From 43a123c1ae6613b3efeed291fa552ecd909d3acf Mon Sep 17 00:00:00 2001 From: Daniel Baumann Date: Tue, 16 Apr 2024 21:23:18 +0200 Subject: Adding upstream version 1.20.14. Signed-off-by: Daniel Baumann --- src/regexp/syntax/compile.go | 296 +++++ src/regexp/syntax/doc.go | 141 +++ src/regexp/syntax/make_perl_groups.pl | 113 ++ src/regexp/syntax/op_string.go | 26 + src/regexp/syntax/parse.go | 2115 +++++++++++++++++++++++++++++++++ src/regexp/syntax/parse_test.go | 586 +++++++++ src/regexp/syntax/perl_groups.go | 134 +++ src/regexp/syntax/prog.go | 347 ++++++ src/regexp/syntax/prog_test.go | 129 ++ src/regexp/syntax/regexp.go | 320 +++++ src/regexp/syntax/simplify.go | 151 +++ src/regexp/syntax/simplify_test.go | 151 +++ 12 files changed, 4509 insertions(+) create mode 100644 src/regexp/syntax/compile.go create mode 100644 src/regexp/syntax/doc.go create mode 100755 src/regexp/syntax/make_perl_groups.pl create mode 100644 src/regexp/syntax/op_string.go create mode 100644 src/regexp/syntax/parse.go create mode 100644 src/regexp/syntax/parse_test.go create mode 100644 src/regexp/syntax/perl_groups.go create mode 100644 src/regexp/syntax/prog.go create mode 100644 src/regexp/syntax/prog_test.go create mode 100644 src/regexp/syntax/regexp.go create mode 100644 src/regexp/syntax/simplify.go create mode 100644 src/regexp/syntax/simplify_test.go (limited to 'src/regexp/syntax') diff --git a/src/regexp/syntax/compile.go b/src/regexp/syntax/compile.go new file mode 100644 index 0000000..c9f9fa0 --- /dev/null +++ b/src/regexp/syntax/compile.go @@ -0,0 +1,296 @@ +// Copyright 2011 The Go Authors. All rights reserved. +// Use of this source code is governed by a BSD-style +// license that can be found in the LICENSE file. + +package syntax + +import "unicode" + +// A patchList is a list of instruction pointers that need to be filled in (patched). +// Because the pointers haven't been filled in yet, we can reuse their storage +// to hold the list. It's kind of sleazy, but works well in practice. +// See https://swtch.com/~rsc/regexp/regexp1.html for inspiration. +// +// These aren't really pointers: they're integers, so we can reinterpret them +// this way without using package unsafe. A value l.head denotes +// p.inst[l.head>>1].Out (l.head&1==0) or .Arg (l.head&1==1). +// head == 0 denotes the empty list, okay because we start every program +// with a fail instruction, so we'll never want to point at its output link. +type patchList struct { + head, tail uint32 +} + +func makePatchList(n uint32) patchList { + return patchList{n, n} +} + +func (l patchList) patch(p *Prog, val uint32) { + head := l.head + for head != 0 { + i := &p.Inst[head>>1] + if head&1 == 0 { + head = i.Out + i.Out = val + } else { + head = i.Arg + i.Arg = val + } + } +} + +func (l1 patchList) append(p *Prog, l2 patchList) patchList { + if l1.head == 0 { + return l2 + } + if l2.head == 0 { + return l1 + } + + i := &p.Inst[l1.tail>>1] + if l1.tail&1 == 0 { + i.Out = l2.head + } else { + i.Arg = l2.head + } + return patchList{l1.head, l2.tail} +} + +// A frag represents a compiled program fragment. +type frag struct { + i uint32 // index of first instruction + out patchList // where to record end instruction + nullable bool // whether fragment can match empty string +} + +type compiler struct { + p *Prog +} + +// Compile compiles the regexp into a program to be executed. +// The regexp should have been simplified already (returned from re.Simplify). +func Compile(re *Regexp) (*Prog, error) { + var c compiler + c.init() + f := c.compile(re) + f.out.patch(c.p, c.inst(InstMatch).i) + c.p.Start = int(f.i) + return c.p, nil +} + +func (c *compiler) init() { + c.p = new(Prog) + c.p.NumCap = 2 // implicit ( and ) for whole match $0 + c.inst(InstFail) +} + +var anyRuneNotNL = []rune{0, '\n' - 1, '\n' + 1, unicode.MaxRune} +var anyRune = []rune{0, unicode.MaxRune} + +func (c *compiler) compile(re *Regexp) frag { + switch re.Op { + case OpNoMatch: + return c.fail() + case OpEmptyMatch: + return c.nop() + case OpLiteral: + if len(re.Rune) == 0 { + return c.nop() + } + var f frag + for j := range re.Rune { + f1 := c.rune(re.Rune[j:j+1], re.Flags) + if j == 0 { + f = f1 + } else { + f = c.cat(f, f1) + } + } + return f + case OpCharClass: + return c.rune(re.Rune, re.Flags) + case OpAnyCharNotNL: + return c.rune(anyRuneNotNL, 0) + case OpAnyChar: + return c.rune(anyRune, 0) + case OpBeginLine: + return c.empty(EmptyBeginLine) + case OpEndLine: + return c.empty(EmptyEndLine) + case OpBeginText: + return c.empty(EmptyBeginText) + case OpEndText: + return c.empty(EmptyEndText) + case OpWordBoundary: + return c.empty(EmptyWordBoundary) + case OpNoWordBoundary: + return c.empty(EmptyNoWordBoundary) + case OpCapture: + bra := c.cap(uint32(re.Cap << 1)) + sub := c.compile(re.Sub[0]) + ket := c.cap(uint32(re.Cap<<1 | 1)) + return c.cat(c.cat(bra, sub), ket) + case OpStar: + return c.star(c.compile(re.Sub[0]), re.Flags&NonGreedy != 0) + case OpPlus: + return c.plus(c.compile(re.Sub[0]), re.Flags&NonGreedy != 0) + case OpQuest: + return c.quest(c.compile(re.Sub[0]), re.Flags&NonGreedy != 0) + case OpConcat: + if len(re.Sub) == 0 { + return c.nop() + } + var f frag + for i, sub := range re.Sub { + if i == 0 { + f = c.compile(sub) + } else { + f = c.cat(f, c.compile(sub)) + } + } + return f + case OpAlternate: + var f frag + for _, sub := range re.Sub { + f = c.alt(f, c.compile(sub)) + } + return f + } + panic("regexp: unhandled case in compile") +} + +func (c *compiler) inst(op InstOp) frag { + // TODO: impose length limit + f := frag{i: uint32(len(c.p.Inst)), nullable: true} + c.p.Inst = append(c.p.Inst, Inst{Op: op}) + return f +} + +func (c *compiler) nop() frag { + f := c.inst(InstNop) + f.out = makePatchList(f.i << 1) + return f +} + +func (c *compiler) fail() frag { + return frag{} +} + +func (c *compiler) cap(arg uint32) frag { + f := c.inst(InstCapture) + f.out = makePatchList(f.i << 1) + c.p.Inst[f.i].Arg = arg + + if c.p.NumCap < int(arg)+1 { + c.p.NumCap = int(arg) + 1 + } + return f +} + +func (c *compiler) cat(f1, f2 frag) frag { + // concat of failure is failure + if f1.i == 0 || f2.i == 0 { + return frag{} + } + + // TODO: elide nop + + f1.out.patch(c.p, f2.i) + return frag{f1.i, f2.out, f1.nullable && f2.nullable} +} + +func (c *compiler) alt(f1, f2 frag) frag { + // alt of failure is other + if f1.i == 0 { + return f2 + } + if f2.i == 0 { + return f1 + } + + f := c.inst(InstAlt) + i := &c.p.Inst[f.i] + i.Out = f1.i + i.Arg = f2.i + f.out = f1.out.append(c.p, f2.out) + f.nullable = f1.nullable || f2.nullable + return f +} + +func (c *compiler) quest(f1 frag, nongreedy bool) frag { + f := c.inst(InstAlt) + i := &c.p.Inst[f.i] + if nongreedy { + i.Arg = f1.i + f.out = makePatchList(f.i << 1) + } else { + i.Out = f1.i + f.out = makePatchList(f.i<<1 | 1) + } + f.out = f.out.append(c.p, f1.out) + return f +} + +// loop returns the fragment for the main loop of a plus or star. +// For plus, it can be used after changing the entry to f1.i. +// For star, it can be used directly when f1 can't match an empty string. +// (When f1 can match an empty string, f1* must be implemented as (f1+)? +// to get the priority match order correct.) +func (c *compiler) loop(f1 frag, nongreedy bool) frag { + f := c.inst(InstAlt) + i := &c.p.Inst[f.i] + if nongreedy { + i.Arg = f1.i + f.out = makePatchList(f.i << 1) + } else { + i.Out = f1.i + f.out = makePatchList(f.i<<1 | 1) + } + f1.out.patch(c.p, f.i) + return f +} + +func (c *compiler) star(f1 frag, nongreedy bool) frag { + if f1.nullable { + // Use (f1+)? to get priority match order correct. + // See golang.org/issue/46123. + return c.quest(c.plus(f1, nongreedy), nongreedy) + } + return c.loop(f1, nongreedy) +} + +func (c *compiler) plus(f1 frag, nongreedy bool) frag { + return frag{f1.i, c.loop(f1, nongreedy).out, f1.nullable} +} + +func (c *compiler) empty(op EmptyOp) frag { + f := c.inst(InstEmptyWidth) + c.p.Inst[f.i].Arg = uint32(op) + f.out = makePatchList(f.i << 1) + return f +} + +func (c *compiler) rune(r []rune, flags Flags) frag { + f := c.inst(InstRune) + f.nullable = false + i := &c.p.Inst[f.i] + i.Rune = r + flags &= FoldCase // only relevant flag is FoldCase + if len(r) != 1 || unicode.SimpleFold(r[0]) == r[0] { + // and sometimes not even that + flags &^= FoldCase + } + i.Arg = uint32(flags) + f.out = makePatchList(f.i << 1) + + // Special cases for exec machine. + switch { + case flags&FoldCase == 0 && (len(r) == 1 || len(r) == 2 && r[0] == r[1]): + i.Op = InstRune1 + case len(r) == 2 && r[0] == 0 && r[1] == unicode.MaxRune: + i.Op = InstRuneAny + case len(r) == 4 && r[0] == 0 && r[1] == '\n'-1 && r[2] == '\n'+1 && r[3] == unicode.MaxRune: + i.Op = InstRuneAnyNotNL + } + + return f +} diff --git a/src/regexp/syntax/doc.go b/src/regexp/syntax/doc.go new file mode 100644 index 0000000..f6a4b43 --- /dev/null +++ b/src/regexp/syntax/doc.go @@ -0,0 +1,141 @@ +// Copyright 2012 The Go Authors. All rights reserved. +// Use of this source code is governed by a BSD-style +// license that can be found in the LICENSE file. + +// DO NOT EDIT. This file is generated by mksyntaxgo from the RE2 distribution. + +/* +Package syntax parses regular expressions into parse trees and compiles +parse trees into programs. Most clients of regular expressions will use the +facilities of package regexp (such as Compile and Match) instead of this package. + +# Syntax + +The regular expression syntax understood by this package when parsing with the Perl flag is as follows. +Parts of the syntax can be disabled by passing alternate flags to Parse. + +Single characters: + + . any character, possibly including newline (flag s=true) + [xyz] character class + [^xyz] negated character class + \d Perl character class + \D negated Perl character class + [[:alpha:]] ASCII character class + [[:^alpha:]] negated ASCII character class + \pN Unicode character class (one-letter name) + \p{Greek} Unicode character class + \PN negated Unicode character class (one-letter name) + \P{Greek} negated Unicode character class + +Composites: + + xy x followed by y + x|y x or y (prefer x) + +Repetitions: + + x* zero or more x, prefer more + x+ one or more x, prefer more + x? zero or one x, prefer one + x{n,m} n or n+1 or ... or m x, prefer more + x{n,} n or more x, prefer more + x{n} exactly n x + x*? zero or more x, prefer fewer + x+? one or more x, prefer fewer + x?? zero or one x, prefer zero + x{n,m}? n or n+1 or ... or m x, prefer fewer + x{n,}? n or more x, prefer fewer + x{n}? exactly n x + +Implementation restriction: The counting forms x{n,m}, x{n,}, and x{n} +reject forms that create a minimum or maximum repetition count above 1000. +Unlimited repetitions are not subject to this restriction. + +Grouping: + + (re) numbered capturing group (submatch) + (?Pre) named & numbered capturing group (submatch) + (?:re) non-capturing group + (?flags) set flags within current group; non-capturing + (?flags:re) set flags during re; non-capturing + + Flag syntax is xyz (set) or -xyz (clear) or xy-z (set xy, clear z). The flags are: + + i case-insensitive (default false) + m multi-line mode: ^ and $ match begin/end line in addition to begin/end text (default false) + s let . match \n (default false) + U ungreedy: swap meaning of x* and x*?, x+ and x+?, etc (default false) + +Empty strings: + + ^ at beginning of text or line (flag m=true) + $ at end of text (like \z not \Z) or line (flag m=true) + \A at beginning of text + \b at ASCII word boundary (\w on one side and \W, \A, or \z on the other) + \B not at ASCII word boundary + \z at end of text + +Escape sequences: + + \a bell (== \007) + \f form feed (== \014) + \t horizontal tab (== \011) + \n newline (== \012) + \r carriage return (== \015) + \v vertical tab character (== \013) + \* literal *, for any punctuation character * + \123 octal character code (up to three digits) + \x7F hex character code (exactly two digits) + \x{10FFFF} hex character code + \Q...\E literal text ... even if ... has punctuation + +Character class elements: + + x single character + A-Z character range (inclusive) + \d Perl character class + [:foo:] ASCII character class foo + \p{Foo} Unicode character class Foo + \pF Unicode character class F (one-letter name) + +Named character classes as character class elements: + + [\d] digits (== \d) + [^\d] not digits (== \D) + [\D] not digits (== \D) + [^\D] not not digits (== \d) + [[:name:]] named ASCII class inside character class (== [:name:]) + [^[:name:]] named ASCII class inside negated character class (== [:^name:]) + [\p{Name}] named Unicode property inside character class (== \p{Name}) + [^\p{Name}] named Unicode property inside negated character class (== \P{Name}) + +Perl character classes (all ASCII-only): + + \d digits (== [0-9]) + \D not digits (== [^0-9]) + \s whitespace (== [\t\n\f\r ]) + \S not whitespace (== [^\t\n\f\r ]) + \w word characters (== [0-9A-Za-z_]) + \W not word characters (== [^0-9A-Za-z_]) + +ASCII character classes: + + [[:alnum:]] alphanumeric (== [0-9A-Za-z]) + [[:alpha:]] alphabetic (== [A-Za-z]) + [[:ascii:]] ASCII (== [\x00-\x7F]) + [[:blank:]] blank (== [\t ]) + [[:cntrl:]] control (== [\x00-\x1F\x7F]) + [[:digit:]] digits (== [0-9]) + [[:graph:]] graphical (== [!-~] == [A-Za-z0-9!"#$%&'()*+,\-./:;<=>?@[\\\]^_`{|}~]) + [[:lower:]] lower case (== [a-z]) + [[:print:]] printable (== [ -~] == [ [:graph:]]) + [[:punct:]] punctuation (== [!-/:-@[-`{-~]) + [[:space:]] whitespace (== [\t\n\v\f\r ]) + [[:upper:]] upper case (== [A-Z]) + [[:word:]] word characters (== [0-9A-Za-z_]) + [[:xdigit:]] hex digit (== [0-9A-Fa-f]) + +Unicode character classes are those in unicode.Categories and unicode.Scripts. +*/ +package syntax diff --git a/src/regexp/syntax/make_perl_groups.pl b/src/regexp/syntax/make_perl_groups.pl new file mode 100755 index 0000000..80a2c9a --- /dev/null +++ b/src/regexp/syntax/make_perl_groups.pl @@ -0,0 +1,113 @@ +#!