCap, m.matchcap...) + freeOnePassMachine(m) + return dstCap +} + +// doMatch reports whether either r, b or s match the regexp. +func (re *Regexp) doMatch(r io.RuneReader, b []byte, s string) bool { + return re.doExecute(r, b, s, 0, 0, nil) != nil +} + +// doExecute finds the leftmost match in the input, appends the position +// of its subexpressions to dstCap and returns dstCap. +// +// nil is returned if no matches are found and non-nil if matches are found. +func (re *Regexp) doExecute(r io.RuneReader, b []byte, s string, pos int, ncap int, dstCap []int) []int { + if dstCap == nil { + // Make sure 'return dstCap' is non-nil. + dstCap = arrayNoInts[:0:0] + } + + if r == nil && len(b)+len(s) < re.minInputLen { + return nil + } + + if re.onepass != nil { + return re.doOnePass(r, b, s, pos, ncap, dstCap) + } + if r == nil && len(b)+len(s) < re.maxBitStateLen { + return re.backtrack(b, s, pos, ncap, dstCap) + } + + m := re.get() + i, _ := m.inputs.init(r, b, s) + + m.init(ncap) + if !m.match(i, pos) { + re.put(m) + return nil + } + + dstCap = append(dstCap, m.matchcap...) + re.put(m) + return dstCap +} + +// arrayNoInts is returned by doExecute match if nil dstCap is passed +// to it with ncap=0. +var arrayNoInts [0]int |