// Copyright 2009 The Go Authors. All rights reserved. // Use of this source code is governed by a BSD-style // license that can be found in the LICENSE file. package reflectdata import ( "encoding/binary" "fmt" "os" "sort" "strings" "sync" "cmd/compile/internal/base" "cmd/compile/internal/bitvec" "cmd/compile/internal/compare" "cmd/compile/internal/escape" "cmd/compile/internal/inline" "cmd/compile/internal/ir" "cmd/compile/internal/objw" "cmd/compile/internal/typebits" "cmd/compile/internal/typecheck" "cmd/compile/internal/types" "cmd/internal/gcprog" "cmd/internal/obj" "cmd/internal/objabi" "cmd/internal/src" ) type ptabEntry struct { s *types.Sym t *types.Type } func CountPTabs() int { return len(ptabs) } // runtime interface and reflection data structures var ( // protects signatset and signatslice signatmu sync.Mutex // Tracking which types need runtime type descriptor signatset = make(map[*types.Type]struct{}) // Queue of types wait to be generated runtime type descriptor signatslice []typeAndStr gcsymmu sync.Mutex // protects gcsymset and gcsymslice gcsymset = make(map[*types.Type]struct{}) ptabs []*ir.Name ) type typeSig struct { name *types.Sym isym *obj.LSym tsym *obj.LSym type_ *types.Type mtype *types.Type } // Builds a type representing a Bucket structure for // the given map type. This type is not visible to users - // we include only enough information to generate a correct GC // program for it. // Make sure this stays in sync with runtime/map.go. const ( BUCKETSIZE = 8 MAXKEYSIZE = 128 MAXELEMSIZE = 128 ) func structfieldSize() int { return 3 * types.PtrSize } // Sizeof(runtime.structfield{}) func imethodSize() int { return 4 + 4 } // Sizeof(runtime.imethod{}) func commonSize() int { return 4*types.PtrSize + 8 + 8 } // Sizeof(runtime._type{}) func uncommonSize(t *types.Type) int { // Sizeof(runtime.uncommontype{}) if t.Sym() == nil && len(methods(t)) == 0 { return 0 } return 4 + 2 + 2 + 4 + 4 } func makefield(name string, t *types.Type) *types.Field { sym := (*types.Pkg)(nil).Lookup(name) return types.NewField(src.NoXPos, sym, t) } // MapBucketType makes the map bucket type given the type of the map. func MapBucketType(t *types.Type) *types.Type { if t.MapType().Bucket != nil { return t.MapType().Bucket } keytype := t.Key() elemtype := t.Elem() types.CalcSize(keytype) types.CalcSize(elemtype) if keytype.Size() > MAXKEYSIZE { keytype = types.NewPtr(keytype) } if elemtype.Size() > MAXELEMSIZE { elemtype = types.NewPtr(elemtype) } field := make([]*types.Field, 0, 5) // The first field is: uint8 topbits[BUCKETSIZE]. arr := types.NewArray(types.Types[types.TUINT8], BUCKETSIZE) field = append(field, makefield("topbits", arr)) arr = types.NewArray(keytype, BUCKETSIZE) arr.SetNoalg(true) keys := makefield("keys", arr) field = append(field, keys) arr = types.NewArray(elemtype, BUCKETSIZE) arr.SetNoalg(true) elems := makefield("elems", arr) field = append(field, elems) // If keys and elems have no pointers, the map implementation // can keep a list of overflow pointers on the side so that // buckets can be marked as having no pointers. // Arrange for the bucket to have no pointers by changing // the type of the overflow field to uintptr in this case. // See comment on hmap.overflow in runtime/map.go. otyp := types.Types[types.TUNSAFEPTR] if !elemtype.HasPointers() && !keytype.HasPointers() { otyp = types.Types[types.TUINTPTR] } overflow := makefield("overflow", otyp) field = append(field, overflow) // link up fields bucket := types.NewStruct(types.NoPkg, field[:]) bucket.SetNoalg(true) types.CalcSize(bucket) // Check invariants that map code depends on. if !types.IsComparable(t.Key()) { base.Fatalf("unsupported map key type for %v", t) } if BUCKETSIZE < 8 { base.Fatalf("bucket size too small for proper alignment") } if uint8(keytype.Alignment()) > BUCKETSIZE { base.Fatalf("key align too big for %v", t) } if uint8(elemtype.Alignment()) > BUCKETSIZE { base.Fatalf("elem align too big for %v", t) } if keytype.Size() > MAXKEYSIZE { base.Fatalf("key size to large for %v", t) } if elemtype.Size() > MAXELEMSIZE { base.Fatalf("elem size to large for %v", t) } if t.Key().Size() > MAXKEYSIZE && !keytype.IsPtr() { base.Fatalf("key indirect incorrect for %v", t) } if t.Elem().Size() > MAXELEMSIZE && !elemtype.IsPtr() { base.Fatalf("elem indirect incorrect for %v", t) } if keytype.Size()%keytype.Alignment() != 0 { base.Fatalf("key size not a multiple of key align for %v", t) } if elemtype.Size()%elemtype.Alignment() != 0 { base.Fatalf("elem size not a multiple of elem align for %v", t) } if uint8(bucket.Alignment())%uint8(keytype.Alignment()) != 0 { base.Fatalf("bucket align not multiple of key align %v", t) } if uint8(bucket.Alignment())%uint8(elemtype.Alignment()) != 0 { base.Fatalf("bucket align not multiple of elem align %v", t) } if keys.Offset%keytype.Alignment() != 0 { base.Fatalf("bad alignment of keys in bmap for %v", t) } if elems.Offset%elemtype.Alignment() != 0 { base.Fatalf("bad alignment of elems in bmap for %v", t) } // Double-check that overflow field is final memory in struct, // with no padding at end. if overflow.Offset != bucket.Size()-int64(types.PtrSize) { base.Fatalf("bad offset of overflow in bmap for %v", t) } t.MapType().Bucket = bucket bucket.StructType().Map = t return bucket } // MapType builds a type representing a Hmap structure for the given map type. // Make sure this stays in sync with runtime/map.go. func MapType(t *types.Type) *types.Type { if t.MapType().Hmap != nil { return t.MapType().Hmap } bmap := MapBucketType(t) // build a struct: // type hmap struct { // count int // flags uint8 // B uint8 // noverflow uint16 // hash0 uint32 // buckets *bmap // oldbuckets *bmap // nevacuate uintptr // extra unsafe.Pointer // *mapextra // } // must match runtime/map.go:hmap. fields := []*types.Field{ makefield("count", types.Types[types.TINT]), makefield("flags", types.Types[types.TUINT8]), makefield("B", types.Types[types.TUINT8]), makefield("noverflow", types.Types[types.TUINT16]), makefield("hash0", types.Types[types.TUINT32]), // Used in walk.go for OMAKEMAP. makefield("buckets", types.NewPtr(bmap)), // Used in walk.go for OMAKEMAP. makefield("oldbuckets", types.NewPtr(bmap)), makefield("nevacuate", types.Types[types.TUINTPTR]), makefield("extra", types.Types[types.TUNSAFEPTR]), } hmap := types.NewStruct(types.NoPkg, fields) hmap.SetNoalg(true) types.CalcSize(hmap) // The size of hmap should be 48 bytes on 64 bit // and 28 bytes on 32 bit platforms. if size := int64(8 + 5*types.PtrSize); hmap.Size() != size { base.Fatalf("hmap size not correct: got %d, want %d", hmap.Size(), size) } t.MapType().Hmap = hmap hmap.StructType().Map = t return hmap } // MapIterType builds a type representing an Hiter structure for the given map type. // Make sure this stays in sync with runtime/map.go. func MapIterType(t *types.Type) *types.Type { if t.MapType().Hiter != nil { return t.MapType().Hiter } hmap := MapType(t) bmap := MapBucketType(t) // build a struct: // type hiter struct { // key *Key // elem *Elem // t unsafe.Pointer // *MapType // h *hmap // buckets *bmap // bptr *bmap // overflow unsafe.Pointer // *[]*bmap // oldoverflow unsafe.Pointer // *[]*bmap // startBucket uintptr // offset uint8 // wrapped bool // B uint8 // i uint8 // bucket uintptr // checkBucket uintptr // } // must match runtime/map.go:hiter. fields := []*types.Field{ makefield("key", types.NewPtr(t.Key())), // Used in range.go for TMAP. makefield("elem", types.NewPtr(t.Elem())), // Used in range.go for