/usr/bin/perl +# Copyright 2008 The Go Authors. All rights reserved. +# Use of this source code is governed by a BSD-style +# license that can be found in the LICENSE file. + +# Modified version of RE2's make_perl_groups.pl. + +# Generate table entries giving character ranges +# for POSIX/Perl character classes. Rather than +# figure out what the definition is, it is easier to ask +# Perl about each letter from 0-128 and write down +# its answer. + +@posixclasses = ( + "[:alnum:]", + "[:alpha:]", + "[:ascii:]", + "[:blank:]", + "[:cntrl:]", + "[:digit:]", + "[:graph:]", + "[:lower:]", + "[:print:]", + "[:punct:]", + "[:space:]", + "[:upper:]", + "[:word:]", + "[:xdigit:]", +); + +@perlclasses = ( + "\\d", + "\\s", + "\\w", +); + +%overrides = ( + # Prior to Perl 5.18, \s did not match vertical tab. + # RE2 preserves that original behaviour. + "\\s:11" => 0, +); + +sub ComputeClass($) { + my @ranges; + my ($class) = @_; + my $regexp = "[$class]"; + my $start = -1; + for (my $i=0; $i<=129; $i++) { + if ($i == 129) { $i = 256; } + if ($i <= 128 && ($overrides{"$class:$i"} // chr($i) =~ $regexp)) { + if ($start < 0) { + $start = $i; + } + } else { + if ($start >= 0) { + push @ranges, [$start, $i-1]; + } + $start = -1; + } + } + return @ranges; +} + +sub PrintClass($$@) { + my ($cname, $name, @ranges) = @_; + print "var code$cname = []rune{ /* $name */\n"; + for (my $i=0; $i<@ranges; $i++) { + my @a = @{$ranges[$i]}; + printf "\t0x%x, 0x%x,\n", $a[0], $a[1]; + } + print "}\n\n"; + my $n = @ranges; + $negname = $name; + if ($negname =~ /:/) { + $negname =~ s/:/:^/; + } else { + $negname =~ y/a-z/A-Z/; + } + return "\t`$name`: {+1, code$cname},\n" . + "\t`$negname`: {-1, code$cname},\n"; +} + +my $gen = 0; + +sub PrintClasses($@) { + my ($cname, @classes) = @_; + my @entries; + foreach my $cl (@classes) { + my @ranges = ComputeClass($cl); + push @entries, PrintClass(++$gen, $cl, @ranges); + } + print "var ${cname}Group = map[string]charGroup{\n"; + foreach my $e (@entries) { + print $e; + } + print "}\n"; + my $count = @entries; +} + +print <perl_groups.go + +package syntax + +EOF + +PrintClasses("perl", @perlclasses); +PrintClasses("posix", @posixclasses); diff --git a/src/regexp/syntax/op_string.go b/src/regexp/syntax/op_string.go new file mode 100644 index 0000000..3952b2b --- /dev/null +++ b/src/regexp/syntax/op_string.go @@ -0,0 +1,26 @@ +// Code generated by "stringer -type Op -trimprefix Op"; DO NOT EDIT. + +package syntax + +import "strconv" + +const ( + _Op_name_0 = "NoMatchEmptyMatchLiteralCharClassAnyCharNotNLAnyCharBeginLineEndLineBeginTextEndTextWordBoundaryNoWordBoundaryCaptureStarPlusQuestRepeatConcatAlternate" + _Op_name_1 = "opPseudo" +) + +var ( + _Op_index_0 = [...]uint8{0, 7, 17, 24, 33, 45, 52, 61, 68, 77, 84, 96, 110, 117, 121, 125, 130, 136, 142, 151} +) + +func (i Op) String() string { + switch { + case 1 <= i && i <= 19: + i -= 1 + return _Op_name_0[_Op_index_0[i]:_Op_index_0[i+1]] + case i == 128: + return _Op_name_1 + default: + return "Op(" + strconv.FormatInt(int64(i), 10) + ")" + } +} diff --git a/src/regexp/syntax/parse.go b/src/regexp/syntax/parse.go new file mode 100644 index 0000000..accee9a --- /dev/null +++ b/src/regexp/syntax/parse.go @@ -0,0 +1,2115 @@ +// Copyright 2011 The Go Authors. All rights reserved. +// Use of this source code is governed by a BSD-style +// license that can be found in the LICENSE file. + +package syntax + +import ( + "sort" + "strings" + "unicode" + "unicode/utf8" +) + +// An Error describes a failure to parse a regular expression +// and gives the offending expression. +type Error struct { + Code ErrorCode + Expr string +} + +func (e *Error) Error() string { + return "error parsing regexp: " + e.Code.String() + ": `" + e.Expr + "`" +} + +// An ErrorCode describes a failure to parse a regular expression. +type ErrorCode string + +const ( + // Unexpected error + ErrInternalError ErrorCode = "regexp/syntax: internal error" + + // Parse errors + ErrInvalidCharClass ErrorCode = "invalid character class" + ErrInvalidCharRange ErrorCode = "invalid character class range" + ErrInvalidEscape ErrorCode = "invalid escape sequence" + ErrInvalidNamedCapture ErrorCode = "invalid named capture" + ErrInvalidPerlOp ErrorCode = "invalid or unsupported Perl syntax" + ErrInvalidRepeatOp ErrorCode = "invalid nested repetition operator" + ErrInvalidRepeatSize ErrorCode = "invalid repeat count" + ErrInvalidUTF8 ErrorCode = "invalid UTF-8" + ErrMissingBracket ErrorCode = "missing closing ]" + ErrMissingParen ErrorCode = "missing closing )" + ErrMissingRepeatArgument ErrorCode = "missing argument to repetition operator" + ErrTrailingBackslash ErrorCode = "trailing backslash at end of expression" + ErrUnexpectedParen ErrorCode = "unexpected )" + ErrNestingDepth ErrorCode = "expression nests too deeply" + ErrLarge ErrorCode = "expression too large" +) + +func (e ErrorCode) String() string { + return string(e) +} + +// Flags control the behavior of the parser and record information about regexp context. +type Flags uint16 + +const ( + FoldCase Flags = 1 << iota // case-insensitive match + Literal // treat pattern as literal string + ClassNL // allow character classes like [^a-z] and [[:space:]] to match newline + DotNL // allow . to match newline + OneLine // treat ^ and $ as only matching at beginning and end of text + NonGreedy // make repetition operators default to non-greedy + PerlX // allow Perl extensions + UnicodeGroups // allow \p{Han}, \P{Han} for Unicode group and negation + WasDollar // regexp OpEndText was $, not \z + Simple // regexp contains no counted repetition + + MatchNL = ClassNL | DotNL + + Perl = ClassNL | OneLine | PerlX | UnicodeGroups // as close to Perl as possible + POSIX Flags = 0 // POSIX syntax +) + +// Pseudo-ops for parsing stack. +const ( + opLeftParen = opPseudo + iota + opVerticalBar +) + +// maxHeight is the maximum height of a regexp parse tree. +// It is somewhat arbitrarily chosen, but the idea is to be large enough +// that no one will actually hit in real use but at the same time small enough +// that recursion on the Regexp tree will not hit the 1GB Go stack limit. +// The maximum amount of stack for a single recursive frame is probably +// closer to 1kB, so this could potentially be raised, but it seems unlikely +// that people have regexps nested even this deeply. +// We ran a test on Google's C++ code base and turned up only +// a single use case with depth > 100; it had depth 128. +// Using depth 1000 should be plenty of margin. +// As an optimization, we don't even bother calculating heights +// until we've allocated at least maxHeight Regexp structures. +const maxHeight = 1000 + +// maxSize is the maximum size of a compiled regexp in Insts. +// It too is somewhat arbitrarily chosen, but the idea is to be large enough +// to allow significant regexps while at the same time small enough that +// the compiled form will not take up too much memory. +// 128 MB is enough for a 3.3 million Inst structures, which roughly +// corresponds to a 3.3 MB regexp. +const ( + maxSize = 128 << 20 / instSize + instSize = 5 * 8 // byte, 2 uint32, slice is 5 64-bit words +) + +// maxRunes is the maximum number of runes allowed in a regexp tree +// counting the runes in all the nodes. +// Ignoring character classes p.numRunes is always less than the length of the regexp. +// Character classes can make it much larger: each \pL adds 1292 runes. +// 128 MB is enough for 32M runes, which is over 26k \pL instances. +// Note that repetitions do not make copies of the rune slices, +// so \pL{1000} is only one rune slice, not 1000. +// We could keep a cache of character classes we've seen, +// so that all the \pL we see use the same rune list, +// but that doesn't remove the problem entirely: +// consider something like [\pL01234][\pL01235][\pL01236]...[\pL^&*()]. +// And because the Rune slice is exposed directly in the Regexp, +// there is not an opportunity to change the representation to allow +// partial sharing between different character classes. +// So the limit is the best we can do. +const ( + maxRunes = 128 << 20 / runeSize + runeSize = 4 // rune is int32 +) + +type parser struct { + flags Flags // parse mode flags + stack []*Regexp // stack of parsed expressions + free *Regexp + numCap int // number of capturing groups seen + wholeRegexp string + tmpClass []rune // temporary char class work space + numRegexp int // number of regexps allocated + numRunes int // number of runes in char classes + repeats int64 // product of all repetitions seen + height map[*Regexp]int // regexp height, for height limit check + size map[*Regexp]int64 // regexp compiled size, for size limit check +} + +func (p *parser) newRegexp(op Op) *Regexp { + re := p.free + if re != nil { + p.free = re.Sub0[0] + *re = Regexp{} + } else { + re = new(Regexp) + p.numRegexp++ + } + re.Op = op + return re +} + +func (p *parser) reuse(re *Regexp) { + if p.height != nil { + delete(p.height, re) + } + re.Sub0[0] = p.free + p.free = re +} + +func (p *parser) checkLimits(re *Regexp) { + if p.numRunes > maxRunes { + panic(ErrLarge) + } + p.checkSize(re) + p.checkHeight(re) +} + +func (p *parser) checkSize(re *Regexp) { + if p.size == nil { + // We haven't started tracking size yet. + // Do a relatively cheap check to see if we need to start. + // Maintain the product of all the repeats we've seen + // and don't track if the total number of regexp nodes + // we've seen times the repeat product is in budget. + if p.repeats == 0 { + p.repeats = 1 + } + if re.Op == OpRepeat { + n := re.Max + if n == -1 { + n = re.Min + } + if n <= 0 { + n = 1 + } + if int64(n) > maxSize/p.repeats { + p.repeats = maxSize + } else { + p.repeats *= int64(n) + } + } + if int64(p.numRegexp) < maxSize/p.repeats { + return + } + + // We need to start tracking size. + // Make the map and belatedly populate it + // with info about everything we've constructed so far. + p.size = make(map[*Regexp]int64) + for _, re := range p.stack { + p.checkSize(re) + } + } + + if p.calcSize(re, true) > maxSize { + panic(ErrLarge) + } +} + +func (p *parser) calcSize(re *Regexp, force bool) int64 { + if !force { + if size, ok := p.size[re]; ok { + return size + } + } + + var size int64 + switch re.Op { + case OpLiteral: + size = int64(len(re.Rune)) + case OpCapture, OpStar: + // star can be 1+ or 2+; assume 2 pessimistically + size = 2 + p.calcSize(re.Sub[0], false) + case OpPlus, OpQuest: + size = 1 + p.calcSize(re.Sub[0], false) + case OpConcat: + for _, sub := range re.Sub { + size += p.calcSize(sub, false) + } + case OpAlternate: + for _, sub := range re.Sub { + size += p.calcSize(sub, false) + } + if len(re.Sub) > 1 { + size += int64(len(re.Sub)) - 1 + } + case OpRepeat: + sub := p.calcSize(re.Sub[0], false) + if re.Max == -1 { + if re.Min == 0 { + size = 2 + sub // x* + } else { + size = 1 + int64(re.Min)*sub // xxx+ + } + break + } + // x{2,5} = xx(x(x(x)?)?)? + size = int64(re.Max)*sub + int64(re.Max-re.Min) + } + + if size < 1 { + size = 1 + } + p.size[re] = size + return size +} + +func (p *parser) checkHeight(re *Regexp) { + if p.numRegexp < maxHeight { + return + } + if p.height == nil { + p.height = make(map[*Regexp]int) + for _, re := range p.stack { + p.checkHeight(re) + } + } + if p.calcHeight(re, true) > maxHeight { + panic(ErrNestingDepth) + } +} + +func (p *parser) calcHeight(re *Regexp, force bool) int { + if !force { + if h, ok := p.height[re]; ok { + return h + } + } + h := 1 + for _, sub := range re.Sub { + hsub := p.calcHeight(sub, false) + if h < 1+hsub { + h = 1 + hsub + } + } + p.height[re] = h + return h +} + +// Parse stack manipulation. + +// push pushes the regexp re onto the parse stack and returns the regexp. +func (p *parser) push(re *Regexp) *Regexp { + p.numRunes += len(re.Rune) + if re.Op == OpCharClass && len(re.Rune) == 2 && re.Rune[0] == re.Rune[1] { + // Single rune. + if p.maybeConcat(re.Rune[0], p.flags&^FoldCase) { + return nil + } + re.Op = OpLiteral + re.Rune = re.Rune[:1] + re.Flags = p.flags &^ FoldCase + } else if re.Op == OpCharClass && len(re.Rune) == 4 && + re.Rune[0] == re.Rune[1] && re.Rune[2] == re.Rune[3] && + unicode.SimpleFold(re.Rune[0]) == re.Rune[2] && + unicode.SimpleFold(re.Rune[2]) == re.Rune[0] || + re.Op == OpCharClass && len(re.Rune) == 2 && + re.Rune[0]+1 == re.Rune[1] && + unicode.SimpleFold(re.Rune[0]) == re.Rune[1] && + unicode.SimpleFold(re.Rune[1]) == re.Rune[0] { + // Case-insensitive rune like [Aa] or [Δδ]. + if p.maybeConcat(re.Rune[0], p.flags|FoldCase) { + return nil + } + + // Rewrite as (case-insensitive) literal. + re.Op = OpLiteral + re.Rune = re.Rune[:1] + re.Flags = p.flags | FoldCase + } else { + // Incremental concatenation. + p.maybeConcat(-1, 0) + } + + p.stack = append(p.stack, re) + p.checkLimits(re) + return re +} + +// maybeConcat implements incremental concatenation +// of literal runes into string nodes. The parser calls this +// before each push, so only the top fragment of the stack +// might need processing. Since this is called before a push, +// the topmost literal is no longer subject to operators like * +// (Otherwise ab* would turn into (ab)*.) +// If r >= 0 and there's a node left over, maybeConcat uses it +// to push r with the given flags. +// maybeConcat reports whether r was pushed. +func (p *parser) maybeConcat(r rune, flags Flags) bool { + n := len(p.stack) + if n < 2 { + return false + } + + re1 := p.stack[n-1] + re2 := p.stack[n-2] + if re1.Op != OpLiteral || re2.Op != OpLiteral || re1.Flags&FoldCase != re2.Flags&FoldCase { + return false + } + + // Push re1 into re2. + re2.Rune = append(re2.Rune, re1.Rune...) + + // Reuse re1 if possible. + if r >= 0 { + re1.Rune = re1.Rune0[:1] + re1.Rune[0] = r + re1.Flags = flags + return true + } + + p.stack = p.stack[:n-1] + p.reuse(re1) + return false // did not push r +} + +// literal pushes a literal regexp for the rune r on the stack. +func (p *parser) literal(r rune) { + re := p.newRegexp(OpLiteral) + re.Flags = p.flags + if p.flags&FoldCase != 0 { + r = minFoldRune(r) + } + re.Rune0[0] = r + re.Rune = re.Rune0[:1] + p.push(re) +} + +// minFoldRune returns the minimum rune fold-equivalent to r. +func minFoldRune(r rune) rune { + if r < minFold || r > maxFold { + return r + } + min := r + r0 := r + for r = unicode.SimpleFold(r); r != r0; r = unicode.SimpleFold(r) { + if min > r { + min = r + } + } + return min +} + +// op pushes a regexp with the given op onto the stack +// and returns that regexp. +func (p *parser) op(op Op) *Regexp { + re := p.newRegexp(op) + re.Flags = p.flags + return p.push(re) +} + +// repeat replaces the top stack element with itself repeated according to op, min, max. +// before is the regexp suffix starting at the repetition operator. +// after is the regexp suffix following after the repetition operator. +// repeat