From 43a123c1ae6613b3efeed291fa552ecd909d3acf Mon Sep 17 00:00:00 2001 From: Daniel Baumann Date: Tue, 16 Apr 2024 21:23:18 +0200 Subject: Adding upstream version 1.20.14. Signed-off-by: Daniel Baumann --- src/math/big/example_rat_test.go | 68 ++++++++++++++++++++++++++++++++++++++++ 1 file changed, 68 insertions(+) create mode 100644 src/math/big/example_rat_test.go (limited to 'src/math/big/example_rat_test.go') diff --git a/src/math/big/example_rat_test.go b/src/math/big/example_rat_test.go new file mode 100644 index 0000000..dc67430 --- /dev/null +++ b/src/math/big/example_rat_test.go @@ -0,0 +1,68 @@ +// Copyright 2015 The Go Authors. All rights reserved. +// Use of this source code is governed by a BSD-style +// license that can be found in the LICENSE file. + +package big_test + +import ( + "fmt" + "math/big" +) + +// Use the classic continued fraction for e +// +// e = [1; 0, 1, 1, 2, 1, 1, ... 2n, 1, 1, ...] +// +// i.e., for the nth term, use +// +// 1 if n mod 3 != 1 +// (n-1)/3 * 2 if n mod 3 == 1 +func recur(n, lim int64) *big.Rat { + term := new(big.Rat) + if n%3 != 1 { + term.SetInt64(1) + } else { + term.SetInt64((n - 1) / 3 * 2) + } + + if n > lim { + return term + } + + // Directly initialize frac as the fractional + // inverse of the result of recur. + frac := new(big.Rat).Inv(recur(n+1, lim)) + + return term.Add(term, frac) +} + +// This example demonstrates how to use big.Rat to compute the +// first 15 terms in the sequence of rational convergents for +// the constant e (base of natural logarithm). +func Example_eConvergents() { + for i := 1; i <= 15; i++ { + r := recur(0, int64(i)) + + // Print r both as a fraction and as a floating-point number. + // Since big.Rat implements fmt.Formatter, we can use %-13s to + // get a left-aligned string representation of the fraction. + fmt.Printf("%-13s = %s\n", r, r.FloatString(8)) + } + + // Output: + // 2/1 = 2.00000000 + // 3/1 = 3.00000000 + // 8/3 = 2.66666667 + // 11/4 = 2.75000000 + // 19/7 = 2.71428571 + // 87/32 = 2.71875000 + // 106/39 = 2.71794872 + // 193/71 = 2.71830986 + // 1264/465 = 2.71827957 + // 1457/536 = 2.71828358 + // 2721/1001 = 2.71828172 + // 23225/8544 = 2.71828184 + // 25946/9545 = 2.71828182 + // 49171/18089 = 2.71828183 + // 517656/190435 = 2.71828183 +} -- cgit v1.2.3