TMAP. makefield("t", types.Types[types.TUNSAFEPTR]), makefield("h", types.NewPtr(hmap)), makefield("buckets", types.NewPtr(bmap)), makefield("bptr", types.NewPtr(bmap)), makefield("overflow", types.Types[types.TUNSAFEPTR]), makefield("oldoverflow", types.Types[types.TUNSAFEPTR]), makefield("startBucket", types.Types[types.TUINTPTR]), makefield("offset", types.Types[types.TUINT8]), makefield("wrapped", types.Types[types.TBOOL]), makefield("B", types.Types[types.TUINT8]), makefield("i", types.Types[types.TUINT8]), makefield("bucket", types.Types[types.TUINTPTR]), makefield("checkBucket", types.Types[types.TUINTPTR]), } // build iterator struct holding the above fields hiter := types.NewStruct(types.NoPkg, fields) hiter.SetNoalg(true) types.CalcSize(hiter) if hiter.Size() != int64(12*types.PtrSize) { base.Fatalf("hash_iter size not correct %d %d", hiter.Size(), 12*types.PtrSize) } t.MapType().Hiter = hiter hiter.StructType().Map = t return hiter } // methods returns the methods of the non-interface type t, sorted by name. // Generates stub functions as needed. func methods(t *types.Type) []*typeSig { if t.HasShape() { // Shape types have no methods. return nil } // method type mt := types.ReceiverBaseType(t) if mt == nil { return nil } typecheck.CalcMethods(mt) // make list of methods for t, // generating code if necessary. var ms []*typeSig for _, f := range mt.AllMethods().Slice() { if f.Sym == nil { base.Fatalf("method with no sym on %v", mt) } if !f.IsMethod() { base.Fatalf("non-method on %v method %v %v", mt, f.Sym, f) } if f.Type.Recv() == nil { base.Fatalf("receiver with no type on %v method %v %v", mt, f.Sym, f) } if f.Nointerface() && !t.IsFullyInstantiated() { // Skip creating method wrappers if f is nointerface. But, if // t is an instantiated type, we still have to call // methodWrapper, because methodWrapper generates the actual // generic method on the type as well. continue } // get receiver type for this particular method. // if pointer receiver but non-pointer t and // this is not an embedded pointer inside a struct, // method does not apply. if !types.IsMethodApplicable(t, f) { continue } sig := &typeSig{ name: f.Sym, isym: methodWrapper(t, f, true), tsym: methodWrapper(t, f, false), type_: typecheck.NewMethodType(f.Type, t), mtype: typecheck.NewMethodType(f.Type, nil), } if f.Nointerface() { // In the case of a nointerface method on an instantiated // type, don't actually append the typeSig. continue } ms = append(ms, sig) } return ms } // imethods returns the methods of the interface type t, sorted by name. func imethods(t *types.Type) []*typeSig { var methods []*typeSig for _, f := range t.AllMethods().Slice() { if f.Type.Kind() != types.TFUNC || f.Sym == nil { continue } if f.Sym.IsBlank() { base.Fatalf("unexpected blank symbol in interface method set") } if n := len(methods); n > 0 { last := methods[n-1] if !last.name.Less(f.Sym) { base.Fatalf("sigcmp vs sortinter %v %v", last.name, f.Sym) } } sig := &typeSig{ name: f.Sym, mtype: f.Type, type_: typecheck.NewMethodType(f.Type, nil), } methods = append(methods, sig) // NOTE(rsc): Perhaps an oversight that // IfaceType.Method is not in the reflect data. // Generate the method body, so that compiled // code can refer to it. methodWrapper(t, f, false) } return methods } func dimportpath(p *types.Pkg) { if p.Pathsym != nil { return } // If we are compiling the runtime package, there are two runtime packages around // -- localpkg and Pkgs.Runtime. We don't want to produce import path symbols for // both of them, so just produce one for localpkg. if base.Ctxt.Pkgpath == "runtime" && p == ir.Pkgs.Runtime { return } s := base.Ctxt.Lookup("type:.importpath." + p.Prefix + ".") ot := dnameData(s, 0, p.Path, "", nil, false, false) objw.Global(s, int32(ot), obj.DUPOK|obj.RODATA) s.Set(obj.AttrContentAddressable, true) p.Pathsym = s } func dgopkgpath(s *obj.LSym, ot int, pkg *types.Pkg) int { if pkg == nil { return objw.Uintptr(s, ot, 0) } if pkg == types.LocalPkg && base.Ctxt.Pkgpath == "" { // If we don't know the full import path of the package being compiled // (i.e. -p was not passed on the compiler command line), emit a reference to // type:.importpath.""., which the linker will rewrite using the correct import path. // Every package that imports this one directly defines the symbol. // See also https://groups.google.com/forum/#!topic/golang-dev/myb9s53HxGQ. ns := base.Ctxt.Lookup(`type:.importpath."".`) return objw.SymPtr(s, ot, ns, 0) } dimportpath(pkg) return objw.SymPtr(s, ot, pkg.Pathsym, 0) } // dgopkgpathOff writes an offset relocation in s at offset ot to the pkg path symbol. func dgopkgpathOff(s *obj.LSym, ot int, pkg *types.Pkg) int { if pkg == nil { return objw.Uint32(s, ot, 0) } if pkg == types.LocalPkg && base.Ctxt.Pkgpath == "" { // If we don't know the full import path of the package being compiled // (i.e. -p was not passed on the compiler command line), emit a reference to // type:.importpath.""., which the linker will rewrite using the correct import path. // Every package that imports this one directly defines the symbol. // See also https://groups.google.com/forum/#!topic/golang-dev/myb9s53HxGQ. ns := base.Ctxt.Lookup(`type:.importpath."".`) return objw.SymPtrOff(s, ot, ns) } dimportpath(pkg) return objw.SymPtrOff(s, ot, pkg.Pathsym) } // dnameField dumps a reflect.name for a struct field. func dnameField(lsym *obj.LSym, ot int, spkg *types.Pkg, ft *types.Field) int { if !types.IsExported(ft.Sym.Name) && ft.Sym.Pkg != spkg { base.Fatalf("package mismatch for %v", ft.Sym) } nsym := dname(ft.Sym.Name, ft.Note, nil, types.IsExported(ft.Sym.Name), ft.Embedded != 0) return objw.SymPtr(lsym, ot, nsym, 0) } // dnameData writes the contents of a reflect.name into s at offset ot. func dnameData(s *obj.LSym, ot int, name, tag string, pkg *types.Pkg, exported, embedded bool) int { if len(name) >= 1<<29 { base.Fatalf("name too long: %d %s...", len(name), name[:1024]) } if len(tag) >= 1<<29 { base.Fatalf("tag too long: %d %s...", len(tag), tag[:1024]) } var nameLen [binary.MaxVarintLen64]byte nameLenLen := binary.PutUvarint(nameLen[:], uint64(len(name))) var tagLen [binary.MaxVarintLen64]byte tagLenLen := binary.PutUvarint(tagLen[:], uint64(len(tag))) // Encode name and tag. See reflect/type.go for details. var bits byte l := 1 + nameLenLen + len(name) if exported { bits |= 1 << 0 } if len(tag) > 0 { l += tagLenLen + len(tag) bits |= 1 << 1 } if pkg != nil { bits |= 1 << 2 } if embedded { bits |= 1 << 3 } b := make([]byte, l) b[0] = bits copy(b[1:], nameLen[:nameLenLen]) copy(b[1+nameLenLen:], name) if len(tag) > 0 { tb := b[1+nameLenLen+len(name):] copy(tb, tagLen[:tagLenLen]) copy(tb[tagLenLen:], tag) } ot = int(s.WriteBytes(base.Ctxt, int64(ot), b)) if pkg != nil { ot = dgopkgpathOff(s, ot, pkg) } return ot } var dnameCount int // dname creates a reflect.name for a struct field or method. func dname(name, tag string, pkg *types.Pkg, exported, embedded bool) *obj.LSym { // Write out data as "type:." to signal two things to the // linker, first that when dynamically linking, the symbol // should be moved to a relro section, and second that the // contents should not be decoded as a type. sname := "type:.namedata." if pkg == nil { // In the common case, share data with other packages. if name == "" { if exported { sname += "-noname-exported." + tag } else { sname += "-noname-unexported." + tag } } else { if exported { sname += name + "." + tag } else { sname += name + "-" + tag } } } else { sname = fmt.Sprintf(`%s"".