// Copyright 2015 The Go Authors. All rights reserved. // Use of this source code is governed by a BSD-style // license that can be found in the LICENSE file. package ssa import ( "cmd/compile/internal/abi" "cmd/compile/internal/base" "cmd/compile/internal/types" "cmd/internal/src" "fmt" "math" "strings" ) // A Func represents a Go func declaration (or function literal) and its body. // This package compiles each Func independently. // Funcs are single-use; a new Func must be created for every compiled function. type Func struct { Config *Config // architecture information Cache *Cache // re-usable cache fe Frontend // frontend state associated with this Func, callbacks into compiler frontend pass *pass // current pass information (name, options, etc.) Name string // e.g. NewFunc or (*Func).NumBlocks (no package prefix) Type *types.Type // type signature of the function. Blocks []*Block // unordered set of all basic blocks (note: not indexable by ID) Entry *Block // the entry basic block bid idAlloc // block ID allocator vid idAlloc // value ID allocator HTMLWriter *HTMLWriter // html writer, for debugging PrintOrHtmlSSA bool // true if GOSSAFUNC matches, true even if fe.Log() (spew phase results to stdout) is false. There's an odd dependence on this in debug.go for method logf. ruleMatches map[string]int // number of times countRule was called during compilation for any given string ABI0 *abi.ABIConfig // A copy, for no-sync access ABI1 *abi.ABIConfig // A copy, for no-sync access ABISelf *abi.ABIConfig // ABI for function being compiled ABIDefault *abi.ABIConfig // ABI for rtcall and other no-parsed-signature/pragma functions. scheduled bool // Values in Blocks are in final order laidout bool // Blocks are ordered NoSplit bool // true if function is marked as nosplit. Used by schedule check pass. dumpFileSeq uint8 // the sequence numbers of dump file. (%s_%02d__%s.dump", funcname, dumpFileSeq, phaseName) // when register allocation is done, maps value ids to locations RegAlloc []Location // temporary registers allocated to rare instructions tempRegs map[ID]*Register // map from LocalSlot to set of Values that we want to store in that slot. NamedValues map[LocalSlot][]*Value // Names is a copy of NamedValues.Keys. We keep a separate list // of keys to make iteration order deterministic. Names []*LocalSlot // Canonicalize root/top-level local slots, and canonicalize their pieces. // Because LocalSlot pieces refer to their parents with a pointer, this ensures that equivalent slots really are equal. CanonicalLocalSlots map[LocalSlot]*LocalSlot CanonicalLocalSplits map[LocalSlotSplitKey]*LocalSlot // RegArgs is a slice of register-memory pairs that must be spilled and unspilled in the uncommon path of function entry. RegArgs []Spill // AuxCall describing parameters and results for this function. OwnAux *AuxCall // WBLoads is a list of Blocks that branch on the write // barrier flag. Safe-points are disabled from the OpLoad that // reads the write-barrier flag until the control flow rejoins // below the two successors of this block. WBLoads []*Block freeValues *Value // free Values linked by argstorage[0]. All other fields except ID are 0/nil. freeBlocks *Block // free Blocks linked by succstorage[0].b. All other fields except ID are 0/nil. cachedPostorder []*Block // cached postorder traversal cachedIdom []*Block // cached immediate dominators cachedSdom SparseTree // cached dominator tree cachedLoopnest *loopnest // cached loop nest information cachedLineStarts *xposmap // cached map/set of xpos to integers auxmap auxmap // map from aux values to opaque ids used by CSE constants map[int64][]*Value // constants cache, keyed by constant value; users must check value's Op and Type } type