returns an updated 'after' and an error, if any. +func (p *parser) repeat(op Op, min, max int, before, after, lastRepeat string) (string, error) { + flags := p.flags + if p.flags&PerlX != 0 { + if len(after) > 0 && after[0] == '?' { + after = after[1:] + flags ^= NonGreedy + } + if lastRepeat != "" { + // In Perl it is not allowed to stack repetition operators: + // a** is a syntax error, not a doubled star, and a++ means + // something else entirely, which we don't support! + return "", &Error{ErrInvalidRepeatOp, lastRepeat[:len(lastRepeat)-len(after)]} + } + } + n := len(p.stack) + if n == 0 { + return "", &Error{ErrMissingRepeatArgument, before[:len(before)-len(after)]} + } + sub := p.stack[n-1] + if sub.Op >= opPseudo { + return "", &Error{ErrMissingRepeatArgument, before[:len(before)-len(after)]} + } + + re := p.newRegexp(op) + re.Min = min + re.Max = max + re.Flags = flags + re.Sub = re.Sub0[:1] + re.Sub[0] = sub + p.stack[n-1] = re + p.checkLimits(re) + + if op == OpRepeat && (min >= 2 || max >= 2) && !repeatIsValid(re, 1000) { + return "", &Error{ErrInvalidRepeatSize, before[:len(before)-len(after)]} + } + + return after, nil +} + +// repeatIsValid reports whether the repetition re is valid. +// Valid means that the combination of the top-level repetition +// and any inner repetitions does not exceed n copies of the +// innermost thing. +// This function rewalks the regexp tree and is called for every repetition, +// so we have to worry about inducing quadratic behavior in the parser. +// We avoid this by only calling repeatIsValid when min or max >= 2. +// In that case the depth of any >= 2 nesting can only get to 9 without +// triggering a parse error, so each subtree can only be rewalked 9 times. +func repeatIsValid(re *Regexp, n int) bool { + if re.Op == OpRepeat { + m := re.Max + if m == 0 { + return true + } + if m < 0 { + m = re.Min + } + if m > n { + return false + } + if m > 0 { + n /= m + } + } + for _, sub := range re.Sub { + if !repeatIsValid(sub, n) { + return false + } + } + return true +} + +// concat replaces the top of the stack (above the topmost '|' or '(') with its concatenation. +func (p *parser) concat() *Regexp { + p.maybeConcat(-1, 0) + + // Scan down to find pseudo-operator | or (. + i := len(p.stack) + for i > 0 && p.stack[i-1].Op < opPseudo { + i-- + } + subs := p.stack[i:] + p.stack = p.stack[:i] + + // Empty concatenation is special case. + if len(subs) == 0 { + return p.push(p.newRegexp(OpEmptyMatch)) + } + + return p.push(p.collapse(subs, OpConcat)) +} + +// alternate replaces the top of the stack (above the topmost '(') with its alternation. +func (p *parser) alternate() *Regexp { + // Scan down to find pseudo-operator (. + // There are no | above (. + i := len(p.stack) + for i > 0 && p.stack[i-1].Op < opPseudo { + i-- + } + subs := p.stack[i:] + p.stack = p.stack[:i] + + // Make sure top class is clean. + // All the others already are (see swapVerticalBar). + if len(subs) > 0 { + cleanAlt(subs[len(subs)-1]) + } + + // Empty alternate is special case + // (shouldn't happen but easy to handle). + if len(subs) == 0 { + return p.push(p.newRegexp(OpNoMatch)) + } + + return p.push(p.collapse(subs, OpAlternate)) +} + +// cleanAlt cleans re for eventual inclusion in an alternation. +func cleanAlt(re *Regexp) { + switch re.Op { + case OpCharClass: + re.Rune = cleanClass(&re.Rune) + if len(re.Rune) == 2 && re.Rune[0] == 0 && re.Rune[1] == unicode.MaxRune { + re.Rune = nil + re.Op = OpAnyChar + return + } + if len(re.Rune) == 4 && re.Rune[0] == 0 && re.Rune[1] == '\n'-1 && re.Rune[2] == '\n'+1 && re.Rune[3] == unicode.MaxRune { + re.Rune = nil + re.Op = OpAnyCharNotNL + return + } + if cap(re.Rune)-len(re.Rune) > 100 { + // re.Rune will not grow any more. + // Make a copy or inline to reclaim storage. + re.Rune = append(re.Rune0[:0], re.Rune...) + } + } +} + +// collapse returns the result of applying op to sub. +// If sub contains op nodes, they all get hoisted up +// so that there is never a concat of a concat or an +// alternate of an alternate. +func (p *parser) collapse(subs []*Regexp, op Op) *Regexp { + if len(subs) == 1 { + return subs[0] + } + re := p.newRegexp(op) + re.Sub = re.Sub0[:0] + for _, sub := range subs { + if sub.Op == op { + re.Sub = append(re.Sub, sub.Sub...) + p.reuse(sub) + } else { + re.Sub = append(re.Sub, sub) + } + } + if op == OpAlternate { + re.Sub = p.factor(re.Sub) + if len(re.Sub) == 1 { + old := re + re = re.Sub[0] + p.reuse(old) + } + } + return re +} + +// factor factors common prefixes from the alternation list sub. +// It returns a replacement list that reuses the same storage and +// frees (passes to p.reuse) any removed *Regexps. +// +// For example, +// +// ABC|ABD|AEF|BCX|BCY +// +// simplifies by literal prefix extraction to +// +// A(B(C|D)|EF)|BC(X|Y) +// +// which simplifies by character class introduction to +// +// A(B[CD]|EF)|BC[XY] +func (p *parser) factor(sub []*Regexp) []*Regexp { + if len(sub) < 2 { + return sub + } + + // Round 1: Factor out common literal prefixes. + var str []rune + var strflags Flags + start := 0 + out := sub[:0] + for i := 0; i <= len(sub); i++ { + // Invariant: the Regexps that were in sub[0:start] have been + // used or marked for reuse, and the slice space has been reused + // for out (len(out) <= start). + // + // Invariant: sub[start:i] consists of regexps that all begin + // with str as modified by strflags. + var istr []rune + var iflags Flags + if i < len(sub) { + istr, iflags = p.leadingString(sub[i]) + if iflags == strflags { + same := 0 + for same < len(str) && same < len(istr) && str[same] == istr[same] { + same++ + } + if same > 0 { + // Matches at least one rune in current range. + // Keep going around. + str = str[:same] + continue + } + } + } + + // Found end of a run with common leading literal string: + // sub[start:i] all begin with str[0:len(str)], but sub[i] + // does not even begin with str[0]. + // + // Factor out common string and append factored expression to out. + if i == start { + // Nothing to do - run of length 0. + } else if i == start+1 { + // Just one: don't bother factoring. + out = append(out, sub[start]) + } else { + // Construct factored form: prefix(suffix1|suffix2|...) + prefix := p.newRegexp(OpLiteral) + prefix.Flags = strflags + prefix.Rune = append(prefix.Rune[:0], str...) + + for j := start; j < i; j++ { + sub[j] = p.removeLeadingString(sub[j], len(str)) + p.checkLimits(sub[j]) + } + suffix := p.collapse(sub[start:i], OpAlternate) // recurse + + re := p.newRegexp(OpConcat) + re.Sub = append(re.Sub[:0], prefix, suffix) + out = append(out, re) + } + + // Prepare for next iteration. + start = i + str = istr + strflags = iflags + } + sub = out + + // Round 2: Factor out common simple prefixes, + // just the first piece of each concatenation. + // This will be good enough a lot of the time. + // + // Complex subexpressions (e.g. involving quantifiers) + // are not safe to factor because that collapses their + // distinct paths through the automaton, which affects + // correctness in some cases. + start = 0 + out = sub[:0] + var first *Regexp + for i := 0; i <= len(sub); i++ { + // Invariant: the Regexps that were in sub[0:start] have been + // used or marked for reuse, and the slice space has been reused + // for out (len(out) <= start). + // + // Invariant: sub[start:i] consists of regexps that all begin with ifirst. + var ifirst *Regexp + if i < len(sub) { + ifirst = p.leadingRegexp(sub[i]) + if first != nil && first.Equal(ifirst) && + // first must be a character class OR a fixed repeat of a character class. + (isCharClass(first) || (first.Op == OpRepeat && first.Min == first.Max && isCharClass(first.Sub[0]))) { + continue + } + } + + // Found end of a run with common leading regexp: + // sub[start:i] all begin with first but sub[i] does not. + // + // Factor out common regexp and append factored expression to out. + if i == start { + // Nothing to do - run of length 0. + } else if i == start+1 { + // Just one: don't bother factoring. + out = append(out, sub[start]) + } else { + // Construct factored form: prefix(suffix1|suffix2|...) + prefix := first + for j := start; j < i; j++ { + reuse := j != start // prefix came from sub[start] + sub[j] = p.removeLeadingRegexp(sub[j], reuse) + p.checkLimits(sub[j]) + } + suffix := p.collapse(sub[start:i], OpAlternate) // recurse + + re := p.newRegexp(OpConcat) + re.Sub = append(re.Sub[:0], prefix, suffix) + out = append(out, re) + } + + // Prepare for next iteration. + start = i + first = ifirst + } + sub = out + + // Round 3: Collapse runs of single literals into character classes. + start = 0 + out = sub[:0] + for i := 0; i <= len(sub); i++ { + // Invariant: the Regexps that were in sub[0:start] have been + // used or marked for reuse, and the slice space has been reused + // for out (len(out) <= start). + // + // Invariant: sub[start:i] consists of regexps that are either + // literal runes or character classes. + if i < len(sub) && isCharClass(sub[i]) { + continue + } + + // sub[i] is not a char or char class; + // emit char class for sub[start:i]... + if i == start { + // Nothing to do - run of length 0. + } else if i == start+1 { + out = append(out, sub[start]) + } else { + // Make new char class. + // Start with most complex regexp in sub[start]. + max := start + for j := start + 1; j < i; j++ { + if sub[max].Op < sub[j].Op || sub[max].Op == sub[j].Op && len(sub[max].Rune) < len(sub[j].Rune) { + max = j + } + } + sub[start], sub[max] = sub[max], sub[start] + + for j := start + 1; j < i; j++ { + mergeCharClass(sub[start], sub[j]) + p.reuse(sub[j]) + } + cleanAlt(sub[start]) + out = append(out, sub[start]) + } + + // ... and then emit sub[i]. + if i < len(sub) { + out = append(out, sub[i]) + } + start = i + 1 + } + sub = out + + // Round 4: Collapse runs of empty matches into a single empty match. + start = 0 + out = sub[:0] + for i := range sub { + if i+1 < len(sub) && sub[i].Op == OpEmptyMatch && sub[i+1].Op == OpEmptyMatch { + continue + } + out = append(out, sub[i]) + } + sub = out + + return sub +} + +// leadingString returns the leading literal string that re begins with. +// The string refers to storage in re or its children. +func (p *parser) leadingString(re *Regexp) ([]rune, Flags) { + if re.Op == OpConcat && len(re.Sub) > 0 { + re = re.Sub[0] + } + if re.Op != OpLiteral { + return nil, 0 + } + return re.Rune, re.Flags & FoldCase +} + +// removeLeadingString removes the first n leading runes +// from the beginning of re. It returns the replacement for re. +func (p *parser) removeLeadingString(re *Regexp, n int) *Regexp { + if re.Op == OpConcat && len(re.Sub) > 0 { + // Removing a leading string in a concatenation + // might simplify the concatenation. + sub := re.Sub[0] + sub = p.removeLeadingString(sub, n) + re.Sub[0] = sub + if sub.Op == OpEmptyMatch { + p.reuse(sub) + switch len(re.Sub) { + case 0, 1: + // Impossible but handle. + re.Op = OpEmptyMatch + re.Sub = nil + case 2: + old := re + re = re.Sub[1] + p.reuse(old) + default: + copy(re.Sub, re.Sub[1:]) + re.Sub = re.Sub[:len(re.Sub)-1] + } + } + return re + } + + if re.Op == OpLiteral { + re.Rune = re.Rune[:copy(re.Rune, re.Rune[n:])] + if len(re.Rune) == 0 { + re.Op = OpEmptyMatch + } + } + return re +} + +// leadingRegexp returns the leading regexp that re begins with. +// The regexp refers to storage in re or its children. +func (p *parser) leadingRegexp(re *Regexp) *Regexp { + if re.Op == OpEmptyMatch { + return nil + } + if re.Op == OpConcat && len(re.Sub) > 0 { + sub := re.Sub[0] + if sub.Op == OpEmptyMatch { + return nil + } + return sub + } + return re +} + +// removeLeadingRegexp removes the leading regexp in re. +// It returns the replacement for re. +// If reuse is true, it passes the removed regexp (if no longer needed) to p.reuse. +func (p *parser) removeLeadingRegexp(re *Regexp, reuse bool) *Regexp { + if re.Op == OpConcat && len(re.Sub) > 0 { + if reuse { + p.reuse(re.Sub[0]) + } + re.Sub = re.Sub[:copy(re.Sub, re.Sub[1:])] + switch len(re.Sub) { + case 0: + re.Op = OpEmptyMatch + re.Sub = nil + case 1: + old := re + re = re.Sub[0] + p.reuse(old) + } + return re + } + if reuse { + p.reuse(re) + } + return p.newRegexp(OpEmptyMatch) +} + +func literalRegexp(s string, flags Flags) *Regexp { + re := &Regexp{Op: OpLiteral} + re.Flags = flags + re.Rune = re.Rune0[:0] // use local storage for small strings + for _, c := range s { + if len(re.Rune) >= cap(re.Rune) { + // string is too long to fit in Rune0. let Go handle it + re.Rune = []rune(s) + break + } + re.Rune = append(re.Rune, c) + } + return re +} + +// Parsing. + +// Parse parses a regular expression string s, controlled by the specified +// Flags, and returns a regular expression parse tree. The syntax is +// described in the top-level comment. +func Parse(s string, flags Flags) (*Regexp, error) { + return parse(s, flags) +} + +func parse(s string, flags Flags) (_ *Regexp, err error) { + defer func() { + switch r := recover(); r { + default: + panic(r) + case nil: + // ok + case ErrLarge: // too big + err = &Error{Code: ErrLarge, Expr: s} + case ErrNestingDepth: + err = &Error{Code: ErrNestingDepth, Expr: s} + } + }() + + if flags&Literal != 0 { + // Trivial parser for literal string. + if err := checkUTF8(s); err != nil { + return nil, err + } + return literalRegexp(s, flags), nil + } + + // Otherwise, must do real work. + var ( + p parser + c rune + op Op + lastRepeat string + ) + p.flags = flags + p.wholeRegexp = s + t := s + for t != "" { + repeat := "" + BigSwitch: + switch t[0] { + default: + if c, t, err = nextRune(t); err != nil { + return nil, err + } + p.literal(c) + + case '(': + if p.flags&PerlX != 0 && len(t) >= 2 && t[1] == '?' { + // Flag changes and non-capturing groups. + if t, err = p.parsePerlFlags(t); err != nil { + return nil, err + } + break + } + p.numCap++ + p.op(opLeftParen).Cap = p.numCap + t = t[1:] + case '|': + if err = p.parseVerticalBar(); err != nil { + return nil, err + } + t = t[1:] + case ')': + if err = p.parseRightParen(); err != nil { + return nil, err + } + t = t[1:] + case '^': + if p.flags&OneLine != 0 { + p.op(OpBeginText) + } else { + p.op(OpBeginLine) + } + t = t[1:] + case '$': + if p.flags&OneLine != 0 { + p.op(OpEndText).Flags |= WasDollar + } else { + p.op(OpEndLine) + } + t = t[1:] + case '.': + if p.flags&DotNL != 0 { + p.op(OpAnyChar) + } else { + p.op(OpAnyCharNotNL) + } + t = t[1:] + case '[': + if t, err = p.parseClass(t); err != nil { + return nil, err + } + case '*', '+', '?': + before := t + switch t[0] { + case '*': + op = OpStar + case '+': + op = OpPlus + case '?': + op = OpQuest + } + after := t[1:] + if after, err = p.repeat(op, 0, 0, before, after, lastRepeat); err != nil { + return nil, err + } + repeat = before + t = after + case '{': + op = OpRepeat + before := t + min, max, after, ok := p.parseRepeat(t) + if !ok { + // If the repeat cannot be parsed, { is a literal. + p.literal('{') + t = t[1:] + break + } + if min < 0 || min > 1000 || max > 1000 || max >= 0 && min > max { + // Numbers were too big, or max is present and min > max. + return nil, &Error{ErrInvalidRepeatSize, before[:len(before)-len(after)]} + } + if after, err = p.repeat(op, min, max, before, after, lastRepeat); err != nil { + return nil, err + } + repeat = before + t = after + case '\\': + if p.flags&PerlX != 0 && len(t) >= 2 { + switch t[1] { + case 'A': + p.op(OpBeginText) + t = t[2:] + break BigSwitch + case 'b': + p.op(OpWordBoundary) + t = t[2:] + break BigSwitch + case 'B': + p.op(OpNoWordBoundary) + t = t[2:] + break BigSwitch + case 'C': + // any byte; not supported + return nil, &Error{ErrInvalidEscape, t[:2]} + case 'Q': + // \Q ... \E: the ... is always literals + var lit string + lit, t, _ = strings.Cut(t[2:], `\E`) + for lit != "" { + c, rest, err := nextRune(lit) + if err != nil { + return nil, err + } + p.literal(c) + lit = rest + } + break BigSwitch + case 'z': + p.op(OpEndText) + t = t[2:] + break BigSwitch + } + } + + re := p.newRegexp(OpCharClass) + re.Flags = p.flags + + // Look for Unicode character group like \p{Han} + if len(t) >= 2 && (t[1] == 'p' || t[1] == 'P') { + r, rest, err := p.parseUnicodeClass(t, re.Rune0[:0]) + if err != nil { + return nil, err + } + if r != nil { + re.Rune = r + t = rest + p.push(re) + break BigSwitch + } + } + + // Perl character class escape. + if r, rest := p.parsePerlClassEscape(t, re.Rune0[:0]); r != nil { + re.Rune = r + t = rest + p.push(re) + break BigSwitch + } + p.reuse(re) + + // Ordinary single-character escape. + if c, t, err = p.parseEscape(t); err != nil { + return nil, err + } + p.literal(c) + } + lastRepeat = repeat + } + + p.concat() + if p.swapVerticalBar() { + // pop vertical bar + p.stack = p.stack[:len(p.stack)-1] + } + p.alternate() + + n := len(p.stack) + if n != 1 { + return nil, &Error{ErrMissingParen, s} + } + return p.stack[0], nil +} + +// parseRepeat parses {min} (max=min) or {min,} (max=-1) or {min,max}. +// If s is not of that form, it returns ok == false. +// If s has the right form but the values are too big, it returns min == -1, ok == true. +func (p *parser) parseRepeat(s string) (min, max int, rest string, ok bool) { + if s == "" || s[0] != '{' { + return + } + s = s[1:] + var ok1 bool + if min, s, ok1 = p.parseInt(s); !ok1 { + return + } + if s == "" { + return + } + if s[0] != ',' { + max = min + } else { + s = s[1:] + if s == "" { + return + } + if s[0] == '}' { + max = -1 + } else if max, s, ok1 = p.parseInt(s); !ok1 { + return + } else if max < 0 { + // parseInt found too big a number + min = -1 + } + } + if s == "" || s[0] != '}' { + return + } + rest = s[1:] + ok = true + return +} + +// parsePerlFlags parses a Perl flag setting or non-capturing group or both, +// like (?i) or (?: or (?i:. It removes the prefix from s and updates the parse state. +// The caller must have ensured that s begins with "(?". +func (p *parser) parsePerlFlags(s string) (rest string, err error) { + t := s + + // Check for named captures, first introduced in Python's regexp library. + // As usual, there are three slightly different syntaxes: + // + // (?Pexpr) the original, introduced by Python + // (?expr) the .NET alteration, adopted by Perl 5.10 + // (?'name'expr) another .NET alteration, adopted by Perl 5.10 + // + // Perl 5.10 gave in and implemented the Python version too, + // but they claim that the last two are the preferred forms. + // PCRE and languages based on it (specifically, PHP and Ruby) + // support all three as well. EcmaScript 4 uses only the Python form. + // + // In both the open source world (via Code Search) and the + // Google source tree, (?Pname) is the dominant form, + // so that's the one we implement. One is enough. + if len(t) > 4 && t[2] == 'P' && t[3] == '<' { + // Pull out name. + end := strings.IndexRune(t, '>') + if end < 0 { + if err = checkUTF8(t); err != nil { + return "", err + } + return "", &Error{ErrInvalidNamedCapture, s} + } + + capture := t[:end+1] // "(?P" + name := t[4:end] // "name" + if err = checkUTF8(name); err != nil { + return "", err + } + if !isValidCaptureName(name) { + return "", &Error{ErrInvalidNamedCapture, capture} + } + + // Like ordinary capture, but named. + p.numCap++ + re := p.op(opLeftParen) + re.Cap = p.numCap + re.Name = name + return t[end+1:], nil + } + + // Non-capturing group. Might also twiddle Perl flags. + var c rune + t = t[2:] // skip (? + flags := p.flags + sign := +1 + sawFlag := false +Loop: + for t != "" { + if c, t, err = nextRune(t); err != nil { + return "", err + } + switch c { + default: + break Loop + + // Flags. + case 'i': + flags |= FoldCase + sawFlag = true + case 'm': + flags &^= OneLine + sawFlag = true + case 's': + flags |= DotNL + sawFlag = true + case 'U': + flags |= NonGreedy + sawFlag = true + + // Switch to negation. + case '-': + if sign < 0 { + break Loop + } + sign = -1 + // Invert flags so that | above turn into &^ and vice versa. + // We'll invert flags again before using it below. + flags = ^flags + sawFlag = false + + // End of flags, starting group or not. + case ':', ')': + if sign < 0 { + if !sawFlag { + break Loop + } + flags = ^flags + } + if c == ':' { + // Open new group + p.op(opLeftParen) + } + p.flags = flags + return t, nil + } + } + + return "", &Error{ErrInvalidPerlOp, s[:len(s)-len(t)]} +} + +// isValidCaptureName reports whether name +// is a valid capture name: [A-Za-z0-9_]+. +// PCRE limits names to 32 bytes. +// Python rejects names starting with digits. +// We don't enforce either of those. +func isValidCaptureName(name string) bool { + if name == "" { + return false + } + for _, c := range name { + if c != '_' && !isalnum(c) { + return false + } + } + return true +} + +// parseInt parses a decimal integer. +func (p *parser) parseInt(s string) (n int, rest string, ok bool) { + if s == "" || s[0] < '0' || '9' < s[0] { + return + } + // Disallow leading zeros. + if len(s) >= 2 && s[0] == '0' && '0' <= s[1] && s[1] <= '9' { + return + } + t := s + for s != "" && '0' <= s[0] && s[0] <= '9' { + s = s[1:] + } + rest = s + ok = true + // Have digits, compute value. + t = t[:len(t)-len(s)] + for i := 0; i < len(t); i++ { + // Avoid overflow. + if n >= 1e8 { + n = -1 + break + } + n = n*10 + int(t[i]) - '0' + } + return +} + +// can this be represented as a character class? +// single-rune literal string, char class, ., and .|\n. +func isCharClass(re *Regexp) bool { + return re.Op == OpLiteral && len(re.Rune) == 1 || + re.Op == OpCharClass || + re.Op == OpAnyCharNotNL || + re.Op == OpAnyChar +} + +// does re match r? +func matchRune(re *Regexp, r rune) bool { + switch re.Op { + case OpLiteral: + return len(re.Rune) == 1 && re.Rune[0] == r + case OpCharClass: + for i := 0; i < len(re.Rune); i += 2 { + if re.Rune[i] <= r && r <= re.Rune[i+1] { + return true + } + } + return false + case OpAnyCharNotNL: + return r != '\n' + case OpAnyChar: + return true + } + return false +} + +// parseVerticalBar handles a | in the input. +func (p *parser) parseVerticalBar() error { + p.concat() + + // The concatenation we just parsed is on top of the stack. + // If it sits above an opVerticalBar, swap it below + // (things below an opVerticalBar become an alternation). + // Otherwise, push a new vertical bar. + if !p.swapVerticalBar() { + p.op(opVerticalBar) + } + + return nil +} + +// mergeCharClass makes dst = dst|src. +// The caller must ensure that dst.Op >= src.Op, +// to reduce the amount of copying. +func mergeCharClass(dst, src *Regexp) { + switch dst.Op { + case OpAnyChar: + // src doesn't add anything. + case OpAnyCharNotNL: + // src might add \n + if matchRune(src, '\n') { + dst.Op = OpAnyChar + } + case OpCharClass: + // src is simpler, so either literal or char class + if src.Op == OpLiteral { + dst.Rune = appendLiteral(dst.Rune, src.Rune[0], src.Flags) + } else { + dst.Rune = appendClass(dst.Rune, src.Rune) + } + case OpLiteral: + // both literal + if src.Rune[0] == dst.Rune[0] && src.Flags == dst.Flags { + break + } + dst.Op = OpCharClass + dst.Rune = appendLiteral(dst.Rune[:0], dst.Rune[0], dst.Flags) + dst.Rune = appendLiteral(dst.Rune, src.Rune[0], src.Flags) + } +} + +// If the top of the stack is an element followed by an opVerticalBar +// swapVerticalBar swaps the two and returns true. +// Otherwise it returns false. +func (p *parser) swapVerticalBar() bool { + // If above and below vertical bar are literal or char class, + // can merge into a single char class. + n := len(p.stack) + if n >= 3 && p.stack[n-2].Op == opVerticalBar && isCharClass(p.stack[n-1]) && isCharClass(p.stack[n-3]) { + re1 := p.stack[n-1] + re3 := p.stack[n-3] + // Make re3 the more complex of the two. + if re1.Op > re3.Op { + re1, re3 = re3, re1 + p.stack[n-3] = re3 + } + mergeCharClass(re3, re1) + p.reuse(re1) + p.stack = p.stack[:n-1] + return true + } + + if n >= 2 { + re1 := p.stack[n-1] + re2 := p.stack[n-2] + if re2.Op == opVerticalBar { + if n >= 3 { + // Now out of reach. + // Clean opportunistically. + cleanAlt(p.stack[n-3]) + } + p.stack[n-2] = re1 + p.stack[n-1] = re2 + return true + } + } + return false +} + +// parseRightParen handles a ) in the input. +func (p *parser) parseRightParen() error { + p.concat() + if p.swapVerticalBar() { + // pop vertical bar + p.stack = p.stack[:len(p.stack)-1] + } + p.alternate() + + n := len(p.stack) + if n < 2 { + return &Error{ErrUnexpectedParen, p.wholeRegexp} + } + re1 := p.stack[n-1] + re2 := p.stack[n-2] + p.stack = p.stack[:n-2] + if re2.Op != opLeftParen { + return &Error{ErrUnexpectedParen, p.wholeRegexp} + } + // Restore flags at time of paren. + p.flags = re2.Flags + if re2.Cap == 0 { + // Just for grouping. + p.push(re1) + } else { + re2.Op = OpCapture + re2.Sub = re2.Sub0[:1] + re2.Sub[0] = re1 + p.push(re2) + } + return nil +} + +// parseEscape parses an escape sequence at the beginning of s +// and returns the rune. +func (p *parser) parseEscape(s string) (r rune, rest string, err error) { + t := s[1:] + if t == "" { + return 0, "", &Error{ErrTrailingBackslash, ""} + } + c, t, err := nextRune(t) + if err != nil { + return 0, "", err + } + +Switch: + switch c { + default: + if c < utf8.RuneSelf && !isalnum(c) { + // Escaped non-word characters are always themselves. + // PCRE is not quite so rigorous: it accepts things like + // \q, but we don't. We once rejected \_, but too many + // programs and people insist on using it, so allow \_. + return c, t, nil + } + + // Octal escapes. + case '1', '2', '3', '4', '5', '6', '7': + // Single non-zero digit is a backreference; not supported + if t == "" || t[0] < '0' || t[0] > '7' { + break + } + fallthrough + case '0': + // Consume up to three octal digits; already have one. + r = c - '0' + for i := 1; i < 3; i++ { + if t == "" || t[0] < '0' || t[0] > '7' { + break + } + r = r*8 + rune(t[0]) - '0' + t = t[1:] + } + return r, t, nil + + // Hexadecimal escapes. + case 'x': + if t == "" { + break + } + if c, t, err = nextRune(t); err != nil { + return 0, "", err + } + if c == '{' { + // Any number of digits in braces. + // Perl accepts any text at all; it ignores all text + // after the first non-hex digit. We require only hex digits, + // and at least one. + nhex := 0 + r = 0 + for { + if t == "" { + break Switch + } + if c, t, err = nextRune(t); err != nil { + return 0, "", err + } + if c == '}' { + break + } + v := unhex(c) + if v < 0 { + break Switch + } + r = r*16 + v + if r > unicode.MaxRune { + break Switch + } + nhex++ + } + if nhex == 0 { + break Switch + } + return r, t, nil + } + + // Easy case: two hex digits. + x := unhex(c) + if c, t, err = nextRune(t); err != nil { + return 0, "", err + } + y := unhex(c) + if x < 0 || y < 0 { + break + } + return x*16 + y, t, nil + + // C escapes. There is no case 'b', to avoid misparsing + // the Perl word-boundary \b as the C backspace \b + // when in POSIX mode. In Perl, /\b/ means word-boundary + // but /[\b]/ means backspace. We don't support that. + // If you want a backspace, embed a literal backspace + // character or use \x08. + case 'a': + return '\a', t, err + case 'f': + return '\f', t, err + case 'n': + return '\n', t, err + case 'r': + return '\r', t, err + case 't': + return '\t', t, err + case 'v': + return '\v', t, err + } + return 0, "", &Error{ErrInvalidEscape, s[:len(s)-len(t)]} +} + +// parseClassChar parses a character class character at the beginning of s +// and returns it. +func (p *parser) parseClassChar(s, wholeClass string) (r rune, rest string, err error) { + if s == "" { + return 0, "", &Error{Code: ErrMissingBracket, Expr: wholeClass} + } + + // Allow regular escape sequences even though + // many need not be escaped in this context. + if s[0] == '\\' { + return p.parseEscape(s) + } + + return nextRune(s) +} + +type charGroup struct { + sign int + class []rune +} + +// parsePerlClassEscape parses a leading Perl character class escape like \d +// from the beginning of s. If one is present, it appends the characters to r +// and returns the new slice r and the remainder of the string. +func (p *parser) parsePerlClassEscape(s string, r []rune) (out []rune, rest string) { + if p.flags&PerlX == 0 || len(s) < 2 || s[0] != '\\' { + return + } + g := perlGroup[s[0:2]] + if g.sign == 0 { + return + } + return p.appendGroup(r, g), s[2:] +} + +// parseNamedClass parses a leading POSIX named character class like [:alnum:] +// from the beginning of s. If one is present, it appends the characters to r +// and returns the new slice r and the remainder of the string. +func (p *parser) parseNamedClass(s string, r []rune) (out []rune, rest string, err error) { + if len(s) < 2 || s[0] != '[' || s[1] != ':' { + return + } + + i := strings.Index(s[2:], ":]") + if i < 0 { + return + } + i += 2 + name, s := s[0:i+2], s[i+2:] + g := posixGroup[name] + if