%d`, sname, dnameCount) dnameCount++ } if embedded { sname += ".embedded" } s := base.Ctxt.Lookup(sname) if len(s.P) > 0 { return s } ot := dnameData(s, 0, name, tag, pkg, exported, embedded) objw.Global(s, int32(ot), obj.DUPOK|obj.RODATA) s.Set(obj.AttrContentAddressable, true) return s } // dextratype dumps the fields of a runtime.uncommontype. // dataAdd is the offset in bytes after the header where the // backing array of the []method field is written (by dextratypeData). func dextratype(lsym *obj.LSym, ot int, t *types.Type, dataAdd int) int { m := methods(t) if t.Sym() == nil && len(m) == 0 { return ot } noff := int(types.RoundUp(int64(ot), int64(types.PtrSize))) if noff != ot { base.Fatalf("unexpected alignment in dextratype for %v", t) } for _, a := range m { writeType(a.type_) } ot = dgopkgpathOff(lsym, ot, typePkg(t)) dataAdd += uncommonSize(t) mcount := len(m) if mcount != int(uint16(mcount)) { base.Fatalf("too many methods on %v: %d", t, mcount) } xcount := sort.Search(mcount, func(i int) bool { return !types.IsExported(m[i].name.Name) }) if dataAdd != int(uint32(dataAdd)) { base.Fatalf("methods are too far away on %v: %d", t, dataAdd) } ot = objw.Uint16(lsym, ot, uint16(mcount)) ot = objw.Uint16(lsym, ot, uint16(xcount)) ot = objw.Uint32(lsym, ot, uint32(dataAdd)) ot = objw.Uint32(lsym, ot, 0) return ot } func typePkg(t *types.Type) *types.Pkg { tsym := t.Sym() if tsym == nil { switch t.Kind() { case types.TARRAY, types.TSLICE, types.TPTR, types.TCHAN: if t.Elem() != nil { tsym = t.Elem().Sym() } } } if tsym != nil && tsym.Pkg != types.BuiltinPkg { return tsym.Pkg } return nil } // dextratypeData dumps the backing array for the []method field of // runtime.uncommontype. func dextratypeData(lsym *obj.LSym, ot int, t *types.Type) int { for _, a := range methods(t) { // ../../../../runtime/type.go:/method exported := types.IsExported(a.name.Name) var pkg *types.Pkg if !exported && a.name.Pkg != typePkg(t) { pkg = a.name.Pkg } nsym := dname(a.name.Name, "", pkg, exported, false) ot = objw.SymPtrOff(lsym, ot, nsym) ot = dmethodptrOff(lsym, ot, writeType(a.mtype)) ot = dmethodptrOff(lsym, ot, a.isym) ot = dmethodptrOff(lsym, ot, a.tsym) } return ot } func dmethodptrOff(s *obj.LSym, ot int, x *obj.LSym) int { objw.Uint32(s, ot, 0) r := obj.Addrel(s) r.Off = int32(ot) r.Siz = 4 r.Sym = x r.Type = objabi.R_METHODOFF return ot + 4 } var kinds = []int{ types.TINT: objabi.KindInt, types.TUINT: objabi.KindUint, types.TINT8: objabi.KindInt8, types.TUINT8: objabi.KindUint8, types.TINT16: objabi.KindInt16, types.TUINT16: objabi.KindUint16, types.TINT32: objabi.KindInt32, types.TUINT32: objabi.KindUint32, types.TINT64: objabi.KindInt64, types.TUINT64: objabi.KindUint64, types.TUINTPTR: objabi.KindUintptr, types.TFLOAT32: objabi.KindFloat32, types.TFLOAT64: objabi.KindFloat64, types.TBOOL: objabi.KindBool, types.TSTRING: objabi.KindString, types.TPTR: objabi.KindPtr, types.TSTRUCT: objabi.KindStruct, types.TINTER: objabi.KindInterface, types.TCHAN: objabi.KindChan, types.TMAP: objabi.KindMap, types.TARRAY: objabi.KindArray, types.TSLICE: objabi.KindSlice, types.TFUNC: objabi.KindFunc, types.TCOMPLEX64: objabi.KindComplex64, types.TCOMPLEX128: objabi.KindComplex128, types.TUNSAFEPTR: objabi.KindUnsafePointer, } // tflag is documented in reflect/type.go. // // tflag values must be kept in sync with copies in: // - cmd/compile/internal/reflectdata/reflect.go // - cmd/link/internal/ld/decodesym.go // - reflect/type.go // - runtime/type.go const ( tflagUncommon = 1 << 0 tflagExtraStar = 1 << 1 tflagNamed = 1 << 2 tflagRegularMemory = 1 << 3 ) var ( memhashvarlen *obj.LSym memequalvarlen *obj.LSym ) // dcommontype dumps the contents of a reflect.rtype (runtime._type). func dcommontype(lsym *obj.LSym, t *types.Type) int { types.CalcSize(t) eqfunc := geneq(t) sptrWeak := true var sptr *obj.LSym if !t.IsPtr() || t.IsPtrElem() { tptr := types.NewPtr(t) if t.Sym() != nil || methods(tptr) != nil { sptrWeak = false } sptr = writeType(tptr) } gcsym, useGCProg, ptrdata := dgcsym(t, true) delete(gcsymset, t) // ../../../../reflect/type.go:/^type.rtype // actual type structure // type rtype struct { // size uintptr // ptrdata uintptr // hash uint32 // tflag tflag // align uint8 // fieldAlign uint8 // kind uint8 // equal func(unsafe.Pointer, unsafe.Pointer) bool // gcdata *byte // str nameOff // ptrToThis typeOff // } ot := 0 ot = objw.Uintptr(lsym, ot, uint64(t.Size())) ot = objw.Uintptr(lsym, ot, uint64(ptrdata)) ot = objw.Uint32(lsym, ot, types.TypeHash(t)) var tflag uint8 if uncommonSize(t) != 0 { tflag |= tflagUncommon } if t.Sym() != nil && t.Sym().Name != "" { tflag |= tflagNamed } if compare.IsRegularMemory(t) { tflag |= tflagRegularMemory } exported := false p := t.NameString() // If we're writing out type T, // we are very likely to write out type *T as well. // Use the string "*T"[1:] for "T", so that the two // share storage. This is a cheap way to reduce the // amount of space taken up by reflect strings. if !strings.HasPrefix(p, "*") { p = "*" + p tflag |= tflagExtraStar if t.Sym() != nil { exported = types.IsExported(t.Sym().Name) } } else { if t.Elem() != nil && t.Elem().Sym() != nil { exported = types.IsExported(t.Elem().Sym().Name) } } ot = objw.Uint8(lsym, ot, tflag) // runtime (and common sense) expects alignment to be a power of two. i := int(uint8(t.Alignment())) if i == 0 { i = 1 } if i&(i-1) != 0 { base.Fatalf("invalid alignment %d for %v", uint8(t.Alignment()), t) } ot = objw.Uint8(lsym, ot, uint8(t.Alignment())) // align ot = objw.Uint8(lsym, ot, uint8(t.Alignment())) // fieldAlign i = kinds[t.Kind()] if types.IsDirectIface(t) { i |= objabi.KindDirectIface } if useGCProg { i |= objabi.KindGCProg } ot = objw.Uint8(lsym, ot, uint8(i)) // kind if eqfunc != nil { ot = objw.SymPtr(lsym, ot, eqfunc, 0) // equality function } else { ot = objw.Uintptr(lsym, ot, 0) // type we can't do == with } ot = objw.SymPtr(lsym, ot, gcsym, 0) // gcdata nsym := dname(p, "", nil, exported, false) ot = objw.SymPtrOff(lsym, ot, nsym) // str // ptrToThis if sptr == nil { ot = objw.Uint32(lsym, ot, 0) } else if sptrWeak { ot = objw.SymPtrWeakOff(lsym, ot, sptr) } else { ot = objw.SymPtrOff(lsym, ot, sptr) } return ot } // TrackSym returns the symbol for tracking use of field/method f, assumed // to be a member of struct/interface type t. func TrackSym(t *types.Type, f *types.Field) *obj.LSym { return base.PkgLinksym("go:track", t.LinkString()+"."+f.Sym.Name, obj.ABI0) } func TypeSymPrefix(prefix string, t *types.Type) *types.Sym { p := prefix + "." + t.LinkString() s := types.TypeSymLookup(p) // This function is for looking up type-related generated functions // (e.g. eq and hash). Make sure they are indeed generated. signatmu.Lock() NeedRuntimeType(t) signatmu.Unlock() //print("algsym: %s -> %+S\n", p, s); return s } func TypeSym(t *types.Type) *types.Sym { if t == nil || (t.IsPtr() && t.Elem() == nil) || t.IsUntyped() { base.Fatalf("TypeSym %v", t) } if t.Kind() == types.TFUNC && t.Recv() != nil { base.Fatalf("misuse of method type: %v", t) } s := types.TypeSym(t) signatmu.Lock() NeedRuntimeType(t) signatmu.Unlock() return s } func TypeLinksymPrefix(prefix string, t *types.Type) *obj.LSym { return TypeSymPrefix(prefix, t).Linksym() } func TypeLinksymLookup(name string) *obj.LSym { return types.TypeSymLookup(name).Linksym() } func TypeLinksym(t *types.Type) *obj.LSym { return TypeSym(t).Linksym() } // Deprecated: Use TypePtrAt instead. func TypePtr(t *types.Type) *ir.AddrExpr { return TypePtrAt(base.Pos, t) } // TypePtrAt returns an expression that evaluates to the // *runtime._type value for t. func TypePtrAt(pos src.XPos, t *types.Type) *ir.AddrExpr { return typecheck.LinksymAddr(pos, TypeLinksym(t), types.Types[types.TUINT8]) } // ITabLsym returns the LSym representing the itab for concrete type typ implementing // interface iface. A dummy tab will be created in the unusual case where typ doesn't // implement iface. Normally, this wouldn't happen, because the typechecker would // have reported a compile-time error. This situation can only happen when the // destination type of a type assert or a type in a type switch is parameterized, so // it may sometimes, but not always, be a type that can't implement the specified // interface. func ITabLsym(typ, iface *types.Type) *obj.LSym { s, existed := ir.Pkgs.Itab.LookupOK(typ.LinkString() + "," + iface.LinkString()) lsym := s.Linksym() if !existed { writeITab(lsym, typ, iface, true) } return lsym } // Deprecated: Use ITabAddrAt instead. func ITabAddr(typ, iface *types.Type) *ir.AddrExpr { return ITabAddrAt(base.Pos, typ, iface) } // ITabAddrAt returns an expression that evaluates to the // *runtime.itab value for concrete type typ implementing interface // iface. func ITabAddrAt(pos src.XPos, typ, iface *types.Type) *ir.AddrExpr { s, existed := ir.Pkgs.Itab.LookupOK(typ.LinkString() + "," + iface.LinkString()) lsym := s.Linksym() if !existed { writeITab(lsym, typ, iface, false) } return typecheck.LinksymAddr(pos, lsym, types.Types[types.TUINT8]) } // needkeyupdate reports whether map updates with t as a key // need the key to be updated. func needkeyupdate(t *types.Type) bool { switch t.Kind() { case types.TBOOL, types.TINT, types.TUINT, types.TINT8, types.TUINT8, types.TINT16, types.TUINT16, types.TINT32, types.TUINT32, types.TINT64, types.TUINT64, types.TUINTPTR, types.TPTR, types.TUNSAFEPTR, types.TCHAN: return false case types.TFLOAT32, types.TFLOAT64, types.TCOMPLEX64, types.TCOMPLEX128, // floats and complex can be +0/-0 types.TINTER, types.TSTRING: // strings might have smaller backing stores return true case types.TARRAY: return needkeyupdate(t.Elem()) case types.TSTRUCT: for _, t1 := range t.Fields().Slice() { if needkeyupdate(t1.Type) { return true } } return false default: base.Fatalf("bad type for map key: %v", t) return true } } // hashMightPanic reports whether the hash of a map key of type t might panic. func hashMightPanic(t *types.Type) bool { switch t.Kind() { case types.TINTER: return true case types.TARRAY: return hashMightPanic(t.Elem()) case types.TSTRUCT: for _, t1 := range t.Fields().Slice() { if hashMightPanic(t1.Type) { return true } } return false default: return false } } // formalType replaces predeclared aliases with real types. // They've been separate internally to make error messages // better, but we have to merge them in the reflect tables. func formalType(t *types.Type) *types.Type { switch t { case types.AnyType, types.ByteType, types.RuneType: return types.Types[t.Kind()] } return t } func writeType(t *types.Type) *obj.LSym { t = formalType(t) if t.IsUntyped() || t.HasTParam() { base.Fatalf("writeType %v", t) } s := types.TypeSym(t) lsym := s.Linksym() if s.Siggen() { return lsym } s.SetSiggen(true) // special case (look for runtime below): // when compiling package runtime, // emit the type structures for int, float, etc. tbase := t if t.IsPtr() && t.Sym() == nil && t.Elem().Sym() != nil { tbase = t.Elem() } if tbase.Kind() == types.TFORW { base.Fatalf("unresolved defined type: %v", tbase) } if !NeedEmit(tbase) { if i := typecheck.BaseTypeIndex(t); i >= 0 { lsym.Pkg = tbase.Sym().Pkg.Prefix lsym.SymIdx = int32(i) lsym.Set(obj.AttrIndexed, true) } // TODO(mdempsky): Investigate whether this still happens. // If we know we don't need to emit code for a type, // we should have a link-symbol index for it. // See also TODO in NeedEmit. return lsym } ot := 0 switch t.Kind() { default: ot = dcommontype(lsym, t) ot = dextratype(lsym, ot, t, 0) case types.TARRAY: // ../../../../runtime/type.go:/arrayType s1 := writeType(t.Elem()) t2 := types.NewSlice(t.Elem()) s2 := writeType(t2) ot = dcommontype(lsym, t) ot = objw.SymPtr(lsym, ot, s1, 0) ot = objw.SymPtr(lsym, ot, s2, 0) ot = objw.Uintptr(lsym, ot, uint64(t.NumElem())) ot = dextratype(lsym, ot, t, 0) case types.TSLICE: // ../../../../runtime/type.go:/sliceType s1 := writeType(t.Elem()) ot = dcommontype(lsym, t) ot = objw.SymPtr(lsym, ot, s1, 0) ot = dextratype(lsym, ot, t, 0) case types.TCHAN: // ../../../../runtime/type.go:/chanType s1 := writeType(t.Elem()) ot = dcommontype(lsym, t) ot = objw.SymPtr(lsym, ot, s1, 0) ot = objw.Uintptr(lsym, ot, uint64(t.ChanDir())) ot = dextratype(lsym, ot, t, 0) case types.TFUNC: for _, t1 := range t.Recvs().Fields().Slice() { writeType(t1.Type) } isddd := false for _, t1 := range t.Params().Fields().Slice() { isddd = t1.IsDDD() writeType(t1.Type) } for _, t1 := range t.Results().Fields().Slice() { writeType(t1.Type) } ot = dcommontype(lsym, t) inCount := t.NumRecvs() + t.NumParams() outCount := t.NumResults() if isddd { outCount |= 1 << 15 } ot = objw.Uint16(lsym, ot, uint16(inCount)) ot = objw.Uint16(lsym, ot, uint16(outCount)) if types.PtrSize == 8 { ot += 4 // align for *rtype } dataAdd := (inCount + t.NumResults()) * types.PtrSize ot = dextratype(lsym, ot, t, dataAdd) // Array of rtype pointers follows funcType. for _, t1 := range t.Recvs().Fields().Slice() { ot = objw.SymPtr(lsym, ot, writeType(t1.Type), 0) } for _, t1 := range t.Params().Fields().Slice() { ot = objw.SymPtr(lsym, ot, writeType(t1.Type), 0) } for _, t1 := range t.Results().Fields().Slice() { ot = objw.SymPtr(lsym, ot, writeType(t1.Type), 0) } case types.TINTER: m := imethods(t) n := len(m) for _, a := range m { writeType(a.type_) } // ../../../../runtime/type.go:/interfaceType ot = dcommontype(lsym, t) var tpkg *types.Pkg if t.Sym() != nil && t != types.Types[t.Kind()] && t != types.ErrorType { tpkg = t.Sym().Pkg } ot = dgopkgpath(lsym, ot, tpkg) ot = objw.SymPtr(lsym, ot, lsym, ot+3*types.PtrSize+uncommonSize(t)) ot = objw.Uintptr(lsym, ot, uint64(n)) ot = objw.Uintptr(lsym, ot, uint64(n)) dataAdd := imethodSize() * n ot = dextratype(lsym, ot, t, dataAdd) for _, a := range m { // ../../../../runtime/type.go:/imethod exported := types.IsExported(a.name.Name) var pkg *types.Pkg if !exported && a.name.Pkg != tpkg { pkg = a.name.Pkg } nsym := dname(a.name.Name, "", pkg, exported, false) ot = objw.SymPtrOff(lsym, ot, nsym) ot = objw.SymPtrOff(lsym, ot, writeType(a.type_)) } // ../../../../runtime/type.go:/mapType case types.TMAP: s1 := writeType(t.Key()) s2 := writeType(t.Elem()) s3 := writeType(MapBucketType(t)) hasher := genhash(t.Key()) ot = dcommontype(lsym, t) ot = objw.SymPtr(lsym, ot, s1, 0) ot = objw.SymPtr(lsym, ot, s2, 0) ot = objw.SymPtr(lsym, ot, s3, 0) ot = objw.SymPtr(lsym, ot, hasher, 0) var flags uint32 // Note: flags must match maptype accessors in ../../../../runtime/type.go // and maptype builder in ../../../../reflect/type.go:MapOf. if t.Key().Size() > MAXKEYSIZE { ot = objw.Uint8(lsym, ot, uint8(types.PtrSize)) flags |= 1 // indirect key } else { ot = objw.Uint8(lsym, ot, uint8(t.Key().Size())) } if t.Elem().Size() > MAXELEMSIZE { ot = objw.Uint8(lsym, ot, uint8(types.PtrSize)) flags |= 2 // indirect value } else { ot = objw.Uint8(lsym, ot, uint8(t.Elem().Size())) } ot = objw.Uint16(lsym, ot, uint16(MapBucketType(t).Size())) if types.IsReflexive(t.Key()) { flags |= 4 // reflexive key } if needkeyupdate(t.Key()) { flags |= 8 // need key update } if hashMightPanic(t.Key()) { flags |= 16 // hash might panic } ot = objw.Uint32(lsym, ot, flags) ot = dextratype(lsym, ot, t, 0) if u := t.Underlying(); u != t { // If t is a named map type, also keep the underlying map // type live in the binary. This is important to make sure that // a named map and that same map cast to its underlying type via // reflection, use the same hash function. See issue 37716. r := obj.Addrel(lsym) r.Sym = writeType(u) r.Type = objabi.R_KEEP } case types.TPTR: if t.Elem().Kind() == types.TANY { // ../../../../runtime/type.go:/UnsafePointerType ot = dcommontype(lsym, t) ot = dextratype(lsym, ot, t, 0) break } // ../../../../runtime/type.go:/ptrType s1 := writeType(t.Elem()) ot = dcommontype(lsym, t) ot = objw.SymPtr(lsym, ot, s1, 0) ot = dextratype(lsym, ot, t, 0) // ../../../../runtime/type.go:/structType // for security, only the exported fields. case types.TSTRUCT: fields := t.Fields().Slice() for _, t1 := range fields { writeType(t1.Type) } // All non-exported struct field names