LocalSlotSplitKey struct { parent *LocalSlot Off int64 // offset of slot in N Type *types.Type // type of slot } // NewFunc returns a new, empty function object. // Caller must set f.Config and f.Cache before using f. func NewFunc(fe Frontend) *Func { return &Func{fe: fe, NamedValues: make(map[LocalSlot][]*Value), CanonicalLocalSlots: make(map[LocalSlot]*LocalSlot), CanonicalLocalSplits: make(map[LocalSlotSplitKey]*LocalSlot)} } // NumBlocks returns an integer larger than the id of any Block in the Func. func (f *Func) NumBlocks() int { return f.bid.num() } // NumValues returns an integer larger than the id of any Value in the Func. func (f *Func) NumValues() int { return f.vid.num() } // newSparseSet returns a sparse set that can store at least up to n integers. func (f *Func) newSparseSet(n int) *sparseSet { return f.Cache.allocSparseSet(n) } // retSparseSet returns a sparse set to the config's cache of sparse // sets to be reused by f.newSparseSet. func (f *Func) retSparseSet(ss *sparseSet) { f.Cache.freeSparseSet(ss) } // newSparseMap returns a sparse map that can store at least up to n integers. func (f *Func) newSparseMap(n int) *sparseMap { return f.Cache.allocSparseMap(n) } // retSparseMap returns a sparse map to the config's cache of sparse // sets to be reused by f.newSparseMap. func (f *Func) retSparseMap(ss *sparseMap) { f.Cache.freeSparseMap(ss) } // newSparseMapPos returns a sparse map that can store at least up to n integers. func (f *Func) newSparseMapPos(n int) *sparseMapPos { return f.Cache.allocSparseMapPos(n) } // retSparseMapPos returns a sparse map to the config's cache of sparse // sets to be reused by f.newSparseMapPos. func (f *Func) retSparseMapPos(ss *sparseMapPos) { f.Cache.freeSparseMapPos(ss) } // newPoset returns a new poset from the internal cache func (f *Func) newPoset() *poset { if len(f.Cache.scrPoset) > 0 { po := f.Cache.scrPoset[len(f.Cache.scrPoset)-1] f.Cache.scrPoset = f.Cache.scrPoset[:len(f.Cache.scrPoset)-1] return po } return newPoset() } // retPoset returns a poset to the internal cache func (f *Func) retPoset(po *poset) { f.Cache.scrPoset = append(f.Cache.scrPoset, po) } func (f *Func) localSlotAddr(slot LocalSlot) *LocalSlot { a, ok := f.CanonicalLocalSlots[slot] if !ok { a = new(LocalSlot) *a = slot // don't escape slot f.CanonicalLocalSlots[slot] = a } return a } func (f *Func) SplitString(name *LocalSlot) (*LocalSlot, *LocalSlot) { ptrType := types.NewPtr(types.Types[types.TUINT8]) lenType := types.Types[types.TINT] // Split this string up into two separate variables. p := f.SplitSlot(name, ".ptr", 0, ptrType) l := f.SplitSlot(name, ".len", ptrType.Size(), lenType) return p, l } func (f *Func) SplitInterface(name *LocalSlot) (*LocalSlot, *LocalSlot) { n := name.N u := types.Types[types.TUINTPTR] t := types.NewPtr(types.Types[types.TUINT8]) // Split this interface up into two separate variables. sfx := ".itab" if n.Type().IsEmptyInterface() { sfx = ".type" } c := f.SplitSlot(name, sfx, 0, u) // see comment in typebits.Set d := f.SplitSlot(name, ".data", u.Size(), t) return c, d } func (f *Func) SplitSlice(name *LocalSlot) (*LocalSlot, *LocalSlot, *LocalSlot) { ptrType := types.NewPtr(name.Type.Elem()) lenType := types.Types[types.TINT] p := f.SplitSlot(name, ".ptr", 0, ptrType) l := f.SplitSlot(name, ".len", ptrType.Size(), lenType) c := f.SplitSlot(name, ".cap", ptrType.Size()+lenType.Size(), lenType) return p, l, c } func (f *Func) SplitComplex(name *LocalSlot) (*LocalSlot, *LocalSlot) { s := name.Type.Size() / 2 var t *types.Type if s == 8 { t = types.Types[types.TFLOAT64] } else { t = types.Types[types.TFLOAT32] } r := f.SplitSlot(name, ".real", 0, t) i := f.SplitSlot(name, ".imag", t.Size(), t) return r, i } func (f *Func) SplitInt64(name *LocalSlot) (*LocalSlot, *LocalSlot) { var t *types.Type if name.Type.IsSigned() { t = types.Types[types.TINT32] } else { t = types.Types[types.TUINT32] } if f.Config.BigEndian { return f.SplitSlot(name, ".hi", 0, t), f.SplitSlot(name, ".lo", t.Size(), types.Types[types.TUINT32]) } return f.SplitSlot(name, ".hi", t.Size(), t), f.SplitSlot(name, ".lo", 0, types.Types[types.TUINT32]) } func (f *Func) SplitStruct(name *LocalSlot, i int) *LocalSlot { st := name.Type return f.SplitSlot(name, st.FieldName(i), st.FieldOff(i), st.FieldType(i)) } func (f *Func) SplitArray(name *LocalSlot) *LocalSlot { n := name.N at := name.Type if at.NumElem() != 1 { base.FatalfAt(n.Pos(), "bad array size") } et := at.Elem() return f.SplitSlot(name, "[0]", 0, et) } func (f *Func) SplitSlot(name *LocalSlot, sfx string, offset int64, t *types.Type) *LocalSlot { lssk := LocalSlotSplitKey{name, offset, t} if als, ok := f.CanonicalLocalSplits[lssk]; ok { return als } // Note: the _ field may appear several times. But // have no fear, identically-named but distinct Autos are // ok, albeit maybe confusing for a debugger. ls := f.fe.SplitSlot(name, sfx, offset, t) f.CanonicalLocalSplits[lssk] = &ls return &ls } // newValue allocates a new Value with the given fields and places it at the end of b.Values. func (f *Func) newValue(op Op, t *types.Type, b *Block, pos src.XPos) *Value { var v *Value if f.freeValues != nil { v = f.freeValues f.freeValues = v.argstorage[0] v.argstorage[0] = nil } else { ID := f.vid.get() if int(ID) < len(f.Cache.values) { v = &f.Cache.values[ID] v.ID = ID } else { v = &Value{ID: ID} } } v.Op = op v.Type = t v.Block = b if notStmtBoundary(op) { pos = pos.WithNotStmt() } v.Pos = pos b.Values = append(b.Values, v) return v } // newValueNoBlock allocates a new Value with the given fields. // The returned value is not placed in any block. Once the caller // decides on a block b, it must set b.Block and append // the returned value to b.Values. func (f *Func) newValueNoBlock(op Op, t *types.Type, pos src.XPos) *Value { var v *Value if f.freeValues != nil { v = f.freeValues f.freeValues = v.argstorage[0] v.argstorage[0] = nil } else { ID := f.vid.get() if int(ID) < len(f.Cache.values) { v = &f.Cache.values[ID] v.ID = ID } else { v = &Value{ID: ID} } } v.Op = op v.Type = t v.Block = nil // caller must fix this. if notStmtBoundary(op) { pos = pos.WithNotStmt() } v.Pos = pos return v } // LogStat writes a string key and int value as a warning in a // tab-separated format easily handled by spreadsheets or awk. // file names, lines, and function names are included to provide enough (?) // context to allow item-by-item comparisons across runs. // For example: // awk 'BEGIN {FS="\t"} $3~/TIME/{sum+=$4} END{print "t(ns)=",sum}' t.log func (f *Func) LogStat(key string, args ...interface{}) { value := "" for _, a := range args { value += fmt.Sprintf("\t%v", a) } n := "missing_pass" if f.pass != nil { n = strings.Replace(f.pass.name, " ", "_", -1) } f.Warnl(f.Entry.Pos, "\t%s\t%s%s\t%s", n, key, value, f.Name) } // unCacheLine removes v from f's constant cache "line" for aux, // resets v.InCache when it is found (and removed), // and returns whether v was found in that line. func (f *Func) unCacheLine(v *Value, aux int64) bool { vv := f.constants[aux] for i, cv := range vv { if v == cv { vv[i] = vv[len(vv)-1] vv[len(vv)-1] = nil f.constants[aux] = vv[0 : len(vv)-1] v.InCache = false return true } } return false } // unCache removes v from f's constant cache. func (f *Func) unCache(v *Value) { if v.InCache { aux := v.AuxInt if f.unCacheLine(v, aux) { return } if aux == 0 { switch v.Op { case OpConstNil: aux = constNilMagic case OpConstSlice: aux = constSliceMagic case OpConstString: aux = constEmptyStringMagic case OpConstInterface: aux = constInterfaceMagic } if aux != 0 && f.unCacheLine(v, aux) { return } } f.Fatalf("unCached value %s not found in cache, auxInt=0x%x, adjusted aux=0x%x", v.LongString(), v.AuxInt, aux) } } // freeValue frees a value. It must no longer be referenced or have any args. func (f *Func) freeValue(v *Value) { if v.Block == nil { f.Fatalf("trying to free an already freed value") } if v.Uses != 0 { f.Fatalf("value %s still has %d uses", v, v.Uses) } if len(v.Args) != 0 { f.Fatalf("value %s still has %d args", v, len(v.Args)) } // Clear everything but ID (which we reuse). id := v.ID if v.InCache { f.unCache(v) } *v = Value{} v.ID = id v.argstorage[0] = f.freeValues f.freeValues = v } // NewBlock allocates a new Block of the given kind and places it at the end of f.Blocks. func (f *Func) NewBlock(kind BlockKind) *Block { var b *Block if f.freeBlocks != nil { b = f.freeBlocks f.freeBlocks = b.succstorage[0].b b.succstorage[0].b = nil } else { ID := f.bid.get() if int(ID) < len(f.Cache.blocks) { b = &f.Cache.blocks[ID] b.ID = ID } else { b = &Block{ID: ID} } } b.Kind = kind b.Func = f b.Preds = b.predstorage[:0] b.Succs = b.succstorage[:0] b.Values = b.valstorage[:0] f.Blocks = append(f.Blocks, b) f.invalidateCFG() return b } func (f *Func) freeBlock(b *Block) { if b.Func == nil { f.Fatalf("trying to free an already freed block") } // Clear everything but ID (which we reuse). id := b.ID *b = Block{} b.ID = id b.succstorage[0].b = f.freeBlocks f.freeBlocks = b } // NewValue0 returns a new value in the block with no arguments and zero aux values. func (b *Block) NewValue0(pos src.XPos, op Op, t *types.Type) *Value { v := b.Func.newValue(op, t, b, pos) v.AuxInt = 0 v.Args = v.argstorage[:0] return v } // NewValue0I returns a new value in the block with no arguments and an auxint value. func (b *Block) NewValue0I(pos src.XPos, op Op, t *types.Type, auxint int64) *Value { v := b.Func.newValue(op, t, b, pos) v.AuxInt = auxint v.Args = v.argstorage[:0] return v } // NewValue0A returns a new value in the block with no arguments and an aux value. func (b *Block) NewValue0A(pos src.XPos, op Op, t *types.Type, aux Aux) *Value { v := b.Func.newValue(op, t, b, pos) v.AuxInt = 0 v.Aux = aux v.Args = v.argstorage[:0] return v } // NewValue0IA returns a new value in the block with no arguments and both an auxint and aux values. func (b *Block) NewValue0IA(pos src.XPos, op Op, t *types.Type, auxint int64, aux Aux) *Value { v := b.Func.newValue(op, t, b, pos) v.AuxInt = auxint v.Aux = aux v.Args = v.argstorage[:0] return v } // NewValue1 returns a new value in the block with one argument and zero aux values. func (b *Block) NewValue1(pos src.XPos, op Op, t *types.Type, arg *Value) *Value { v := b.Func.newValue(op, t, b, pos) v.AuxInt = 0 v.Args = v.argstorage[:1] v.argstorage[0] = arg arg.Uses++ return v } // NewValue1I returns a new value in the block with one argument and an auxint value. func (b *Block) NewValue1I(pos src.XPos, op Op, t *types.Type, auxint int64, arg *Value) *Value { v := b.Func.newValue(op, t, b, pos) v.AuxInt = auxint v.Args = v.argstorage[:1] v.argstorage[0] = arg arg.Uses++ return v } // NewValue1A returns a new value in the block with one argument and an aux value. func (b *Block) NewValue1A(pos src.XPos, op Op, t *types.Type, aux Aux, arg *Value) *Value { v := b.Func.newValue(op, t, b, pos) v.AuxInt = 0 v.Aux = aux v.Args = v.argstorage[:1] v.argstorage[0] = arg arg.Uses++ return v } // NewValue1IA returns a new value in the block with one argument and both an auxint and aux values. func (b *Block) NewValue1IA(pos src.XPos, op Op, t *types.Type, auxint int64, aux Aux, arg *Value) *Value { v := b.Func.newValue(op, t, b, pos) v.AuxInt = auxint