g.sign == 0 { + return nil, "", &Error{ErrInvalidCharRange, name} + } + return p.appendGroup(r, g), s, nil +} + +func (p *parser) appendGroup(r []rune, g charGroup) []rune { + if p.flags&FoldCase == 0 { + if g.sign < 0 { + r = appendNegatedClass(r, g.class) + } else { + r = appendClass(r, g.class) + } + } else { + tmp := p.tmpClass[:0] + tmp = appendFoldedClass(tmp, g.class) + p.tmpClass = tmp + tmp = cleanClass(&p.tmpClass) + if g.sign < 0 { + r = appendNegatedClass(r, tmp) + } else { + r = appendClass(r, tmp) + } + } + return r +} + +var anyTable = &unicode.RangeTable{ + R16: []unicode.Range16{{Lo: 0, Hi: 1<<16 - 1, Stride: 1}}, + R32: []unicode.Range32{{Lo: 1 << 16, Hi: unicode.MaxRune, Stride: 1}}, +} + +// unicodeTable returns the unicode.RangeTable identified by name +// and the table of additional fold-equivalent code points. +func unicodeTable(name string) (*unicode.RangeTable, *unicode.RangeTable) { + // Special case: "Any" means any. + if name == "Any" { + return anyTable, anyTable + } + if t := unicode.Categories[name]; t != nil { + return t, unicode.FoldCategory[name] + } + if t := unicode.Scripts[name]; t != nil { + return t, unicode.FoldScript[name] + } + return nil, nil +} + +// parseUnicodeClass parses a leading Unicode character class like \p{Han} +// from the beginning of s. If one is present, it appends the characters to r +// and returns the new slice r and the remainder of the string. +func (p *parser) parseUnicodeClass(s string, r []rune) (out []rune, rest string, err error) { + if p.flags&UnicodeGroups == 0 || len(s) < 2 || s[0] != '\\' || s[1] != 'p' && s[1] != 'P' { + return + } + + // Committed to parse or return error. + sign := +1 + if s[1] == 'P' { + sign = -1 + } + t := s[2:] + c, t, err := nextRune(t) + if err != nil { + return + } + var seq, name string + if c != '{' { + // Single-letter name. + seq = s[:len(s)-len(t)] + name = seq[2:] + } else { + // Name is in braces. + end := strings.IndexRune(s, '}') + if end < 0 { + if err = checkUTF8(s); err != nil { + return + } + return nil, "", &Error{ErrInvalidCharRange, s} + } + seq, t = s[:end+1], s[end+1:] + name = s[3:end] + if err = checkUTF8(name); err != nil { + return + } + } + + // Group can have leading negation too. \p{^Han} == \P{Han}, \P{^Han} == \p{Han}. + if name != "" && name[0] == '^' { + sign = -sign + name = name[1:] + } + + tab, fold := unicodeTable(name) + if tab == nil { + return nil, "", &Error{ErrInvalidCharRange, seq} + } + + if p.flags&FoldCase == 0 || fold == nil { + if sign > 0 { + r = appendTable(r, tab) + } else { + r = appendNegatedTable(r, tab) + } + } else { + // Merge and clean tab and fold in a temporary buffer. + // This is necessary for the negative case and just tidy + // for the positive case. + tmp := p.tmpClass[:0] + tmp = appendTable(tmp, tab) + tmp = appendTable(tmp, fold) + p.tmpClass = tmp + tmp = cleanClass(&p.tmpClass) + if sign > 0 { + r = appendClass(r, tmp) + } else { + r = appendNegatedClass(r, tmp) + } + } + return r, t, nil +} + +// parseClass parses a character class at the beginning of s +// and pushes it onto the parse stack. +func (p *parser) parseClass(s string) (rest string, err error) { + t := s[1:] // chop [ + re := p.newRegexp(OpCharClass) + re.Flags = p.flags + re.Rune = re.Rune0[:0] + + sign := +1 + if t != "" && t[0] == '^' { + sign = -1 + t = t[1:] + + // If character class does not match \n, add it here, + // so that negation later will do the right thing. + if p.flags&ClassNL == 0 { + re.Rune = append(re.Rune, '\n', '\n') + } + } + + class := re.Rune + first := true // ] and - are okay as first char in class + for t == "" || t[0] != ']' || first { + // POSIX: - is only okay unescaped as first or last in class. + // Perl: - is okay anywhere. + if t != "" && t[0] == '-' && p.flags&PerlX == 0 && !first && (len(t) == 1 || t[1] != ']') { + _, size := utf8.DecodeRuneInString(t[1:]) + return "", &Error{Code: ErrInvalidCharRange, Expr: t[:1+size]} + } + first = false + + // Look for POSIX [:alnum:] etc. + if len(t) > 2 && t[0] == '[' && t[1] == ':' { + nclass, nt, err := p.parseNamedClass(t, class) + if err != nil { + return "", err + } + if nclass != nil { + class, t = nclass, nt + continue + } + } + + // Look for Unicode character group like \p{Han}. + nclass, nt, err := p.parseUnicodeClass(t, class) + if err != nil { + return "", err + } + if nclass != nil { + class, t = nclass, nt + continue + } + + // Look for Perl character class symbols (extension). + if nclass, nt := p.parsePerlClassEscape(t, class); nclass != nil { + class, t = nclass, nt + continue + } + + // Single character or simple range. + rng := t + var lo, hi rune + if lo, t, err = p.parseClassChar(t, s); err != nil { + return "", err + } + hi = lo + // [a-] means (a|-) so check for final ]. + if len(t) >= 2 && t[0] == '-' && t[1] != ']' { + t = t[1:] + if hi, t, err = p.parseClassChar(t, s); err != nil { + return "", err + } + if hi < lo { + rng = rng[:len(rng)-len(t)] + return "", &Error{Code: ErrInvalidCharRange, Expr: rng} + } + } + if p.flags&FoldCase == 0 { + class = appendRange(class, lo, hi) + } else { + class = appendFoldedRange(class, lo, hi) + } + } + t = t[1:] // chop ] + + // Use &re.Rune instead of &class to avoid allocation. + re.Rune = class + class = cleanClass(&re.Rune) + if sign < 0 { + class = negateClass(class) + } + re.Rune = class + p.push(re) + return t, nil +} + +// cleanClass sorts the ranges (pairs of elements of r), +// merges them, and eliminates duplicates. +func cleanClass(rp *[]rune) []rune { + + // Sort by lo increasing, hi decreasing to break ties. + sort.Sort(ranges{rp}) + + r := *rp + if len(r) < 2 { + return r + } + + // Merge abutting, overlapping. + w := 2 // write index + for i := 2; i < len(r); i += 2 { + lo, hi := r[i], r[i+1] + if lo <= r[w-1]+1 { + // merge with previous range + if hi > r[w-1] { + r[w-1] = hi + } + continue + } + // new disjoint range + r[w] = lo + r[w+1] = hi + w += 2 + } + + return r[:w] +} + +// appendLiteral returns the result of appending the literal x to the class r. +func appendLiteral(r []rune, x rune, flags Flags) []rune { + if flags&FoldCase != 0 { + return appendFoldedRange(r, x, x) + } + return appendRange(r, x, x) +} + +// appendRange returns the result of appending the range lo-hi to the class r. +func appendRange(r []rune, lo, hi rune) []rune { + // Expand last range or next to last range if it overlaps or abuts. + // Checking two ranges helps when appending case-folded + // alphabets, so that one range can be expanding A-Z and the + // other expanding a-z. + n := len(r) + for i := 2; i <= 4; i += 2 { // twice, using i=2, i=4 + if n >= i { + rlo, rhi := r[n-i], r[n-i+1] + if lo <= rhi+1 && rlo <= hi+1 { + if lo < rlo { + r[n-i] = lo + } + if hi > rhi { + r[n-i+1] = hi + } + return r + } + } + } + + return append(r, lo, hi) +} + +const ( + // minimum and maximum runes involved in folding. + // checked during test. + minFold = 0x0041 + maxFold = 0x1e943 +) + +// appendFoldedRange returns the result of appending the range lo-hi +// and its case folding-equivalent runes to the class r. +func appendFoldedRange(r []rune, lo, hi rune) []rune { + // Optimizations. + if lo <= minFold && hi >= maxFold { + // Range is full: folding can't add more. + return appendRange(r, lo, hi) + } + if hi < minFold || lo > maxFold { + // Range is outside folding possibilities. + return appendRange(r, lo, hi) + } + if lo < minFold { + // [lo, minFold-1] needs no folding. + r = appendRange(r, lo, minFold-1) + lo = minFold + } + if hi > maxFold { + // [maxFold+1, hi] needs no folding. + r = appendRange(r, maxFold+1, hi) + hi = maxFold + } + + // Brute force. Depend on appendRange to coalesce ranges on the fly. + for c := lo; c <= hi; c++ { + r = appendRange(r, c, c) + f := unicode.SimpleFold(c) + for f != c { + r = appendRange(r, f, f) + f = unicode.SimpleFold(f) + } + } + return r +} + +// appendClass returns the result of appending the class x to the class r. +// It assume x is clean. +func appendClass(r []rune, x []rune) []rune { + for i := 0; i < len(x); i += 2 { + r = appendRange(r, x[i], x[i+1]) + } + return r +} + +// appendFoldedClass returns the result of appending the case folding of the class x to the class r. +func appendFoldedClass(r []rune, x []rune) []rune { + for i := 0; i < len(x); i += 2 { + r = appendFoldedRange(r, x[i], x[i+1]) + } + return r +} + +// appendNegatedClass returns the result of appending the negation of the class x to the class r. +// It assumes x is clean. +func appendNegatedClass(r []rune, x []rune) []rune { + nextLo := '\u0000' + for i := 0; i < len(x); i += 2 { + lo, hi := x[i], x[i+1] + if nextLo <= lo-1 { + r = appendRange(r, nextLo, lo-1) + } + nextLo = hi + 1 + } + if nextLo <= unicode.MaxRune { + r = appendRange(r, nextLo, unicode.MaxRune) + } + return r +} + +// appendTable returns the result of appending x to the class r. +func appendTable(r []rune, x *unicode.RangeTable) []rune { + for _, xr := range x.R16 { + lo, hi, stride := rune(xr.Lo), rune(xr.Hi), rune(xr.Stride) + if stride == 1 { + r = appendRange(r, lo, hi) + continue + } + for c := lo; c <= hi; c += stride { + r = appendRange(r, c, c) + } + } + for _, xr := range x.R32 { + lo, hi, stride := rune(xr.Lo), rune(xr.Hi), rune(xr.Stride) + if stride == 1 { + r = appendRange(r, lo, hi) + continue + } + for c := lo; c <= hi; c += stride { + r = appendRange(r, c, c) + } + } + return r +} + +// appendNegatedTable returns the result of appending the negation of x to the class r. +func appendNegatedTable(r []rune, x *unicode.RangeTable) []rune { + nextLo := '\u0000' // lo end of next class to add + for _, xr := range x.R16 { + lo, hi, stride := rune(xr.Lo), rune(xr.Hi), rune(xr.Stride) + if stride == 1 { + if nextLo <= lo-1 { + r = appendRange(r, nextLo, lo-1) + } + nextLo = hi + 1 + continue + } + for c := lo; c <= hi; c += stride { + if nextLo <= c-1 { + r = appendRange(r, nextLo, c-1) + } + nextLo = c + 1 + } + } + for _, xr := range x.R32 { + lo, hi, stride := rune(xr.Lo), rune(xr.Hi), rune(xr.Stride) + if stride == 1 { + if nextLo <= lo-1 { + r = appendRange(r, nextLo, lo-1) + } + nextLo = hi + 1 + continue + } + for c := lo; c <= hi; c += stride { + if nextLo <= c-1 { + r = appendRange(r, nextLo, c-1) + } + nextLo = c + 1 + } + } + if nextLo <= unicode.MaxRune { + r = appendRange(r, nextLo, unicode.MaxRune) + } + return r +} + +// negateClass overwrites r and returns r's negation. +// It assumes the class r is already clean. +func negateClass(r []rune) []rune { + nextLo := '\u0000' // lo end of next class to add + w := 0 // write index + for i := 0; i < len(r); i += 2 { + lo, hi := r[i], r[i+1] + if nextLo <= lo-1 { + r[w] = nextLo + r[w+1] = lo - 1 + w += 2 + } + nextLo = hi + 1 + } + r = r[:w] + if nextLo <= unicode.MaxRune { + // It's possible for the negation to have one more + // range - this one - than the original class, so use append. + r = append(r, nextLo, unicode.MaxRune) + } + return r +} + +// ranges implements sort.Interface on a []rune. +// The choice of receiver type definition is strange +// but avoids an allocation since we already have +// a *[]rune. +type ranges struct { + p *[]rune +} + +func (ra ranges) Less(i, j int) bool { + p := *ra.p + i *= 2 + j *= 2 + return p[i] < p[j] || p[i] == p[j] && p[i+1] > p[j+1] +} + +func (ra ranges) Len() int { + return len(*ra.p) / 2 +} + +func (ra ranges) Swap(i, j int) { + p := *ra.p + i *= 2 + j *= 2 + p[i], p[i+1], p[j], p[j+1] = p[j], p[j+1], p[i], p[i+1] +} + +func checkUTF8(s string) error { + for s != "" { + rune, size := utf8.DecodeRuneInString(s) + if rune == utf8.RuneError && size == 1 { + return &Error{Code: ErrInvalidUTF8, Expr: s} + } + s = s[size:] + } + return nil +} + +func nextRune(s string) (c rune, t string, err error) { + c, size := utf8.DecodeRuneInString(s) + if c == utf8.RuneError && size == 1 { + return 0, "", &Error{Code: ErrInvalidUTF8, Expr: s} + } + return c, s[size:], nil +} + +func isalnum(c rune) bool { + return '0' <= c && c <= '9' || 'A' <= c && c <= 'Z' || 'a' <= c && c <= 'z' +} + +func unhex(c rune) rune { + if '0' <= c && c <= '9' { + return c - '0' + } + if 'a' <= c && c <= 'f' { + return c - 'a' + 10 + } + if 'A' <= c && c <= 'F' { + return c - 'A' + 10 + } + return -1 +} diff --git a/src/regexp/syntax/parse_test.go b/src/regexp/syntax/parse_test.go new file mode 100644 index 0000000..67e3c56 --- /dev/null +++ b/src/regexp/syntax/parse_test.go @@ -0,0 +1,586 @@ +// Copyright 2011 The Go Authors. All rights reserved. +// Use of this source code is governed by a BSD-style +// license that can be found in the LICENSE file. + +package syntax + +import ( + "fmt" + "strings" + "testing" + "unicode" +) + +type parseTest struct { + Regexp string + Dump string +} + +var parseTests = []parseTest{ + // Base cases + {`a`, `lit{a}`}, + {`a.`, `cat{lit{a}dot{}}`}, + {`a.b`, `cat{lit{a}dot{}lit{b}}`}, + {`ab`, `str{ab}`}, + {`a.b.c`, `cat{lit{a}dot{}lit{b}dot{}lit{c}}`}, + {`abc`, `str{abc}`}, + {`a|^`, `alt{lit{a}bol{}}`}, + {`a|b`, `cc{0x61-0x62}`}, + {`(a)`, `cap{lit{a}}`}, + {`(a)|b`, `alt{cap{lit{a}}lit{b}}`}, + {`a*`, `star{lit{a}}`}, + {`a+`, `plus{lit{a}}`}, + {`a?`, `que{lit{a}}`}, + {`a{2}`, `rep{2,2 lit{a}}`}, + {`a{2,3}`, `rep{2,3 lit{a}}`}, + {`a{2,}`, `rep{2,-1 lit{a}}`}, + {`a*?`, `nstar{lit{a}}`}, + {`a+?`, `nplus{lit{a}}`}, + {`a??`, `nque{lit{a}}`}, + {`a{2}?`, `nrep{2,2 lit{a}}`}, + {`a{2,3}?`, `nrep{2,3 lit{a}}`}, + {`a{2,}?`, `nrep{2,-1 lit{a}}`}, + // Malformed { } are treated as literals. + {`x{1001`, `str{x{1001}`}, + {`x{9876543210`, `str{x{9876543210}`}, + {`x{9876543210,`, `str{x{9876543210,}`}, + {`x{2,1`, `str{x{2,1}`}, + {`x{1,9876543210`, `str{x{1,9876543210}`}, + {``, `emp{}`}, + {`|`, `emp{}`}, // alt{emp{}emp{}} but got factored + {`|x|`, `alt{emp{}lit{x}emp{}}`}, + {`.`, `dot{}`}, + {`^`, `bol{}`}, + {`$`, `eol{}`}, + {`\|`, `lit{|}`}, + {`\(`, `lit{(}`}, + {`\)`, `lit{)}`}, + {`\*`, `lit{*}`}, + {`\+`, `lit{+}`}, + {`\?`, `lit{?}`}, + {`{`, `lit{{}`}, + {`}`, `lit{}}`}, + {`\.`, `lit{.