within a struct // type must originate from a single package. By // identifying and recording that package within the // struct type descriptor, we can omit that // information from the field descriptors. var spkg *types.Pkg for _, f := range fields { if !types.IsExported(f.Sym.Name) { spkg = f.Sym.Pkg break } } ot = dcommontype(lsym, t) ot = dgopkgpath(lsym, ot, spkg) ot = objw.SymPtr(lsym, ot, lsym, ot+3*types.PtrSize+uncommonSize(t)) ot = objw.Uintptr(lsym, ot, uint64(len(fields))) ot = objw.Uintptr(lsym, ot, uint64(len(fields))) dataAdd := len(fields) * structfieldSize() ot = dextratype(lsym, ot, t, dataAdd) for _, f := range fields { // ../../../../runtime/type.go:/structField ot = dnameField(lsym, ot, spkg, f) ot = objw.SymPtr(lsym, ot, writeType(f.Type), 0) ot = objw.Uintptr(lsym, ot, uint64(f.Offset)) } } // Note: DUPOK is required to ensure that we don't end up with more // than one type descriptor for a given type, if the type descriptor // can be defined in multiple packages, that is, unnamed types, // instantiated types and shape types. dupok := 0 if tbase.Sym() == nil || tbase.IsFullyInstantiated() || tbase.HasShape() { dupok = obj.DUPOK } ot = dextratypeData(lsym, ot, t) objw.Global(lsym, int32(ot), int16(dupok|obj.RODATA)) // The linker will leave a table of all the typelinks for // types in the binary, so the runtime can find them. // // When buildmode=shared, all types are in typelinks so the // runtime can deduplicate type pointers. keep := base.Ctxt.Flag_dynlink if !keep && t.Sym() == nil { // For an unnamed type, we only need the link if the type can // be created at run time by reflect.PtrTo and similar // functions. If the type exists in the program, those // functions must return the existing type structure rather // than creating a new one. switch t.Kind() { case types.TPTR, types.TARRAY, types.TCHAN, types.TFUNC, types.TMAP, types.TSLICE, types.TSTRUCT: keep = true } } // Do not put Noalg types in typelinks. See issue #22605. if types.TypeHasNoAlg(t) { keep = false } lsym.Set(obj.AttrMakeTypelink, keep) return lsym } // InterfaceMethodOffset returns the offset of the i-th method in the interface // type descriptor, ityp. func InterfaceMethodOffset(ityp *types.Type, i int64) int64 { // interface type descriptor layout is struct { // _type // commonSize // pkgpath // 1 word // []imethod // 3 words (pointing to [...]imethod below) // uncommontype // uncommonSize // [...]imethod // } // The size of imethod is 8. return int64(commonSize()+4*types.PtrSize+uncommonSize(ityp)) + i*8 } // NeedRuntimeType ensures that a runtime type descriptor is emitted for t. func NeedRuntimeType(t *types.Type) { if t.HasTParam() { // Generic types don't really exist at run-time and have no runtime // type descriptor. But we do write out shape types. return } if _, ok := signatset[t]; !ok { signatset[t] = struct{}{} signatslice = append(signatslice, typeAndStr{t: t, short: types.TypeSymName(t), regular: t.String()}) } } func WriteRuntimeTypes() { // Process signatslice. Use a loop, as writeType adds // entries to signatslice while it is being processed. for len(signatslice) > 0 { signats := signatslice // Sort for reproducible builds. sort.Sort(typesByString(signats)) for _, ts := range signats { t := ts.t writeType(t) if t.Sym() != nil { writeType(types.NewPtr(t)) } } signatslice = signatslice[len(signats):] } // Emit GC data symbols. gcsyms := make([]typeAndStr, 0, len(gcsymset)) for t := range gcsymset { gcsyms = append(gcsyms, typeAndStr{t: t, short: types.TypeSymName(t), regular: t.String()}) } sort.Sort(typesByString(gcsyms)) for _, ts := range gcsyms { dgcsym(ts.t, true) } } // writeITab writes the itab for concrete type typ implementing interface iface. If // allowNonImplement is true, allow the case where typ does not implement iface, and just // create a dummy itab with zeroed-out method entries. func writeITab(lsym *obj.LSym, typ, iface *types.Type, allowNonImplement bool) { // TODO(mdempsky): Fix methodWrapper, geneq, and genhash (and maybe // others) to stop clobbering these. oldpos, oldfn := base.Pos, ir.CurFunc defer func() { base.Pos, ir.CurFunc = oldpos, oldfn }() if typ == nil || (typ.IsPtr() && typ.Elem() == nil) || typ.IsUntyped() || iface == nil || !iface.IsInterface() || iface.IsEmptyInterface() { base.Fatalf("writeITab(%v, %v)", typ, iface) } sigs := iface.AllMethods().Slice() entries := make([]*obj.LSym, 0, len(sigs)) // both sigs and methods are sorted by name, // so we can find the intersection in a single pass for _, m := range methods(typ) { if m.name == sigs[0].Sym { entries = append(entries, m.isym) if m.isym == nil { panic("NO ISYM") } sigs = sigs[1:] if len(sigs) == 0 { break } } } completeItab := len(sigs) == 0 if !allowNonImplement && !completeItab { base.Fatalf("incomplete itab") } // dump empty itab symbol into i.sym // type itab struct { // inter *interfacetype // _type *_type // hash uint32 // copy of _type.hash. Used for type switches. // _ [4]byte // fun [1]uintptr // variable sized. fun[0]==0 means _type does not implement inter. // } o := objw.SymPtr(lsym, 0, writeType(iface), 0) o = objw.SymPtr(lsym, o, writeType(typ), 0) o = objw.Uint32(lsym, o, types.TypeHash(typ)) // copy of type hash o += 4 // skip unused field if !completeItab { // If typ doesn't implement iface, make method entries be zero. o = objw.Uintptr(lsym, o, 0) entries = entries[:0] } for _, fn := range entries { o = objw.SymPtrWeak(lsym, o, fn, 0) // method pointer for each method } // Nothing writes static itabs, so they are read only. objw.Global(lsym, int32(o), int16(obj.DUPOK|obj.RODATA)) lsym.Set(obj.AttrContentAddressable, true) } func WriteTabs() { // process ptabs if types.LocalPkg.Name == "main" && len(ptabs) > 0 { ot := 0 s := base.Ctxt.Lookup("go:plugin.tabs") for _, p := range ptabs { // Dump ptab symbol into go.pluginsym package. // // type ptab struct { // name nameOff // typ typeOff // pointer to symbol // } nsym := dname(p.Sym().Name, "", nil, true, false) t := p.Type() if p.Class != ir.PFUNC { t = types.NewPtr(t) } tsym := writeType(t) ot = objw.SymPtrOff(s, ot, nsym) ot = objw.SymPtrOff(s, ot, tsym) // Plugin exports symbols as interfaces. Mark their types // as UsedInIface. tsym.Set(obj.AttrUsedInIface, true) } objw.Global(s, int32(ot), int16(obj.RODATA)) ot = 0 s = base.Ctxt.Lookup("go:plugin.exports") for _, p := range ptabs { ot = objw.SymPtr(s, ot, p.Linksym(), 0) } objw.Global(s, int32(ot), int16(obj.RODATA)) } } func WriteImportStrings() { // generate import strings for imported packages for _, p := range types.ImportedPkgList() { dimportpath(p) } } // writtenByWriteBasicTypes reports whether typ is written by WriteBasicTypes. // WriteBasicTypes always writes pointer types; any pointer has been stripped off typ already. func writtenByWriteBasicTypes(typ *types.Type) bool { if typ.Sym() == nil && typ.Kind() == types.TFUNC { f := typ.FuncType() // func(error) string if f.Receiver.NumFields() == 0 && f.TParams.NumFields() == 0 && f.Params.NumFields() == 1 && f.Results.NumFields() == 1 && f.Params.FieldType(0) == types.ErrorType && f.Results.FieldType(0) == types.Types[types.TSTRING] { return true } } // Now we have left the basic types plus any and error, plus slices of them. // Strip the slice. if typ.Sym() == nil && typ.IsSlice() { typ = typ.Elem() } // Basic types. sym := typ.Sym() if sym != nil && (sym.Pkg == types.BuiltinPkg || sym.Pkg == types.UnsafePkg) { return true } // any or error return (sym == nil && typ.IsEmptyInterface()) || typ == types.ErrorType } func WriteBasicTypes() { // do basic types if compiling package runtime. // they have to be in at least one package, // and runtime is always loaded implicitly, // so this is as good as any. // another possible choice would be package main, // but using runtime means fewer copies in object files. // The code here needs to be in sync with writtenByWriteBasicTypes above. if base.Ctxt.Pkgpath == "runtime" { // Note: always write NewPtr(t) because NeedEmit's caller strips the pointer. var list []*types.Type for i := types.Kind(1); i <= types.TBOOL; i++ { list = append(list, types.Types[i]) } list = append(list, types.Types[types.TSTRING], types.Types[types.TUNSAFEPTR], types.AnyType, types.ErrorType) for _, t := range list { writeType(types.NewPtr(t)) writeType(types.NewPtr(types.NewSlice(t))) } // emit type for func(error) string, // which is the type of an auto-generated wrapper. writeType(types.NewPtr(types.NewSignature(types.NoPkg, nil, nil, []*types.Field{ types.NewField(base.Pos, nil, types.ErrorType), }, []*types.Field{ types.NewField(base.Pos, nil, types.Types[types.TSTRING]), }))) // add paths for runtime and main, which 6l imports implicitly. dimportpath(ir.Pkgs.Runtime) if base.Flag.Race { dimportpath(types.NewPkg("runtime/race", "")) } if base.Flag.MSan { dimportpath(types.NewPkg("runtime/msan", "")) } if base.Flag.ASan { dimportpath(types.NewPkg("runtime/asan", "")) } dimportpath(types.NewPkg("main", "")) } } type typeAndStr struct { t *types.Type short string // "short" here means TypeSymName regular string } type typesByString []typeAndStr func (a typesByString) Len() int { return len(a) } func (a typesByString) Less(i, j int) bool { // put named types before unnamed types if a[i].t.Sym() != nil && a[j].t.Sym() == nil { return true } if a[i].t.Sym() == nil && a[j].t.Sym() != nil { return false } if a[i].short != a[j].short { return a[i].short < a[j].short } // When the only difference between the types is whether // they refer to byte or uint8, such as **byte vs **uint8, // the types' NameStrings can be identical. // To preserve deterministic sort ordering, sort these by String(). // // TODO(mdempsky): This all seems suspect. Using LinkString would // avoid naming collisions, and there shouldn't be a reason to care // about "byte" vs "uint8": they share the same runtime type // descriptor anyway. if a[i].regular != a[j].regular { return a[i].regular < a[j].regular } // Identical anonymous interfaces defined in different locations // will be equal for the above checks, but different in DWARF output. // Sort by source position to ensure deterministic order. // See issues 27013 and 30202. if a[i].t.Kind() == types.TINTER && a[i].t.AllMethods().Len() > 0 { return a[i].t.AllMethods().Index(0).Pos.Before(a[j].t.AllMethods().Index(0).Pos) } return false } func (a typesByString) Swap(i, j int) { a[i], a[j] = a[j], a[i] } // maxPtrmaskBytes is the maximum length of a GC ptrmask bitmap, // which holds 1-bit entries describing where pointers are in a given type. // Above this length, the GC information is recorded as a GC program, // which can express repetition compactly. In either form, the // information is used by the runtime to initialize the heap bitmap, // and for large types (like 128 or more words), they are roughly the // same speed. GC programs are never much larger and often more // compact. (If large arrays are involved, they can be arbitrarily // more compact.) // // The cutoff must be large enough that any allocation large enough to // use a GC program is large enough that it does not share heap bitmap // bytes with any other objects, allowing the GC program execution to // assume an aligned start and not use atomic operations. In the current // runtime, this means all malloc size classes larger than the cutoff must // be multiples of four words. On 32-bit systems that's 16 bytes, and // all size classes >= 16 bytes are 16-byte aligned, so no real constraint. // On 64-bit systems, that's 32 bytes, and 32-byte alignment is guaranteed // for size classes >= 256 bytes. On a 64-bit system, 256 bytes allocated // is 32 pointers, the bits for which fit in 4 bytes. So maxPtrmaskBytes // must be >= 4. // // We used to use 16 because the GC programs do have some constant overhead // to get started, and processing 128 pointers seems to be enough to // amortize that overhead well. // // To make sure that the runtime's chansend can call typeBitsBulkBarrier, // we raised the limit to 2048, so that even 32-bit systems are guaranteed to // use bitmaps for objects up to 64 kB in size. // // Also known to reflect/type.go. const maxPtrmaskBytes = 2048 // GCSym returns a data symbol containing GC information for type t, along // with a boolean reporting whether the UseGCProg bit should be set in the // type kind, and the ptrdata field to record in the reflect type information. // GCSym may be called in concurrent backend, so it does not emit the symbol // content. func GCSym(t *types.Type) (lsym *obj.LSym, useGCProg bool, ptrdata int64) { // Record that we need to emit the GC symbol. gcsymmu.Lock() if _, ok := gcsymset[t]; !ok { gcsymset[t] = struct{}{} } gcsymmu.Unlock() return dgcsym(t, false) } // dgcsym returns a data symbol containing GC information for type t, along // with a boolean reporting whether the UseGCProg bit should be set in the // type kind, and the ptrdata field to record in the reflect type information. // When write is true, it writes the symbol data. func dgcsym(t *types.Type, write bool) (lsym *obj.LSym, useGCProg bool, ptrdata int64) { ptrdata = types.PtrDataSize(t) if ptrdata/int64(types.PtrSize) <= maxPtrmaskBytes*8 { lsym = dgcptrmask(t, write) return } useGCProg = true lsym, ptrdata = dgcprog(t, write) return } // dgcptrmask emits and returns the symbol containing a pointer mask for type t. func dgcptrmask(t *types.Type, write bool) *obj.LSym { // Bytes we need for the ptrmask. n := (types.PtrDataSize(t)/int64(types.PtrSize) + 7) / 8 // Runtime wants ptrmasks padded to a multiple of uintptr in size. n = (n + int64(types.PtrSize) - 1) &^ (int64(types.PtrSize) - 1) ptrmask := make([]byte, n) fillptrmask(t, ptrmask) p := fmt.Sprintf("runtime.gcbits.%x", ptrmask) lsym := base.Ctxt.Lookup(p) if write && !lsym.OnList() { for i, x := range ptrmask { objw.Uint8(lsym, i, x) } objw.Global(lsym, int32(len(ptrmask)), obj.DUPOK|obj.RODATA|obj.LOCAL) lsym.Set(obj.AttrContentAddressable, true) } return lsym } // fillptrmask fills in ptrmask with 1s corresponding to the // word offsets in t that hold pointers. // ptrmask is assumed to fit at least types.PtrDataSize(t)/PtrSize bits. func fillptrmask(t *types.Type, ptrmask []byte) { for i := range ptrmask { ptrmask[i] = 0 } if !t.HasPointers() { return } vec := bitvec.New(8 * int32(len(ptrmask))) typebits.Set(t, 0, vec) nptr := types.PtrDataSize(t) / int64(types.PtrSize) for i := int64(0); i < nptr; i++ { if vec.Get(int32(i)) { ptrmask[i/8] |= 1 << (uint(i) % 8) } } } // dgcprog emits and returns the symbol containing a GC program for type t // along with the size of the data described by the program (in the range // [types.PtrDataSize(t), t.Width]). // In practice, the size is types.PtrDataSize(t) except for non-trivial arrays. // For non-trivial arrays, the program describes the full t.Width size. func dgcprog(t *types.Type, write bool) (*obj.LSym, int64) { types.CalcSize(t) if t.Size() == types.BADWIDTH { base.Fatalf("dgcprog: %v badwidth", t) } lsym := TypeLinksymPrefix(".gcprog", t) var p gcProg p.init(lsym, write) p.emit(t, 0) offset := p.w.BitIndex() * int64(types.PtrSize) p.end() if ptrdata := types.PtrDataSize(t); offset < ptrdata || offset > t.Size() { base.Fatalf("dgcprog: %v: offset=%d but ptrdata=%d size=%d", t, offset, ptrdata, t.Size()) } return lsym, offset } type gcProg struct { lsym *obj.LSym symoff int w gcprog.Writer write bool } func (p *gcProg) init(lsym *obj.LSym, write bool) { p.lsym = lsym p.write = write && !lsym.OnList() p.symoff = 4 // first 4 bytes hold program length if !write { p.w.Init(func(byte) {}) return } p.w.Init(p.writeByte) if base.Debug.GCProg > 0 { fmt.Fprintf(os.Stderr, "compile: start GCProg for %v\n", lsym) p.w.Debug(os.Stderr) } } func (p *gcProg) writeByte(x byte) { p.symoff = objw.Uint8(p.lsym, p.symoff, x) } func (p *gcProg) end() { p.w.End() if !p.write { return } objw.Uint32(p.lsym, 0, uint32(p.symoff-4)) objw.Global(p.lsym, int32(p.symoff), obj.DUPOK|obj.RODATA|obj.LOCAL) p.lsym.Set(obj.AttrContentAddressable, true) if base.Debug.GCProg > 0 { fmt.Fprintf(os.Stderr, "compile: end GCProg for %v\n", p.lsym) } } func (p *gcProg) emit(t *types.Type, offset int64) { types.CalcSize(t) if !t.HasPointers() { return } if t.Size() == int64(types.PtrSize) { p.w.Ptr(offset / int64(types.PtrSize)) return } switch t.Kind() { default: base.Fatalf("gcProg.emit: unexpected type %v", t) case types.TSTRING: p.w.Ptr(offset / int64(types.PtrSize)) case types.TINTER: // Note: the first word isn't a pointer. See comment in typebits.Set p.w.Ptr(offset/int64(types.PtrSize) + 1) case types.TSLICE: p.w.Ptr(offset / int64(types.PtrSize)) case types.TARRAY: if t.NumElem() == 0 { // should have been handled by haspointers check above base.Fatalf("gcProg.emit: empty array") } // Flatten array-of-array-of-array to just a big array by multiplying counts. count := t.NumElem() elem := t.Elem() for elem.IsArray() { count *= elem.NumElem() elem = elem.Elem() } if !p.w.ShouldRepeat(elem.Size()/int64(types.PtrSize), count) { // Cheaper to just emit the bits. for i := int64(0); i < count; i++ { p.emit(elem, offset+i*elem.Size()) } return } p.emit(elem, offset) p.w.ZeroUntil((offset + elem.Size()) / int64(types.PtrSize)) p.w.Repeat(elem.Size()/int64(types.PtrSize), count-1) case types.TSTRUCT: for _, t1 := range t.Fields().Slice() { p.emit(t1.Type, offset+t1.Offset) } } } // ZeroAddr returns the address of a symbol with at least // size bytes of zeros. func ZeroAddr(size int64) ir.Node { if size >= 1<<31 { base.Fatalf("map elem too big %d", size) } if ZeroSize < size { ZeroSize = size } lsym := base.PkgLinksym("go:map", "zero", obj.ABI0) x := ir.NewLinksymExpr(base.Pos, lsym, types.Types[types.TUINT8]) return typecheck.Expr(typecheck.NodAddr(x)) } func CollectPTabs() { if !base.Ctxt.Flag_dynlink || types.LocalPkg.Name != "main" { return } for _, exportn := range typecheck.Target.Exports { s := exportn.Sym() nn := ir.AsNode(s.Def) if nn == nil { continue } if nn.Op() != ir.ONAME { continue } n := nn.(*ir.Name) if !types.IsExported(s.Name) { continue } if s.Pkg.Name != "main" { continue } if n.Type().HasTParam() { continue // skip generic functions (#52937) } ptabs = append(ptabs, n) } } // NeedEmit reports whether typ is a type that we need to emit code // for (e.g., runtime type descriptors, method wrappers). func NeedEmit(typ *types.Type) bool { // TODO(mdempsky): Export data should keep track of which anonymous // and instantiated types were emitted, so at least downstream // packages can skip re-emitting them. // // Perhaps we can just generalize the linker-symbol indexing to // track the index of arbitrary types, not just defined types, and // use its presence to detect this. The same idea would work for // instantiated generic functions too. switch sym := typ.Sym(); { case writtenByWriteBasicTypes(typ): return base.Ctxt.Pkgpath == "runtime" case sym == nil: // Anonymous type; possibly never seen before or ever again. // Need to emit to be safe (however, see TODO above). return true case sym.Pkg == types.LocalPkg: // Local defined type; our responsibility. return true case typ.IsFullyInstantiated(): // Instantiated type; possibly instantiated with unique type arguments. // Need to emit to be safe (however, see TODO above). return true case typ.HasShape(): // Shape type; need to emit even though it lives in the .shape package. // TODO: make sure the linker deduplicates them (see dupok in writeType above). return true default: // Should have been emitted by an imported package. return false } } // Generate a wrapper function to convert from // a receiver of type T to a receiver of type U. // That is, // // func (t T) M() { // ... // } // // already exists; this function generates // // func (u U) M() { // u.M() // } // // where the types T and U are such that u.M() is valid // and calls the T.M method. // The resulting function is for use in method tables. // // rcvr - U // method - M func (t T)(), a TFIELD type struct // // Also wraps methods on instantiated generic types for use in itab entries. // For an instantiated generic type G[int], we generate wrappers like: // G[int] pointer shaped: // // func (x G[int]) f(arg) { // .inst.G[int].f(dictionary, x, arg) // } // // G[int] not pointer shaped: // // func (x *G[int]) f(arg) { // .inst.G[int].f(dictionary, *x, arg) // } // // These wrappers are always fully stenciled. func methodWrapper(rcvr *types.Type, method *types.Field, forItab bool) *obj.LSym { orig := rcvr if forItab && !types.IsDirectIface(rcvr) { rcvr = rcvr.PtrTo() } generic := false // We don't need a dictionary if we are reaching a method (possibly via an // embedded field) which is an interface method. if !types.IsInterfaceMethod(method.Type) { rcvr1 := deref(rcvr) if len(rcvr1.RParams()) > 0 { // If rcvr has rparams, remember method as generic, which // means we need to add a dictionary to the wrapper. generic = true if rcvr.HasShape() { base.Fatalf("method on type instantiated with shapes, rcvr:%+v", rcvr) } } } newnam := ir.MethodSym(rcvr, method.Sym) lsym := newnam.Linksym() // Unified IR creates its own wrappers. if base.Debug.Unified != 0 { return lsym } if newnam.Siggen() { return lsym } newnam.SetSiggen(true) methodrcvr := method.Type.Recv().Type // For generic methods, we need to generate the wrapper even if the receiver // types are identical, because we want to add the dictionary. if !generic && types.Identical(rcvr, methodrcvr) { return lsym } if !NeedEmit(rcvr) || rcvr.IsPtr() && !NeedEmit(rcvr.Elem()) { return lsym } base.Pos = base.AutogeneratedPos typecheck.DeclContext = ir.PEXTERN // TODO(austin): SelectorExpr may have created one or more // ir.Names for these already with a nil Func field. We should // consolidate these and always attach a Func to the Name. fn := typecheck.DeclFunc(newnam, ir.NewField(base.Pos, typecheck.Lookup(".this"), rcvr), typecheck.NewFuncParams(method.Type.Params(), true), typecheck.NewFuncParams(method.Type.Results(), false)) fn.SetDupok(true) nthis := ir.AsNode(fn.Type().Recv().Nname) indirect := rcvr.IsPtr() && rcvr.Elem() == methodrcvr // generate nil pointer check for better error if indirect { // generating wrapper from *T to T. n := ir.NewIfStmt(base.Pos, nil, nil, nil) n.Cond = ir.NewBinaryExpr(base.Pos, ir.OEQ, nthis, typecheck.NodNil()) call := ir.NewCallExpr(base.Pos, ir.OCALL, typecheck.LookupRuntime("panicwrap"), nil) n.Body = []ir.Node{call} fn.Body.Append(n) } dot := typecheck.AddImplicitDots(ir.NewSelectorExpr(base.Pos, ir.OXDOT, nthis, method.Sym)) // generate call // It's not possible to use a tail call when dynamic linking on ppc64le. The // bad scenario is when a local call is made to the wrapper: the wrapper will // call the implementation, which might be in a different module and so set // the TOC to the appropriate value for that module. But if it returns // directly to the wrapper's caller, nothing will reset it to the correct // value for that function. var call *ir.CallExpr if !base.Flag.Cfg.Instrumenting && rcvr.IsPtr() && methodrcvr.IsPtr() && method.Embedded != 0 && !types.IsInterfaceMethod(method.Type) && !