}`}, + {`\^`, `lit{^}`}, + {`\$`, `lit{$}`}, + {`\\`, `lit{\}`}, + {`[ace]`, `cc{0x61 0x63 0x65}`}, + {`[abc]`, `cc{0x61-0x63}`}, + {`[a-z]`, `cc{0x61-0x7a}`}, + {`[a]`, `lit{a}`}, + {`\-`, `lit{-}`}, + {`-`, `lit{-}`}, + {`\_`, `lit{_}`}, + {`abc`, `str{abc}`}, + {`abc|def`, `alt{str{abc}str{def}}`}, + {`abc|def|ghi`, `alt{str{abc}str{def}str{ghi}}`}, + + // Posix and Perl extensions + {`[[:lower:]]`, `cc{0x61-0x7a}`}, + {`[a-z]`, `cc{0x61-0x7a}`}, + {`[^[:lower:]]`, `cc{0x0-0x60 0x7b-0x10ffff}`}, + {`[[:^lower:]]`, `cc{0x0-0x60 0x7b-0x10ffff}`}, + {`(?i)[[:lower:]]`, `cc{0x41-0x5a 0x61-0x7a 0x17f 0x212a}`}, + {`(?i)[a-z]`, `cc{0x41-0x5a 0x61-0x7a 0x17f 0x212a}`}, + {`(?i)[^[:lower:]]`, `cc{0x0-0x40 0x5b-0x60 0x7b-0x17e 0x180-0x2129 0x212b-0x10ffff}`}, + {`(?i)[[:^lower:]]`, `cc{0x0-0x40 0x5b-0x60 0x7b-0x17e 0x180-0x2129 0x212b-0x10ffff}`}, + {`\d`, `cc{0x30-0x39}`}, + {`\D`, `cc{0x0-0x2f 0x3a-0x10ffff}`}, + {`\s`, `cc{0x9-0xa 0xc-0xd 0x20}`}, + {`\S`, `cc{0x0-0x8 0xb 0xe-0x1f 0x21-0x10ffff}`}, + {`\w`, `cc{0x30-0x39 0x41-0x5a 0x5f 0x61-0x7a}`}, + {`\W`, `cc{0x0-0x2f 0x3a-0x40 0x5b-0x5e 0x60 0x7b-0x10ffff}`}, + {`(?i)\w`, `cc{0x30-0x39 0x41-0x5a 0x5f 0x61-0x7a 0x17f 0x212a}`}, + {`(?i)\W`, `cc{0x0-0x2f 0x3a-0x40 0x5b-0x5e 0x60 0x7b-0x17e 0x180-0x2129 0x212b-0x10ffff}`}, + {`[^\\]`, `cc{0x0-0x5b 0x5d-0x10ffff}`}, + // { `\C`, `byte{}` }, // probably never + + // Unicode, negatives, and a double negative. + {`\p{Braille}`, `cc{0x2800-0x28ff}`}, + {`\P{Braille}`, `cc{0x0-0x27ff 0x2900-0x10ffff}`}, + {`\p{^Braille}`, `cc{0x0-0x27ff 0x2900-0x10ffff}`}, + {`\P{^Braille}`, `cc{0x2800-0x28ff}`}, + {`\pZ`, `cc{0x20 0xa0 0x1680 0x2000-0x200a 0x2028-0x2029 0x202f 0x205f 0x3000}`}, + {`[\p{Braille}]`, `cc{0x2800-0x28ff}`}, + {`[\P{Braille}]`, `cc{0x0-0x27ff 0x2900-0x10ffff}`}, + {`[\p{^Braille}]`, `cc{0x0-0x27ff 0x2900-0x10ffff}`}, + {`[\P{^Braille}]`, `cc{0x2800-0x28ff}`}, + {`[\pZ]`, `cc{0x20 0xa0 0x1680 0x2000-0x200a 0x2028-0x2029 0x202f 0x205f 0x3000}`}, + {`\p{Lu}`, mkCharClass(unicode.IsUpper)}, + {`[\p{Lu}]`, mkCharClass(unicode.IsUpper)}, + {`(?i)[\p{Lu}]`, mkCharClass(isUpperFold)}, + {`\p{Any}`, `dot{}`}, + {`\p{^Any}`, `cc{}`}, + + // Hex, octal. + {`[\012-\234]\141`, `cat{cc{0xa-0x9c}lit{a}}`}, + {`[\x{41}-\x7a]\x61`, `cat{cc{0x41-0x7a}lit{a}}`}, + + // More interesting regular expressions. + {`a{,2}`, `str{a{,2}}`}, + {`\.\^\$\\`, `str{.^$\}`}, + {`[a-zABC]`, `cc{0x41-0x43 0x61-0x7a}`}, + {`[^a]`, `cc{0x0-0x60 0x62-0x10ffff}`}, + {`[α-ε☺]`, `cc{0x3b1-0x3b5 0x263a}`}, // utf-8 + {`a*{`, `cat{star{lit{a}}lit{{}}`}, + + // Test precedences + {`(?:ab)*`, `star{str{ab}}`}, + {`(ab)*`, `star{cap{str{ab}}}`}, + {`ab|cd`, `alt{str{ab}str{cd}}`}, + {`a(b|c)d`, `cat{lit{a}cap{cc{0x62-0x63}}lit{d}}`}, + + // Test flattening. + {`(?:a)`, `lit{a}`}, + {`(?:ab)(?:cd)`, `str{abcd}`}, + {`(?:a+b+)(?:c+d+)`, `cat{plus{lit{a}}plus{lit{b}}plus{lit{c}}plus{lit{d}}}`}, + {`(?:a+|b+)|(?:c+|d+)`, `alt{plus{lit{a}}plus{lit{b}}plus{lit{c}}plus{lit{d}}}`}, + {`(?:a|b)|(?:c|d)`, `cc{0x61-0x64}`}, + {`a|.`, `dot{}`}, + {`.|a`, `dot{}`}, + {`(?:[abc]|A|Z|hello|world)`, `alt{cc{0x41 0x5a 0x61-0x63}str{hello}str{world}}`}, + {`(?:[abc]|A|Z)`, `cc{0x41 0x5a 0x61-0x63}`}, + + // Test Perl quoted literals + {`\Q+|*?{[\E`, `str{+|*?{[}`}, + {`\Q+\E+`, `plus{lit{+}}`}, + {`\Qab\E+`, `cat{lit{a}plus{lit{b}}}`}, + {`\Q\\E`, `lit{\}`}, + {`\Q\\\E`, `str{\\}`}, + + // Test Perl \A and \z + {`(?m)^`, `bol{}`}, + {`(?m)$`, `eol{}`}, + {`(?-m)^`, `bot{}`}, + {`(?-m)$`, `eot{}`}, + {`(?m)\A`, `bot{}`}, + {`(?m)\z`, `eot{\z}`}, + {`(?-m)\A`, `bot{}`}, + {`(?-m)\z`, `eot{\z}`}, + + // Test named captures + {`(?Pa)`, `cap{name:lit{a}}`}, + + // Case-folded literals + {`[Aa]`, `litfold{A}`}, + {`[\x{100}\x{101}]`, `litfold{Ā}`}, + {`[Δδ]`, `litfold{Δ}`}, + + // Strings + {`abcde`, `str{abcde}`}, + {`[Aa][Bb]cd`, `cat{strfold{AB}str{cd}}`}, + + // Factoring. + {`abc|abd|aef|bcx|bcy`, `alt{cat{lit{a}alt{cat{lit{b}cc{0x63-0x64}}str{ef}}}cat{str{bc}cc{0x78-0x79}}}`}, + {`ax+y|ax+z|ay+w`, `cat{lit{a}alt{cat{plus{lit{x}}lit{y}}cat{plus{lit{x}}lit{z}}cat{plus{lit{y}}lit{w}}}}`}, + + // Bug fixes. + {`(?:.)`, `dot{}`}, + {`(?:x|(?:xa))`, `cat{lit{x}alt{emp{}lit{a}}}`}, + {`(?:.|(?:.a))`, `cat{dot{}alt{emp{}lit{a}}}`}, + {`(?:A(?:A|a))`, `cat{lit{A}litfold{A}}`}, + {`(?:A|a)`, `litfold{A}`}, + {`A|(?:A|a)`, `litfold{A}`}, + {`(?s).`, `dot{}`}, + {`(?-s).`, `dnl{}`}, + {`(?:(?:^).)`, `cat{bol{}dot{}}`}, + {`(?-s)(?:(?:^).)`, `cat{bol{}dnl{}}`}, + {`[\s\S]a`, `cat{cc{0x0-0x10ffff}lit{a}}`}, + + // RE2 prefix_tests + {`abc|abd`, `cat{str{ab}cc{0x63-0x64}}`}, + {`a(?:b)c|abd`, `cat{str{ab}cc{0x63-0x64}}`}, + {`abc|abd|aef|bcx|bcy`, + `alt{cat{lit{a}alt{cat{lit{b}cc{0x63-0x64}}str{ef}}}` + + `cat{str{bc}cc{0x78-0x79}}}`}, + {`abc|x|abd`, `alt{str{abc}lit{x}str{abd}}`}, + {`(?i)abc|ABD`, `cat{strfold{AB}cc{0x43-0x44 0x63-0x64}}`}, + {`[ab]c|[ab]d`, `cat{cc{0x61-0x62}cc{0x63-0x64}}`}, + {`.c|.d`, `cat{dot{}cc{0x63-0x64}}`}, + {`x{2}|x{2}[0-9]`, + `cat{rep{2,2 lit{x}}alt{emp{}cc{0x30-0x39}}}`}, + {`x{2}y|x{2}[0-9]y`, + `cat{rep{2,2 lit{x}}alt{lit{y}cat{cc{0x30-0x39}lit{y}}}}`}, + {`a.*?c|a.*?b`, + `cat{lit{a}alt{cat{nstar{dot{}}lit{c}}cat{nstar{dot{}}lit{b}}}}`}, + + // Valid repetitions. + {`((((((((((x{2}){2}){2}){2}){2}){2}){2}){2}){2}))`, ``}, + {`((((((((((x{1}){2}){2}){2}){2}){2}){2}){2}){2}){2})`, ``}, + + // Valid nesting. + {strings.Repeat("(", 999) + strings.Repeat(")", 999), ``}, + {strings.Repeat("(?:", 999) + strings.Repeat(")*", 999), ``}, + {"(" + strings.Repeat("|", 12345) + ")", ``}, // not nested at all +} + +const testFlags = MatchNL | PerlX | UnicodeGroups + +func TestParseSimple(t *testing.T) { + testParseDump(t, parseTests, testFlags) +} + +var foldcaseTests = []parseTest{ + {`AbCdE`, `strfold{ABCDE}`}, + {`[Aa]`, `litfold{A}`}, + {`a`, `litfold{A}`}, + + // 0x17F is an old English long s (looks like an f) and folds to s. + // 0x212A is the Kelvin symbol and folds to k. + {`A[F-g]`, `cat{litfold{A}cc{0x41-0x7a 0x17f 0x212a}}`}, // [Aa][A-z...] + {`[[:upper:]]`, `cc{0x41-0x5a 0x61-0x7a 0x17f 0x212a}`}, + {`[[:lower:]]`, `cc{0x41-0x5a 0x61-0x7a 0x17f 0x212a}`}, +} + +func TestParseFoldCase(t *testing.T) { + testParseDump(t, foldcaseTests, FoldCase) +} + +var literalTests = []parseTest{ + {"(|)^$.[*+?]{5,10},\\", "str{(|)^$.[*+?]{5,10},\\}"}, +} + +func TestParseLiteral(t *testing.T) { + testParseDump(t, literalTests, Literal) +} + +var matchnlTests = []parseTest{ + {`.`, `dot{}`}, + {"\n", "lit{\n}"}, + {`[^a]`, `cc{0x0-0x60 0x62-0x10ffff}`}, + {`[a\n]`, `cc{0xa 0x61}`}, +} + +func TestParseMatchNL(t *testing.T) { + testParseDump(t, matchnlTests, MatchNL) +} + +var nomatchnlTests = []parseTest{ + {`.`, `dnl{}`}, + {"\n", "lit{\n}"}, + {`[^a]`, `cc{0x0-0x9 0xb-0x60 0x62-0x10ffff}`}, + {`[a\n]`, `cc{0xa 0x61}`}, +} + +func TestParseNoMatchNL(t *testing.T) { + testParseDump(t, nomatchnlTests, 0) +} + +// Test Parse -> Dump. +func testParseDump(t *testing.T, tests []parseTest, flags Flags) { + for _, tt := range tests { + re, err := Parse(tt.Regexp, flags) + if err != nil { + t.Errorf("Parse(%#q): %v", tt.Regexp, err) + continue + } + if tt.Dump == "" { + // It parsed. That's all we care about. + continue + } + d := dump(re) + if d != tt.Dump { + t.Errorf("Parse(%#q).Dump() = %#q want %#q", tt.Regexp, d, tt.Dump) + } + } +} + +// dump prints a string representation of the regexp showing +// the structure explicitly. +func dump(re *Regexp) string { + var b strings.Builder + dumpRegexp(&b, re) + return b.String() +} + +var opNames = []string{ + OpNoMatch: "no", + OpEmptyMatch: "emp", + OpLiteral: "lit", + OpCharClass: "cc", + OpAnyCharNotNL: "dnl", + OpAnyChar: "dot", + OpBeginLine: "bol", + OpEndLine: "eol", + OpBeginText: "bot", + OpEndText: "eot", + OpWordBoundary: "wb", + OpNoWordBoundary: "nwb", + OpCapture: "cap", + OpStar: "star", + OpPlus: "plus", + OpQuest: "que", + OpRepeat: "rep", + OpConcat: "cat", + OpAlternate: "alt", +} + +// dumpRegexp writes an encoding of the syntax tree for the regexp re to b. +// It is used during testing to distinguish between parses that might print +// the same using re's String method. +func dumpRegexp(b *strings.Builder, re *Regexp) { + if int(re.Op) >= len(opNames) || opNames[re.Op] == "" { + fmt.Fprintf(b, "op%d", re.Op) + } else { + switch re.Op { + default: + b.WriteString(opNames[re.Op]) + case OpStar, OpPlus, OpQuest, OpRepeat: + if re.Flags&NonGreedy != 0 { + b.WriteByte('n') + } + b.WriteString(opNames[re.Op]) + case OpLiteral: + if len(re.Rune) > 1 { + b.WriteString("str") + } else { + b.WriteString("lit") + } + if re.Flags&FoldCase != 0 { + for _, r := range re.Rune { + if unicode.SimpleFold(r) != r { + b.WriteString("fold") + break + } + } + } + } + } + b.WriteByte('{') + switch re.Op { + case OpEndText: + if re.Flags&WasDollar == 0 { + b.WriteString(`\z`) + } + case OpLiteral: + for _, r := range re.Rune { + b.WriteRune(r) + } + case OpConcat, OpAlternate: + for _, sub := range re.Sub { + dumpRegexp(b, sub) + } + case OpStar, OpPlus, OpQuest: + dumpRegexp(b, re.Sub[0]) + case OpRepeat: + fmt.Fprintf(b, "%d,%d ", re.Min, re.Max) + dumpRegexp(b, re.Sub[0]) + case OpCapture: + if re.Name != "" { + b.WriteString(re.Name) + b.WriteByte(':') + } + dumpRegexp(b, re.Sub[0]) + case OpCharClass: + sep := "" + for i := 0; i < len(re.Rune); i += 2 { + b.WriteString(sep) + sep = " " + lo, hi := re.Rune[i], re.Rune[i+1] + if lo == hi { + fmt.Fprintf(b, "%#x", lo) + } else { + fmt.Fprintf(b, "%#x-%#x", lo, hi) + } + } + } + b.WriteByte('}') +} + +func mkCharClass(f func(rune) bool) string { + re := &Regexp{Op: OpCharClass} + lo := rune(-1) + for i := rune(0); i <= unicode.MaxRune; i++ { + if f(i) { + if lo < 0 { + lo = i + } + } else { + if lo >= 0 { + re.Rune = append(re.Rune, lo, i-1) + lo = -1 + } + } + } + if lo >= 0 { + re.Rune = append(re.Rune, lo, unicode.MaxRune) + } + return dump(re) +} + +func isUpperFold(r rune) bool { + if unicode.IsUpper(r) { + return true + } + c := unicode.SimpleFold(r) + for c != r { + if unicode.IsUpper(c) { + return true + } + c = unicode.SimpleFold(c) + } + return false +} + +func TestFoldConstants(t *testing.T) { + last := rune(-1) + for i := rune(0); i <= unicode.MaxRune; i++ { + if unicode.SimpleFold(i) == i { + continue + } + if last == -1 && minFold != i { + t.Errorf("minFold=%#U should be %#U", minFold, i) + } + last = i + } + if maxFold != last { + t.Errorf("maxFold=%#U should be %#U", maxFold, last) + } +} + +func TestAppendRangeCollapse(t *testing.T) { + // AppendRange should collapse each of the new ranges + // into the earlier ones (it looks back two ranges), so that + // the slice never grows very large. + // Note that we are not calling cleanClass. + var r []rune + for i := rune('A'); i <= 'Z'; i++ { + r = appendRange(r, i, i) + r = appendRange(r, i+'a'-'A', i+'a'-'A') + } + if string(r) != "AZaz" { + t.Errorf("appendRange interlaced A-Z a-z = %s, want AZaz", string(r)) + } +} + +var invalidRegexps = []string{ + `(`, + `)`, + `(a`, + `a)`, + `(a))`, + `(a|b|`, + `a|b|)`, + `(a|b|))`, + `(a|b`, + `a|b)`, + `(a|b))`, + `[a-z`, + `([a-z)`, + `[a-z)`, + `([a-z]))`, + `x{1001}`, + `x{9876543210}`, + `x{2,1}`, + `x{1,9876543210}`, + "\xff", // Invalid UTF-8 + "[\xff]", + "[\\\xff]", + "\\\xff", + `(?Pa`, + `(?P`, + `(?Pa)`, + `(?P<>a)`, + `[a-Z]`, + `(?i)[a-Z]`, + `\Q\E*`, + `a{100000}`, // too much repetition + `a{100000,}`, // too much repetition + "((((((((((x{2}){2}){2}){2}){2}){2}){2}){2}){2}){2})", // too much repetition + strings.Repeat("(", 1000) + strings.Repeat(")", 1000), // too deep + strings.Repeat("(?:", 1000) + strings.Repeat(")*", 1000), // too deep + "(" + strings.Repeat("(xx?)", 1000) + "){1000}", // too long + strings.Repeat("(xx?){1000}", 1000), // too long + strings.Repeat(`\pL`, 27000), // too many runes +} + +var onlyPerl = []string{ + `[a-b-c]`, + `\Qabc\E`, + `\Q*+?{[\E`, + `\Q\\E`, + `\Q\\\E`, + `\Q\\\\E`, + `\Q\\\\\E`, + `(?:a)`, + `(?Pa)`, +} + +var onlyPOSIX = []string{ + "a++", + "a**", + "a?*", + "a+*", + "a{1}*", + ".{1}{2}.{3}", +} + +func TestParseInvalidRegexps(t *testing.T) { + for _, regexp := range invalidRegexps { + if re, err := Parse(regexp, Perl); err == nil { + t.Errorf("Parse(%#q, Perl) = %s, should have failed", regexp, dump(re)) + } + if re, err := Parse(regexp, POSIX); err == nil { + t.Errorf("Parse(%#q, POSIX) = %s, should have failed", regexp, dump(re)) + } + } + for _, regexp := range onlyPerl { + if _, err := Parse(regexp, Perl); err != nil { + t.Errorf("Parse(%#q, Perl): %v", regexp, err) + } + if re, err := Parse(regexp, POSIX); err == nil { + t.Errorf("Parse(%#q, POSIX) = %s, should have failed", regexp, dump(re)) + } + } + for _, regexp := range onlyPOSIX { + if re, err := Parse(regexp, Perl); err == nil { + t.Errorf("Parse(%#q, Perl) = %s, should have failed", regexp, dump(re)) + } + if _, err := Parse(regexp, POSIX); err != nil { + t.Errorf("Parse(%#q, POSIX): %v", regexp, err) + } + } +} + +func TestToStringEquivalentParse(t *testing.T) { + for _, tt := range parseTests { + re, err := Parse(tt.Regexp, testFlags) + if err != nil { + t.Errorf("Parse(%#q): %v", tt.Regexp, err) + continue + } + if tt.Dump == "" { + // It parsed. That's all we care about. + continue + } + d := dump(re) + if d != tt.Dump { + t.Errorf("Parse(%#q).Dump() = %#q want %#q", tt.Regexp, d, tt.Dump) + continue + } + + s := re.String() + if s != tt.Regexp { + // If ToString didn't return the original regexp, + // it must have found one with fewer parens. + // Unfortunately we can't check the length here, because + // ToString produces "\\{" for a literal brace, + // but "{" is a shorter equivalent in some contexts. + nre, err := Parse(s, testFlags) + if err != nil { + t.Errorf("Parse(%#q.String() = %#q): %v", tt.Regexp, s, err) + continue + } + nd := dump(nre) + if d != nd { + t.Errorf("Parse(%#q) -> %#q; %#q vs %#q", tt.Regexp, s, d, nd) + } + + ns := nre.String() + if s != ns { + t.Errorf("Parse(%#q) -> %#q -> %#q", tt.Regexp, s, ns) + } + } + } +} diff --git a/src/regexp/syntax/perl_groups.go b/src/regexp/syntax/perl_groups.go new file mode 100644 index 0000000..effe4e6 --- /dev/null +++ b/src/regexp/syntax/perl_groups.go @@ -0,0 +1,134 @@ +// Copyright 2013 The Go Authors. All rights reserved. +// Use of this source code is governed by a BSD-style +// license that can be found in the LICENSE file. + +// GENERATED BY make_perl_groups.pl; DO NOT EDIT. +// make_perl_groups.pl >perl_groups.go + +package syntax + +var code1 = []rune{ /* \d */ + 0x30, 0x39, +} + +var code2 = []rune{ /* \s */ + 0x9, 0xa, + 0xc, 0xd, + 0x20, 0x20, +} + +var code3 = []rune{ /* \w */ + 0x30, 0x39, + 0x41, 0x5a, + 0x5f, 0x5f, + 0x61, 0x7a, +} + +var perlGroup = map[string]charGroup{ + `\d`: {+1, code1}, + `\D`: {-1, code1}, + `\s`: {+1, code2}, + `\S`: {-1, code2}, + `\w`: {+1, code3}, + `\W`: {-1, code3}, +} +var code4 = []rune{ /* [:alnum:] */ + 0x30, 0x39, + 0x41, 0x5a, + 0x61, 0x7a, +} + +var code5 = []rune{ /* [:alpha:] */ + 0x41, 0x5a, + 0x61, 0x7a, +} + +var code6 = []rune{ /* [:ascii:] */ + 0x0, 0x7f, +} + +var code7 = []rune{ /* [:blank:] */ + 0x9, 0x9, + 0x20, 0x20, +} + +var code8 = []rune{ /* [:cntrl:] */ + 0x0, 0x1f, + 0x7f, 0x7f, +} + +var code9 = []rune{ /* [:digit:] */ + 0x30, 0x39, +} + +var code10 = []rune{ /* [:graph:] */ + 0x21, 0x7e, +} + +var code11 = []rune{ /* [:lower:] */ + 0x61, 0x7a, +} + +var code12 = []rune{ /* [:print:] */ + 0x20, 0x7e, +} + +var code13 = []rune{ /* [:punct:] */ + 0x21, 0x2f, + 0x3a, 0x40, + 0x5b, 0x60, + 0x7b, 0x7e, +} + +var code14 = []rune{ /* [:space:] */ + 0x9, 0xd, + 0x20, 0x20, +} + +var code15 = []rune{ /* [:upper:] */ + 0x41, 0x5a, +} + +var code16 = []rune{ /* [:word:] */ + 0x30, 0x39, + 0x41, 0x5a, + 0x5f, 0x5f, + 0x61, 0x7a, +} + +var code17 = []rune{ /* [:xdigit:] */ + 0x30, 0x39, + 0x41, 0x46, + 0x61, 0x66, +} + +var posixGroup = map[string]charGroup{ + `[:alnum:]`: {+1, code4}, + `[:^alnum:]`: {-1, code4}, + `[:alpha:]`: {+1, code5}, + `[:^alpha:]`: {-1, code5}, + `[:ascii:]`: {+1, code6}, + `[:^ascii:]`: {-1, code6}, + `[:blank:]`: {+1, code7}, + `[:^blank:]`: {-1, code7}, + `[:cntrl:]`: {+1, code8}, + `[:^cntrl:]`: {-1, code8}, + `[:digit:]`: {+1, code9}, + `[:^digit:]`: {-1, code9}, + `[:graph:]`: {+1, code10}, + `[:^graph:]`: {-1, code10}, + `[:lower:]`: {+1, code11}, + `[:^lower:]`: {-1, code11}, + `[:print:]`: {+1, code12}, + `[:^print:]`: {-1, code12}, + `[:punct:]`: {+1, code13}, + `[:^punct:]`: {-1, code13}, + `[:space:]`: {+1, code14}, + `[:^space:]`: {-1, code14}, + `[:upper:]`: {+1, code15}, + `[:^upper:]`: {-1, code15}, + `[:word:]`: {+1, code16}, + `[:^word:]`: {-1, code16}, + `[:xdigit:]`: {+1, code17}, + `[:^xdigit:]`: {-1, code17}, +} diff --git a/src/regexp/syntax/prog.go b/src/regexp/syntax/prog.go new file mode 100644 index 0000000..896cdc4 --- /dev/null +++ b/src/regexp/syntax/prog.go @@ -0,0 +1,347 @@ +// Copyright 2011 The Go Authors. All rights reserved. +// Use of this source code is governed by a BSD-style +// license that can be found in the LICENSE file. + +package syntax + +import ( + "strconv" + "strings" + "unicode" + "unicode/utf8" +) + +// Compiled program. +// May not belong in this package, but convenient for now. + +// A Prog is a compiled regular expression program. +type Prog struct { + Inst []Inst + Start int // index of start instruction + NumCap int // number of InstCapture insts in re +} + +// An InstOp is an instruction opcode. +type InstOp uint8 + +const ( + InstAlt InstOp = iota + InstAltMatch + InstCapture + InstEmptyWidth + InstMatch + InstFail + InstNop + InstRune + InstRune1 + InstRuneAny + InstRuneAnyNotNL +) + +var instOpNames = []string{ + "InstAlt", + "InstAltMatch", + "InstCapture", + "InstEmptyWidth", + "InstMatch", + "InstFail", + "InstNop", + "InstRune", + "InstRune1", + "InstRuneAny", + "InstRuneAnyNotNL", +} + +func (i InstOp) String() string { + if uint(i) >= uint(len(instOpNames)) { + return "" + } + return instOpNames[i] +} + +// An EmptyOp specifies a kind or mixture of zero-width assertions. +type EmptyOp uint8 + +const ( + EmptyBeginLine EmptyOp = 1 << iota + EmptyEndLine + EmptyBeginText + EmptyEndText + EmptyWordBoundary + EmptyNoWordBoundary +) + +// EmptyOpContext returns the zero-width assertions +// satisfied at the position between the runes r1 and r2. +// Passing r1 == -1 indicates that the position is +// at the beginning of the text. +// Passing r2 == -1 indicates that the position is +// at the end of the text. +func EmptyOpContext(r1, r2 rune) EmptyOp { + var op EmptyOp = EmptyNoWordBoundary + var boundary byte + switch { + case IsWordChar(r1): + boundary = 1 + case r1 == '\n': + op |= EmptyBeginLine + case r1 < 0: + op |= EmptyBeginText | EmptyBeginLine + } + switch { + case IsWordChar(r2): + boundary ^= 1 + case r2 == '\n': + op |= EmptyEndLine + case r2 < 0: + op |= EmptyEndText | EmptyEndLine + } + if boundary != 0 { // IsWordChar(r1) != IsWordChar(r2) + op ^= (EmptyWordBoundary | EmptyNoWordBoundary) + } + return op +} + +// IsWordChar reports whether r is considered a “word character” +// during the evaluation of the \b and \B zero-width assertions. +// These assertions are ASCII-only: the word characters are [A-Za-z0-9_]. +func IsWordChar(r rune) bool { + return 'A' <= r && r <= 'Z' || 'a' <= r && r <= 'z' || '0' <= r && r <= '9' || r == '_' +} + +// An Inst is a single instruction in a regular expression program. +type Inst struct { + Op InstOp + Out uint32 // all but InstMatch, InstFail + Arg uint32 // InstAlt, InstAltMatch, InstCapture, InstEmptyWidth + Rune []rune +} + +func (p *Prog) String() string { + var b strings.Builder + dumpProg(&b, p) + return b.String() +} + +// skipNop follows any no-op or capturing instructions. +func (p *Prog) skipNop(pc uint32) *Inst { + i := &p.Inst[pc] + for i.Op == InstNop || i.Op == InstCapture { + i = &p.Inst[i.Out] + } + return i +} + +// op returns i.Op but merges all the Rune special cases into InstRune +func (i *Inst) op() InstOp { + op := i.Op + switch op { + case InstRune1, InstRuneAny, InstRuneAnyNotNL: + op = InstRune + } + return op +} + +// Prefix returns a literal string that all matches for the +// regexp must start with. Complete is true if the prefix +// is the entire match. +func (p *Prog) Prefix() (prefix string, complete bool) { + i := p.skipNop(uint32(p.Start)) + + // Avoid allocation of buffer if prefix is empty. + if i.op() != InstRune || len(i.Rune) != 1 { + return "", i.Op == InstMatch + } + + // Have prefix; gather characters. + var buf strings.Builder + for i.op() == InstRune && len(i.Rune) == 1 && Flags(i.Arg)&FoldCase == 0 && i.Rune[0] != utf8.RuneError { + buf.WriteRune(i.Rune[0]) + i = p.skipNop(i.Out) + } + return buf.String(), i.Op == InstMatch +} + +// StartCond returns the leading empty-width conditions that must +// be true in any match. It returns ^EmptyOp(0) if no matches are possible. +func (p *Prog) StartCond() EmptyOp { + var flag EmptyOp + pc := uint32(p.Start) + i := &p.Inst[pc] +Loop: + for { + switch i.Op { + case InstEmptyWidth: + flag |= EmptyOp(i.Arg) + case InstFail: + return ^EmptyOp(0) + case InstCapture, InstNop: + // skip + default: + break Loop + } + pc = i.Out + i = &p.Inst[pc] + } + return flag +} + +const noMatch = -1 + +// MatchRune reports whether the instruction matches (and consumes) r. +// It should only be called when i.Op == InstRune. +func (i *Inst) MatchRune(r rune) bool { + return i.MatchRunePos(r) != noMatch +} + +// MatchRunePos checks whether the instruction matches (and consumes) r. +// If so, MatchRunePos returns the index of the matching rune pair +// (or, when len(i.Rune) == 1, rune singleton). +// If not, MatchRunePos returns -1. +// MatchRunePos should only be called when i.Op == InstRune. +func (i *Inst) MatchRunePos(r rune) int { + rune := i.Rune + + switch len(rune) { + case 0: + return noMatch + + case 1: + // Special case: single-rune slice is from literal string, not char class. + r0 := rune[0] + if r == r0 { + return 0 + } + if Flags(i.Arg)&FoldCase != 0 { + for r1 := unicode.SimpleFold(r0); r1 != r0; r1 = unicode.SimpleFold(r1) { + if r == r1 { + return 0 + } + } + } + return noMatch + + case 2: + if r >= rune[0] && r <= rune[1] { + return 0 + } + return noMatch + + case 4, 6, 8: + // Linear search for a few pairs. + // Should handle ASCII well. + for j := 0; j < len(rune); j += 2 { + if r < rune[j] { + return noMatch + } + if r <= rune[j+1] { + return j / 2 + } + } + return noMatch + } + + // Otherwise binary search. + lo := 0 + hi := len(rune) / 2 + for lo < hi { + m := lo + (hi-lo)/2 + if c := rune[2*m]; c <= r { + if r <= rune[2*m+1] { + return m + } + lo = m + 1 + } else { + hi = m + } + } + return noMatch +} + +// MatchEmptyWidth reports whether the instruction matches +// an empty string between the runes before and after. +// It should only be called when i.Op == InstEmptyWidth. +func (i *Inst) MatchEmptyWidth(before rune, after rune) bool { + switch EmptyOp(i.Arg) { + case EmptyBeginLine: + return before == '\n' || before == -1 + case EmptyEndLine: + return after == '\n' || after == -1 + case EmptyBeginText: + return before == -1 + case EmptyEndText: + return after == -1 + case EmptyWordBoundary: + return IsWordChar(before) != IsWordChar(after) + case EmptyNoWordBoundary: + return IsWordChar(before) == IsWordChar(after) + } + panic("unknown empty width arg") +} + +func (i *Inst) String() string { + var b strings.Builder + dumpInst(&b, i) + return b.String() +} + +func bw(b *strings.Builder, args ...string) { + for _, s := range args { + b.WriteString(s) + } +} + +func dumpProg(b *strings.Builder, p *Prog) { + for j := range p.Inst { + i := &p.Inst[j] + pc := strconv.Itoa(j) + if len(pc) < 3 { + b.WriteString(" "[len(pc):]) + } + if j == p.Start { + pc += "*" + } + bw(b, pc, "\t") + dumpInst(b, i) + bw(b, "\n") + } +} + +func u32(i uint32) string { + return strconv.FormatUint(uint64(i), 10) +} + +func dumpInst(b *strings.Builder, i *Inst) { + switch i.Op { + case InstAlt: + bw(b, "alt -> ", u32(i.Out), ", ", u32(i.Arg)) + case InstAltMatch: + bw(b, "altmatch -> ", u32(i.Out), ", ", u32(i.Arg)) + case InstCapture: + bw(b, "cap ", u32(i.Arg), " -> ", u32(i.Out)) + case InstEmptyWidth: + bw(b, "empty ", u32(i.Arg), " -> ", u32(i.Out)) + case InstMatch: + bw(b, "match") + case InstFail: + bw(b, "fail") + case InstNop: + bw(b, "nop -> ", u32(i.Out)) + case InstRune: + if i.Rune == nil { + // shouldn't happen + bw(b, "rune ") + } + bw(b, "rune ", strconv.QuoteToASCII(string(i.Rune))) + if Flags(i.Arg)&FoldCase != 0 { + bw(b, "/i") + } + bw(b, " -> ", u32(i.Out)) + case InstRune1: + bw(b, "rune1 ", strconv.QuoteToASCII(string(i.Rune)), " -> ", u32(i.Out)) + case InstRuneAny: + bw(b, "any -> ", u32(i.Out)) + case InstRuneAnyNotNL: + bw(b, "anynotnl -> ", u32(i.Out)) + } +} diff --git a/src/regexp/syntax/prog_test.go b/src/regexp/syntax/prog_test.go new file mode 100644 index 0000000..5603aea --- /dev/null +++ b/src/regexp/syntax/prog_test.go @@ -0,0 +1,129 @@ +// Copyright 2011 The Go Authors. All rights reserved. +// Use of this source code is governed by a BSD-style +// license that can be found in the LICENSE file. + +package syntax + +import "testing" + +var compileTests = []struct { + Regexp string + Prog string +}{ + {"a", ` 0 fail + 1* rune1 "a" -> 2 + 2 match +`}, + {"[A-M][n-z]", ` 0 fail + 1* rune "AM" -> 2 + 2 rune "nz" -> 3 + 3 match +`}, + {"", ` 0 fail + 1* nop -> 2 + 2 match +`}, + {"a?", ` 0 fail + 1 rune1 "a" -> 3 + 2* alt -> 1, 3 + 3 match +`}, + {"a??", ` 0 fail + 1 rune1 "a" -> 3 + 2* alt -> 3, 1 + 3 match +`}, + {"a+", ` 0 fail + 1* rune1 "a" -> 2 + 2 alt -> 1, 3 + 3 match +`}, + {"a+?", ` 0 fail + 1* rune1 "a" -> 2 + 2 alt -> 3, 1 + 3 match +`}, + {"a*", ` 0 fail + 1 rune1 "a" -> 2 + 2* alt -> 1, 3 + 3 match +`}, + {"a*?", ` 0 fail + 1 rune1 "a" -> 2 + 2* alt -> 3, 1 + 3 match +`}, + {"a+b+", ` 0 fail + 1* rune1 "a" -> 2 + 2 alt -> 1, 3 + 3 rune1 "b" -> 4 + 4 alt -> 3, 5 + 5 match +`}, + {"(a+)(b+)", ` 0 fail + 1* cap 2 -> 2 + 2 rune1 "a" -> 3 + 3 alt -> 2, 4 + 4 cap 3 -> 5 + 5 cap 4 -> 6 + 6 rune1 "b" -> 7 + 7 alt -> 6, 8 + 8 cap 5 -> 9 + 9 match +`}, + {"a+|b+", ` 0 fail + 1 rune1 "a" -> 2 + 2 alt -> 1, 6 + 3 rune1 "b" -> 4 + 4 alt -> 3, 6 + 5* alt -> 1, 3 + 6 match +`}, + {"A[Aa]", ` 0 fail + 1* rune1 "A" -> 2 + 2 rune "A"/i -> 3 + 3 match +`}, + {"(?:(?:^).)", ` 0 fail + 1* empty 4 -> 2 + 2 anynotnl -> 3 + 3 match +`}, + {"(?:|a)+", ` 0 fail + 1 nop -> 4 + 2 rune1 "a" -> 4 + 3* alt -> 1, 2 + 4 alt -> 3, 5 + 5 match +`}, + {"(?:|a)*", ` 0 fail + 1 nop -> 4 + 2 rune1 "a" -> 4 + 3 alt -> 1, 2 + 4 alt -> 3, 6 + 5* alt -> 3, 6 + 6 match +`}, +} + +func TestCompile(t *testing.T) { + for _, tt := range compileTests { + re, _ := Parse(tt.Regexp, Perl) + p, _ := Compile(re) + s := p.String() + if s != tt.Prog { + t.Errorf("compiled %#q:\n--- have\n%s---\n--- want\n%s---", tt.Regexp, s, tt.Prog) + } + } +} + +func BenchmarkEmptyOpContext(b *testing.B) { + for i := 0; i < b.N; i++ { + var r1 rune = -1 + for _, r2 := range "foo, bar, baz\nsome input text.