(base.Ctxt.Arch.Name == "ppc64le" && base.Ctxt.Flag_dynlink) && !generic { call = ir.NewCallExpr(base.Pos, ir.OCALL, dot, nil) call.Args = ir.ParamNames(fn.Type()) call.IsDDD = fn.Type().IsVariadic() fn.Body.Append(ir.NewTailCallStmt(base.Pos, call)) } else { fn.SetWrapper(true) // ignore frame for panic+recover matching if generic && dot.X != nthis { // If there is embedding involved, then we should do the // normal non-generic embedding wrapper below, which calls // the wrapper for the real receiver type using dot as an // argument. There is no need for generic processing (adding // a dictionary) for this wrapper. generic = false } if generic { targs := deref(rcvr).RParams() // The wrapper for an auto-generated pointer/non-pointer // receiver method should share the same dictionary as the // corresponding original (user-written) method. baseOrig := orig if baseOrig.IsPtr() && !methodrcvr.IsPtr() { baseOrig = baseOrig.Elem() } else if !baseOrig.IsPtr() && methodrcvr.IsPtr() { baseOrig = types.NewPtr(baseOrig) } args := []ir.Node{getDictionary(ir.MethodSym(baseOrig, method.Sym), targs)} if indirect { args = append(args, ir.NewStarExpr(base.Pos, dot.X)) } else if methodrcvr.IsPtr() && methodrcvr.Elem() == dot.X.Type() { // Case where method call is via a non-pointer // embedded field with a pointer method. args = append(args, typecheck.NodAddrAt(base.Pos, dot.X)) } else { args = append(args, dot.X) } args = append(args, ir.ParamNames(fn.Type())...) // Target method uses shaped names. targs2 := make([]*types.Type, len(targs)) origRParams := deref(orig).OrigType().RParams() for i, t := range targs { targs2[i] = typecheck.Shapify(t, i, origRParams[i]) } targs = targs2 sym := typecheck.MakeFuncInstSym(ir.MethodSym(methodrcvr, method.Sym), targs, false, true) if sym.Def == nil { // Currently we make sure that we have all the // instantiations we need by generating them all in // ../noder/stencil.go:instantiateMethods // Extra instantiations because of an inlined function // should have been exported, and so available via // Resolve. in := typecheck.Resolve(ir.NewIdent(src.NoXPos, sym)) if in.Op() == ir.ONONAME { base.Fatalf("instantiation %s not found", sym.Name) } sym = in.Sym() } target := ir.AsNode(sym.Def) call = ir.NewCallExpr(base.Pos, ir.OCALL, target, args) // Fill-in the generic method node that was not filled in // in instantiateMethod. method.Nname = fn.Nname } else { call = ir.NewCallExpr(base.Pos, ir.OCALL, dot, nil) call.Args = ir.ParamNames(fn.Type()) } call.IsDDD = fn.Type().IsVariadic() if method.Type.NumResults() > 0 { ret := ir.NewReturnStmt(base.Pos, nil) ret.Results = []ir.Node{call} fn.Body.Append(ret) } else { fn.Body.Append(call) } } typecheck.FinishFuncBody() if base.Debug.DclStack != 0 { types.CheckDclstack() } typecheck.Func(fn) ir.CurFunc = fn typecheck.Stmts(fn.Body) if AfterGlobalEscapeAnalysis { // Inlining the method may reveal closures, which require walking all function bodies // to decide whether to capture free variables by value or by ref. So we only do inline // if the method do not contain any closures, otherwise, the escape analysis may make // dead variables resurrected, and causing liveness analysis confused, see issue #53702. var canInline bool switch x := call.X.(type) { case *ir.Name: canInline = len(x.Func.Closures) == 0 case *ir.SelectorExpr: if x.Op() == ir.OMETHEXPR { canInline = x.FuncName().Func != nil && len(x.FuncName().Func.Closures) == 0 } } if canInline { // TODO(prattmic): plumb PGO. inline.InlineCalls(fn, nil) } escape.Batch([]*ir.Func{fn}, false) } ir.CurFunc = nil typecheck.Target.Decls = append(typecheck.Target.Decls, fn) return lsym } // AfterGlobalEscapeAnalysis tracks whether package gc has already // performed the main, global escape analysis pass. If so, // methodWrapper takes responsibility for escape analyzing any // generated wrappers. var AfterGlobalEscapeAnalysis bool var ZeroSize int64 // MarkTypeUsedInInterface marks that type t is converted to an interface. // This information is used in the linker in dead method elimination. func MarkTypeUsedInInterface(t *types.Type, from *obj.LSym) { if t.HasShape() { // Shape types shouldn't be put in interfaces, so we shouldn't ever get here. base.Fatalf("shape types have no methods %+v", t) } tsym := TypeLinksym(t) // Emit a marker relocation. The linker will know the type is converted // to an interface if "from" is reachable. r := obj.Addrel(from) r.Sym = tsym r.Type = objabi.R_USEIFACE } // MarkUsedIfaceMethod marks that an interface method is used in the current // function. n is OCALLINTER node. func MarkUsedIfaceMethod(n *ir.CallExpr) { // skip unnamed functions (func _()) if ir.CurFunc.LSym == nil { return } dot := n.X.(*ir.SelectorExpr) ityp := dot.X.Type() if ityp.HasShape() { // Here we're calling a method on a generic interface. Something like: // // type I[T any] interface { foo() T } // func f[T any](x I[T]) { // ... = x.foo() // } // f[int](...) // f[string](...) // // In this case, in f we're calling foo on a generic interface. // Which method could that be? Normally we could match the method // both by name and by type. But in this case we don't really know // the type of the method we're calling. It could be func()int // or func()string. So we match on just the function name, instead // of both the name and the type used for the non-generic case below. // TODO: instantiations at least know the shape of the instantiated // type, and the linker could do more complicated matching using // some sort of fuzzy shape matching. For now, only use the name // of the method for matching. r := obj.Addrel(ir.CurFunc.LSym) // We use a separate symbol just to tell the linker the method name. // (The symbol itself is not needed in the final binary. Do not use // staticdata.StringSym, which creates a content addessable symbol, // which may have trailing zero bytes. This symbol doesn't need to // be deduplicated anyway.) name := dot.Sel.Name var nameSym obj.LSym nameSym.WriteString(base.Ctxt, 0, len(name), name) objw.Global(&nameSym, int32(len(name)), obj.RODATA) r.Sym = &nameSym r.Type = objabi.R_USEGENERICIFACEMETHOD return } tsym := TypeLinksym(ityp) r := obj.Addrel(ir.CurFunc.LSym) r.Sym = tsym // dot.Offset() is the method index * PtrSize (the offset of code pointer // in itab). midx := dot.Offset() / int64(types.PtrSize) r.Add = InterfaceMethodOffset(ityp, midx) r.Type = objabi.R_USEIFACEMETHOD } // getDictionary returns the dictionary for the given named generic function // or method, with the given type arguments. func getDictionary(gf *types.Sym, targs []*types.Type) ir.Node { if len(targs) == 0 { base.Fatalf("%s should have type arguments", gf.Name) } for _, t := range targs { if t.HasShape() { base.Fatalf("dictionary for %s should only use concrete types: %+v", gf.Name, t) } } sym := typecheck.MakeDictSym(gf, targs, true) // Dictionary should already have been generated by instantiateMethods(). // Extra dictionaries needed because of an inlined function should have been // exported, and so available via Resolve. if lsym := sym.Linksym(); len(lsym.P) == 0 { in := typecheck.Resolve(ir.NewIdent(src.NoXPos, sym)) if in.Op() == ir.ONONAME { base.Fatalf("Dictionary should have already been generated: %s.%s", sym.Pkg.Path, sym.Name) } sym = in.Sym() } // Make (or reuse) a node referencing the dictionary symbol. var n *ir.Name if sym.Def != nil { n = sym.Def.(*ir.Name) } else { n = typecheck.NewName(sym) n.SetType(types.Types[types.TUINTPTR]) // should probably be [...]uintptr, but doesn't really matter n.SetTypecheck(1) n.Class = ir.PEXTERN sym.Def = n } // Return the address of the dictionary. np := typecheck.NodAddr(n) // Note: treat dictionary pointers as uintptrs, so they aren't pointers // with respect to GC. That saves on stack scanning work, write barriers, etc. // We can get away with it because dictionaries are global variables. np.SetType(types.Types[types.TUINTPTR]) np.SetTypecheck(1) return np } func deref(t *types.Type) *types.Type { if t.IsPtr() { return t.Elem() } return t }