\n" { + EmptyOpContext(r1, r2) + r1 = r2 + } + EmptyOpContext(r1, -1) + } +} diff --git a/src/regexp/syntax/regexp.go b/src/regexp/syntax/regexp.go new file mode 100644 index 0000000..3a4d2d2 --- /dev/null +++ b/src/regexp/syntax/regexp.go @@ -0,0 +1,320 @@ +// Copyright 2011 The Go Authors. All rights reserved. +// Use of this source code is governed by a BSD-style +// license that can be found in the LICENSE file. + +package syntax + +// Note to implementers: +// In this package, re is always a *Regexp and r is always a rune. + +import ( + "strconv" + "strings" + "unicode" +) + +// A Regexp is a node in a regular expression syntax tree. +type Regexp struct { + Op Op // operator + Flags Flags + Sub []*Regexp // subexpressions, if any + Sub0 [1]*Regexp // storage for short Sub + Rune []rune // matched runes, for OpLiteral, OpCharClass + Rune0 [2]rune // storage for short Rune + Min, Max int // min, max for OpRepeat + Cap int // capturing index, for OpCapture + Name string // capturing name, for OpCapture +} + +//go:generate stringer -type Op -trimprefix Op + +// An Op is a single regular expression operator. +type Op uint8 + +// Operators are listed in precedence order, tightest binding to weakest. +// Character class operators are listed simplest to most complex +// (OpLiteral, OpCharClass, OpAnyCharNotNL, OpAnyChar). + +const ( + OpNoMatch Op = 1 + iota // matches no strings + OpEmptyMatch // matches empty string + OpLiteral // matches Runes sequence + OpCharClass // matches Runes interpreted as range pair list + OpAnyCharNotNL // matches any character except newline + OpAnyChar // matches any character + OpBeginLine // matches empty string at beginning of line + OpEndLine // matches empty string at end of line + OpBeginText // matches empty string at beginning of text + OpEndText // matches empty string at end of text + OpWordBoundary // matches word boundary `\b` + OpNoWordBoundary // matches word non-boundary `\B` + OpCapture // capturing subexpression with index Cap, optional name Name + OpStar // matches Sub[0] zero or more times + OpPlus // matches Sub[0] one or more times + OpQuest // matches Sub[0] zero or one times + OpRepeat // matches Sub[0] at least Min times, at most Max (Max == -1 is no limit) + OpConcat // matches concatenation of Subs + OpAlternate // matches alternation of Subs +) + +const opPseudo Op = 128 // where pseudo-ops start + +// Equal reports whether x and y have identical structure. +func (x *Regexp) Equal(y *Regexp) bool { + if x == nil || y == nil { + return x == y + } + if x.Op != y.Op { + return false + } + switch x.Op { + case OpEndText: + // The parse flags remember whether this is \z or \Z. + if x.Flags&WasDollar != y.Flags&WasDollar { + return false + } + + case OpLiteral, OpCharClass: + if len(x.Rune) != len(y.Rune) { + return false + } + for i, r := range x.Rune { + if r != y.Rune[i] { + return false + } + } + + case OpAlternate, OpConcat: + if len(x.Sub) != len(y.Sub) { + return false + } + for i, sub := range x.Sub { + if !sub.Equal(y.Sub[i]) { + return false + } + } + + case OpStar, OpPlus, OpQuest: + if x.Flags&NonGreedy != y.Flags&NonGreedy || !x.Sub[0].Equal(y.Sub[0]) { + return false + } + + case OpRepeat: + if x.Flags&NonGreedy != y.Flags&NonGreedy || x.Min != y.Min || x.Max != y.Max || !x.Sub[0].Equal(y.Sub[0]) { + return false + } + + case OpCapture: + if x.Cap != y.Cap || x.Name != y.Name || !x.Sub[0].Equal(y.Sub[0]) { + return false + } + } + return true +} + +// writeRegexp writes the Perl syntax for the regular expression re to b. +func writeRegexp(b *strings.Builder, re *Regexp) { + switch re.Op { + default: + b.WriteString("") + case OpNoMatch: + b.WriteString(`[^\x00-\x{10FFFF}]`) + case OpEmptyMatch: + b.WriteString(`(?:)`) + case OpLiteral: + if re.Flags&FoldCase != 0 { + b.WriteString(`(?i:`) + } + for _, r := range re.Rune { + escape(b, r, false) + } + if re.Flags&FoldCase != 0 { + b.WriteString(`)`) + } + case OpCharClass: + if len(re.Rune)%2 != 0 { + b.WriteString(`[invalid char class]`) + break + } + b.WriteRune('[') + if len(re.Rune) == 0 { + b.WriteString(`^\x00-\x{10FFFF}`) + } else if re.Rune[0] == 0 && re.Rune[len(re.Rune)-1] == unicode.MaxRune && len(re.Rune) > 2 { + // Contains 0 and MaxRune. Probably a negated class. + // Print the gaps. + b.WriteRune('^') + for i := 1; i < len(re.Rune)-1; i += 2 { + lo, hi := re.Rune[i]+1, re.Rune[i+1]-1 + escape(b, lo, lo == '-') + if lo != hi { + b.WriteRune('-') + escape(b, hi, hi == '-') + } + } + } else { + for i := 0; i < len(re.Rune); i += 2 { + lo, hi := re.Rune[i], re.Rune[i+1] + escape(b, lo, lo == '-') + if lo != hi { + b.WriteRune('-') + escape(b, hi, hi == '-') + } + } + } + b.WriteRune(']') + case OpAnyCharNotNL: + b.WriteString(`(?-s:.)`) + case OpAnyChar: + b.WriteString(`(?s:.)`) + case OpBeginLine: + b.WriteString(`(?m:^)`) + case OpEndLine: + b.WriteString(`(?m:$)`) + case OpBeginText: + b.WriteString(`\A`) + case OpEndText: + if re.Flags&WasDollar != 0 { + b.WriteString(`(?-m:$)`) + } else { + b.WriteString(`\z`) + } + case OpWordBoundary: + b.WriteString(`\b`) + case OpNoWordBoundary: + b.WriteString(`\B`) + case OpCapture: + if re.Name != "" { + b.WriteString(`(?P<`) + b.WriteString(re.Name) + b.WriteRune('>') + } else { + b.WriteRune('(') + } + if re.Sub[0].Op != OpEmptyMatch { + writeRegexp(b, re.Sub[0]) + } + b.WriteRune(')') + case OpStar, OpPlus, OpQuest, OpRepeat: + if sub := re.Sub[0]; sub.Op > OpCapture || sub.Op == OpLiteral && len(sub.Rune) > 1 { + b.WriteString(`(?:`) + writeRegexp(b, sub) + b.WriteString(`)`) + } else { + writeRegexp(b, sub) + } + switch re.Op { + case OpStar: + b.WriteRune('*') + case OpPlus: + b.WriteRune('+') + case OpQuest: + b.WriteRune('?') + case OpRepeat: + b.WriteRune('{') + b.WriteString(strconv.Itoa(re.Min)) + if re.Max != re.Min { + b.WriteRune(',') + if re.Max >= 0 { + b.WriteString(strconv.Itoa(re.Max)) + } + } + b.WriteRune('}') + } + if re.Flags&NonGreedy != 0 { + b.WriteRune('?') + } + case OpConcat: + for _, sub := range re.Sub { + if sub.Op == OpAlternate { + b.WriteString(`(?:`) + writeRegexp(b, sub) + b.WriteString(`)`) + } else { + writeRegexp(b, sub) + } + } + case OpAlternate: + for i, sub := range re.Sub { + if i > 0 { + b.WriteRune('|') + } + writeRegexp(b, sub) + } + } +} + +func (re *Regexp) String() string { + var b strings.Builder + writeRegexp(&b, re) + return b.String() +} + +const meta = `\.+*?()|[]{}^$` + +func escape(b *strings.Builder, r rune, force bool) { + if unicode.IsPrint(r) { + if strings.ContainsRune(meta, r) || force { + b.WriteRune('\\') + } + b.WriteRune(r) + return + } + + switch r { + case '\a': + b.WriteString(`\a`) + case '\f': + b.WriteString(`\f`) + case '\n': + b.WriteString(`\n`) + case '\r': + b.WriteString(`\r`) + case '\t': + b.WriteString(`\t`) + case '\v': + b.WriteString(`\v`) + default: + if r < 0x100 { + b.WriteString(`\x`) + s := strconv.FormatInt(int64(r), 16) + if len(s) == 1 { + b.WriteRune('0') + } + b.WriteString(s) + break + } + b.WriteString(`\x{`) + b.WriteString(strconv.FormatInt(int64(r), 16)) + b.WriteString(`}`) + } +} + +// MaxCap walks the regexp to find the maximum capture index. +func (re *Regexp) MaxCap() int { + m := 0 + if re.Op == OpCapture { + m = re.Cap + } + for _, sub := range re.Sub { + if n := sub.MaxCap(); m < n { + m = n + } + } + return m +} + +// CapNames walks the regexp to find the names of capturing groups. +func (re *Regexp) CapNames() []string { + names := make([]string, re.MaxCap()+1) + re.capNames(names) + return names +} + +func (re *Regexp) capNames(names []string) { + if re.Op == OpCapture { + names[re.Cap] = re.Name + } + for _, sub := range re.Sub { + sub.capNames(names) + } +} diff --git a/src/regexp/syntax/simplify.go b/src/regexp/syntax/simplify.go new file mode 100644 index 0000000..e439325 --- /dev/null +++ b/src/regexp/syntax/simplify.go @@ -0,0 +1,151 @@ +// Copyright 2011 The Go Authors. All rights reserved. +// Use of this source code is governed by a BSD-style +// license that can be found in the LICENSE file. + +package syntax + +// Simplify returns a regexp equivalent to re but without counted repetitions +// and with various other simplifications, such as rewriting /(?:a+)+/ to /a+/. +// The resulting regexp will execute correctly but its string representation +// will not produce the same parse tree, because capturing parentheses +// may have been duplicated or removed. For example, the simplified form +// for /(x){1,2}/ is /(x)(x)?/ but both parentheses capture as $1. +// The returned regexp may share structure with or be the original. +func (re *Regexp) Simplify() *Regexp { + if re == nil { + return nil + } + switch re.Op { + case OpCapture, OpConcat, OpAlternate: + // Simplify children, building new Regexp if children change. + nre := re + for i, sub := range re.Sub { + nsub := sub.Simplify() + if nre == re && nsub != sub { + // Start a copy. + nre = new(Regexp) + *nre = *re + nre.Rune = nil + nre.Sub = append(nre.Sub0[:0], re.Sub[:i]...) + } + if nre != re { + nre.Sub = append(nre.Sub, nsub) + } + } + return nre + + case OpStar, OpPlus, OpQuest: + sub := re.Sub[0].Simplify() + return simplify1(re.Op, re.Flags, sub, re) + + case OpRepeat: + // Special special case: x{0} matches the empty string + // and doesn't even need to consider x. + if re.Min == 0 && re.Max == 0 { + return &Regexp{Op: OpEmptyMatch} + } + + // The fun begins. + sub := re.Sub[0].Simplify() + + // x{n,} means at least n matches of x. + if re.Max == -1 { + // Special case: x{0,} is x*. + if re.Min == 0 { + return simplify1(OpStar, re.Flags, sub, nil) + } + + // Special case: x{1,} is x+. + if re.Min == 1 { + return simplify1(OpPlus, re.Flags, sub, nil) + } + + // General case: x{4,} is xxxx+. + nre := &Regexp{Op: OpConcat} + nre.Sub = nre.Sub0[:0] + for i := 0; i < re.Min-1; i++ { + nre.Sub = append(nre.Sub, sub) + } + nre.Sub = append(nre.Sub, simplify1(OpPlus, re.Flags, sub, nil)) + return nre + } + + // Special case x{0} handled above. + + // Special case: x{1} is just x. + if re.Min == 1 && re.Max == 1 { + return sub + } + + // General case: x{n,m} means n copies of x and m copies of x? + // The machine will do less work if we nest the final m copies, + // so that x{2,5} = xx(x(x(x)?)?)? + + // Build leading prefix: xx. + var prefix *Regexp + if re.Min > 0 { + prefix = &Regexp{Op: OpConcat} + prefix.Sub = prefix.Sub0[:0] + for i := 0; i < re.Min; i++ { + prefix.Sub = append(prefix.Sub, sub) + } + } + + // Build and attach suffix: (x(x(x)?)?)? + if re.Max > re.Min { + suffix := simplify1(OpQuest, re.Flags, sub, nil) + for i := re.Min + 1; i < re.Max; i++ { + nre2 := &Regexp{Op: OpConcat} + nre2.Sub = append(nre2.Sub0[:0], sub, suffix) + suffix = simplify1(OpQuest, re.Flags, nre2, nil) + } + if prefix == nil { + return suffix + } + prefix.Sub = append(prefix.Sub, suffix) + } + if prefix != nil { + return prefix + } + + // Some degenerate case like min > max or min < max < 0. + // Handle as impossible match. + return &Regexp{Op: OpNoMatch} + } + + return re +} + +// simplify1 implements Simplify for the unary OpStar, +// OpPlus, and OpQuest operators. It returns the simple regexp +// equivalent to +// +// Regexp{Op: op, Flags: flags, Sub: {sub}} +// +// under the assumption that sub is already simple, and +// without first allocating that structure. If the regexp +// to be returned turns out to be equivalent to re, simplify1 +// returns re instead. +// +// simplify1 is factored out of Simplify because the implementation +// for other operators generates these unary expressions. +// Letting them call simplify1 makes sure the expressions they +// generate are simple. +func simplify1(op Op, flags Flags, sub, re *Regexp) *Regexp { + // Special case: repeat the empty string as much as + // you want, but it's still the empty string. + if sub.Op == OpEmptyMatch { + return sub + } + // The operators are idempotent if the flags match. + if op == sub.Op && flags&NonGreedy == sub.Flags&NonGreedy { + return sub + } + if re != nil && re.Op == op && re.Flags&NonGreedy == flags&NonGreedy && sub == re.Sub[0] { + return re + } + + re = &Regexp{Op: op, Flags: flags} + re.Sub = append(re.Sub0[:0], sub) + return re +} diff --git a/src/regexp/syntax/simplify_test.go b/src/regexp/syntax/simplify_test.go new file mode 100644 index 0000000..9877db3 --- /dev/null +++ b/src/regexp/syntax/simplify_test.go @@ -0,0 +1,151 @@ +// Copyright 2011 The Go Authors. All rights reserved. +// Use of this source code is governed by a BSD-style +// license that can be found in the LICENSE file. + +package syntax + +import "testing" + +var simplifyTests = []struct { + Regexp string + Simple string +}{ + // Already-simple constructs + {`a`, `a`}, + {`ab`, `ab`}, + {`a|b`, `[a-b]`}, + {`ab|cd`, `ab|cd`}, + {`(ab)*`, `(ab)*`}, + {`(ab)+`, `(ab)+`}, + {`(ab)?`, `(ab)?`}, + {`.`, `(?s:.)`}, + {`^`, `(?m:^)`}, + {`$`, `(?m:$)`}, + {`[ac]`, `[ac]`}, + {`[^ac]`, `[^ac]`}, + + // Posix character classes + {`[[:alnum:]]`, `[0-9A-Za-z]`}, + {`[[:alpha:]]`, `[A-Za-z]`}, + {`[[:blank:]]`, `[\t ]`}, + {`[[:cntrl:]]`, `[\x00-\x1f\x7f]`}, + {`[[:digit:]]`, `[0-9]`}, + {`[[:graph:]]`, `[!-~]`}, + {`[[:lower:]]`, `[a-z]`}, + {`[[:print:]]`, `[ -~]`}, + {`[[:punct:]]`, "[!-/:-@\\[-`\\{-~]"}, + {`[[:space:]]`, `[\t-\r ]`}, + {`[[:upper:]]`, `[A-Z]`}, + {`[[:xdigit:]]`, `[0-9A-Fa-f]`}, + + // Perl character classes + {`\d`, `[0-9]`}, + {`\s`, `[\t-\n\f-\r ]`}, + {`\w`, `[0-9A-Z_a-z]`}, + {`\D`, `[^0-9]`}, + {`\S`, `[^\t-\n\f-\r ]`}, + {`\W`, `[^0-9A-Z_a-z]`}, + {`[\d]`, `[0-9]`}, + {`[\s]`, `[\t-\n\f-\r ]`}, + {`[\w]`, `[0-9A-Z_a-z]`}, + {`[\D]`, `[^0-9]`}, + {`[\S]`, `[^\t-\n\f-\r ]`}, + {`[\W]`, `[^0-9A-Z_a-z]`}, + + // Posix repetitions + {`a{1}`, `a`}, + {`a{2}`, `aa`}, + {`a{5}`, `aaaaa`}, + {`a{0,1}`, `a?`}, + // The next three are illegible because Simplify inserts (?:) + // parens instead of () parens to avoid creating extra + // captured subexpressions. The comments show a version with fewer parens. + {`(a){0,2}`, `(?:(a)(a)?)?`}, // (aa?)? + {`(a){0,4}`, `(?:(a)(?:(a)(?:(a)(a)?)?)?)?`}, // (a(a(aa?)?)?)? + {`(a){2,6}`, `(a)(a)(?:(a)(?:(a)(?:(a)(a)?)?)?)?`}, // aa(a(a(aa?)?)?)? + {`a{0,2}`, `(?:aa?)?`}, // (aa?)? + {`a{0,4}`, `(?:a(?:a(?:aa?)?)?)?`}, // (a(a(aa?)?)?)? + {`a{2,6}`, `aa(?:a(?:a(?:aa?)?)?)?`}, // aa(a(a(aa?)?)?)? + {`a{0,}`, `a*`}, + {`a{1,}`, `a+`}, + {`a{2,}`, `aa+`}, + {`a{5,}`, `aaaaa+`}, + + // Test that operators simplify their arguments. + {`(?:a{1,}){1,}`, `a+`}, + {`(a{1,}b{1,})`, `(a+b+)`}, + {`a{1,}|b{1,}`, `a+|b+`}, + {`(?:a{1,})*`, `(?:a+)*`}, + {`(?:a{1,})+`, `a+`}, + {`(?:a{1,})?`, `(?:a+)?`}, + {``, `(?:)`}, + {`a{0}`, `(?:)`}, + + // Character class simplification + {`[ab]`, `[a-b]`}, + {`[a-za-za-z]`, `[a-z]`}, + {`[A-Za-zA-Za-z]`, `[A-Za-z]`}, + {`[ABCDEFGH]`, `[A-H]`}, + {`[AB-CD-EF-GH]`, `[A-H]`}, + {`[W-ZP-XE-R]`, `[E-Z]`}, + {`[a-ee-gg-m]`, `[a-m]`}, + {`[a-ea-ha-m]`, `[a-m]`}, + {`[a-ma-ha-e]`, `[a-m]`}, + {`[a-zA-Z0-9 -~]`, `[ -~]`}, + + // Empty character classes + {`[^[:cntrl:][:^cntrl:]]`, `[^\x00-\x{10FFFF}]`}, + + // Full character classes + {`[[:cntrl:][:^cntrl:]]`, `(?s:.)`}, + + // Unicode case folding. + {`(?i)A`, `(?i:A)`}, + {`(?i)a`, `(?i:A)`}, + {`(?i)[A]`, `(?i:A)`}, + {`(?i)[a]`, `(?i:A)`}, + {`(?i)K`, `(?i:K)`}, + {`(?i)k`, `(?i:K)`}, + {`(?i)\x{212a}`, "(?i:K)"}, + {`(?i)[K]`, "[Kk\u212A]"}, + {`(?i)[k]`, "[Kk\u212A]"}, + {`(?i)[\x{212a}]`, "[Kk\u212A]"}, + {`(?i)[a-z]`, "[A-Za-z\u017F\u212A]"}, + {`(?i)[\x00-\x{FFFD}]`, "[\\x00-\uFFFD]"}, + {`(?i)[\x00-\x{10FFFF}]`, `(?s:.)`}, + + // Empty string as a regular expression. + // The empty string must be preserved inside parens in order + // to make submatches work right, so these tests are less + // interesting than they might otherwise be. String inserts + // explicit (?:) in place of non-parenthesized empty strings, + // to make them easier to spot for other parsers. + {`(a|b|)`, `([a-b]|(?:))`}, + {`(|)`, `()`}, + {`a()`, `a()`}, + {`(()|())`, `(()|())`}, + {`(a|)`, `(a|(?:))`}, + {`ab()cd()`, `ab()cd()`}, + {`()`, `()`}, + {`()*`, `()*`}, + {`()+`, `()+`}, + {`()?`, `()?`}, + {`(){0}`, `(?:)`}, + {`(){1}`, `()`}, + {`(){1,}`, `()+`}, + {`(){0,2}`, `(?:()()?)?`}, +} + +func TestSimplify(t *testing.T) { + for _, tt := range simplifyTests { + re, err := Parse(tt.Regexp, MatchNL|Perl&^OneLine) + if err != nil { + t.Errorf("Parse(%#q) = error %v", tt.Regexp, err) + continue + } + s := re.Simplify().String() + if s != tt.Simple { + t.Errorf("Simplify(%#q) = %#q, want %#q", tt.Regexp, s, tt.Simple) + } + } +} -- cgit v1.2.3