v.Aux = aux v.Args = v.argstorage[:1] v.argstorage[0] = arg arg.Uses++ return v } // NewValue2 returns a new value in the block with two arguments and zero aux values. func (b *Block) NewValue2(pos src.XPos, op Op, t *types.Type, arg0, arg1 *Value) *Value { v := b.Func.newValue(op, t, b, pos) v.AuxInt = 0 v.Args = v.argstorage[:2] v.argstorage[0] = arg0 v.argstorage[1] = arg1 arg0.Uses++ arg1.Uses++ return v } // NewValue2A returns a new value in the block with two arguments and one aux values. func (b *Block) NewValue2A(pos src.XPos, op Op, t *types.Type, aux Aux, arg0, arg1 *Value) *Value { v := b.Func.newValue(op, t, b, pos) v.AuxInt = 0 v.Aux = aux v.Args = v.argstorage[:2] v.argstorage[0] = arg0 v.argstorage[1] = arg1 arg0.Uses++ arg1.Uses++ return v } // NewValue2I returns a new value in the block with two arguments and an auxint value. func (b *Block) NewValue2I(pos src.XPos, op Op, t *types.Type, auxint int64, arg0, arg1 *Value) *Value { v := b.Func.newValue(op, t, b, pos) v.AuxInt = auxint v.Args = v.argstorage[:2] v.argstorage[0] = arg0 v.argstorage[1] = arg1 arg0.Uses++ arg1.Uses++ return v } // NewValue2IA returns a new value in the block with two arguments and both an auxint and aux values. func (b *Block) NewValue2IA(pos src.XPos, op Op, t *types.Type, auxint int64, aux Aux, arg0, arg1 *Value) *Value { v := b.Func.newValue(op, t, b, pos) v.AuxInt = auxint v.Aux = aux v.Args = v.argstorage[:2] v.argstorage[0] = arg0 v.argstorage[1] = arg1 arg0.Uses++ arg1.Uses++ return v } // NewValue3 returns a new value in the block with three arguments and zero aux values. func (b *Block) NewValue3(pos src.XPos, op Op, t *types.Type, arg0, arg1, arg2 *Value) *Value { v := b.Func.newValue(op, t, b, pos) v.AuxInt = 0 v.Args = v.argstorage[:3] v.argstorage[0] = arg0 v.argstorage[1] = arg1 v.argstorage[2] = arg2 arg0.Uses++ arg1.Uses++ arg2.Uses++ return v } // NewValue3I returns a new value in the block with three arguments and an auxint value. func (b *Block) NewValue3I(pos src.XPos, op Op, t *types.Type, auxint int64, arg0, arg1, arg2 *Value) *Value { v := b.Func.newValue(op, t, b, pos) v.AuxInt = auxint v.Args = v.argstorage[:3] v.argstorage[0] = arg0 v.argstorage[1] = arg1 v.argstorage[2] = arg2 arg0.Uses++ arg1.Uses++ arg2.Uses++ return v } // NewValue3A returns a new value in the block with three argument and an aux value. func (b *Block) NewValue3A(pos src.XPos, op Op, t *types.Type, aux Aux, arg0, arg1, arg2 *Value) *Value { v := b.Func.newValue(op, t, b, pos) v.AuxInt = 0 v.Aux = aux v.Args = v.argstorage[:3] v.argstorage[0] = arg0 v.argstorage[1] = arg1 v.argstorage[2] = arg2 arg0.Uses++ arg1.Uses++ arg2.Uses++ return v } // NewValue4 returns a new value in the block with four arguments and zero aux values. func (b *Block) NewValue4(pos src.XPos, op Op, t *types.Type, arg0, arg1, arg2, arg3 *Value) *Value { v := b.Func.newValue(op, t, b, pos) v.AuxInt = 0 v.Args = []*Value{arg0, arg1, arg2, arg3} arg0.Uses++ arg1.Uses++ arg2.Uses++ arg3.Uses++ return v } // NewValue4I returns a new value in the block with four arguments and auxint value. func (b *Block) NewValue4I(pos src.XPos, op Op, t *types.Type, auxint int64, arg0, arg1, arg2, arg3 *Value) *Value { v := b.Func.newValue(op, t, b, pos) v.AuxInt = auxint v.Args = []*Value{arg0, arg1, arg2, arg3} arg0.Uses++ arg1.Uses++ arg2.Uses++ arg3.Uses++ return v } // constVal returns a constant value for c. func (f *Func) constVal(op Op, t *types.Type, c int64, setAuxInt bool) *Value { if f.constants == nil { f.constants = make(map[int64][]*Value) } vv := f.constants[c] for _, v := range vv { if v.Op == op && v.Type.Compare(t) == types.CMPeq { if setAuxInt && v.AuxInt != c { panic(fmt.Sprintf("cached const %s should have AuxInt of %d", v.LongString(), c)) } return v } } var v *Value if setAuxInt { v = f.Entry.NewValue0I(src.NoXPos, op, t, c) } else { v = f.Entry.NewValue0(src.NoXPos, op, t) } f.constants[c] = append(vv, v) v.InCache = true return v } // These magic auxint values let us easily cache non-numeric constants // using the same constants map while making collisions unlikely. // These values are unlikely to occur in regular code and // are easy to grep for in case of bugs. const ( constSliceMagic = 1122334455 constInterfaceMagic = 2233445566 constNilMagic = 3344556677 constEmptyStringMagic = 4455667788 ) // ConstBool returns an int constant representing its argument. func (f *Func) ConstBool(t *types.Type, c bool) *Value { i := int64(0) if c { i = 1 } return f.constVal(OpConstBool, t, i, true) } func (f *Func) ConstInt8(t *types.Type, c int8) *Value { return f.constVal(OpConst8, t, int64(c), true) } func (f *Func) ConstInt16(t *types.Type, c int16) *Value { return f.constVal(OpConst16, t, int64(c), true) } func (f *Func) ConstInt32(t *types.Type, c int32) *Value { return f.constVal(OpConst32, t, int64(c), true) } func (f *Func) ConstInt64(t *types.Type, c int64) *Value { return f.constVal(OpConst64, t, c, true) } func (f *Func) ConstFloat32(t *types.Type, c float64) *Value { return f.constVal(OpConst32F, t, int64(math.Float64bits(float64(float32(c)))), true) } func (f *Func) ConstFloat64(t *types.Type, c float64) *Value { return f.constVal(OpConst64F, t, int64(math.Float64bits(c)), true) } func (f *Func) ConstSlice(t *types.Type) *Value { return f.constVal(OpConstSlice, t, constSliceMagic, false) } func (f *Func) ConstInterface(t *types.Type) *Value { return f.constVal(OpConstInterface, t, constInterfaceMagic, false) } func (f *Func) ConstNil(t *types.Type) *Value { return f.constVal(OpConstNil, t, constNilMagic, false) } func (f *Func) ConstEmptyString(t *types.Type) *Value { v := f.constVal(OpConstString, t, constEmptyStringMagic, false) v.Aux = StringToAux("") return v } func (f *Func) ConstOffPtrSP(t *types.Type, c int64, sp *Value) *Value { v := f.constVal(OpOffPtr, t, c, true) if len(v.Args) == 0 { v.AddArg(sp) } return v } func (f *Func) Frontend() Frontend { return f.fe } func (f *Func) Warnl(pos src.XPos, msg string, args ...interface{}) { f.fe.Warnl(pos, msg, args...) } func (f *Func) Logf(msg string, args ...interface{}) { f.fe.Logf(msg, args...) } func (f *Func) Log() bool { return f.fe.Log() } func (f *Func) Fatalf(msg string, args ...interface{}) { stats := "crashed" if f.Log() { f.Logf(" pass %s end %s\n", f.pass.name, stats) printFunc(f) } if f.HTMLWriter != nil { f.HTMLWriter.WritePhase(f.pass.name, fmt.Sprintf("%s %s", f.pass.name, stats)) f.HTMLWriter.flushPhases() } f.fe.Fatalf(f.Entry.Pos, msg, args...) } // postorder returns the reachable blocks in f in a postorder traversal. func (f *Func) postorder() []*Block { if f.cachedPostorder == nil { f.cachedPostorder = postorder(f) } return f.cachedPostorder } func (f *Func) Postorder() []*Block { return f.postorder() } // Idom returns a map from block ID to the immediate dominator of that block. // f.Entry.ID maps to nil. Unreachable blocks map to nil as well. func (f *Func) Idom() []*Block { if f.cachedIdom == nil { f.cachedIdom = dominators(f) } return f.cachedIdom } // Sdom returns a sparse tree representing the dominator relationships // among the blocks of f. func (f *Func) Sdom() SparseTree { if f.cachedSdom == nil { f.cachedSdom = newSparseTree(f, f.Idom()) } return f.cachedSdom } // loopnest returns the loop nest information for f. func (f *Func) loopnest() *loopnest { if f.cachedLoopnest == nil { f.cachedLoopnest = loopnestfor(f) } return f.cachedLoopnest } // invalidateCFG tells f that its CFG has changed. func (f *Func) invalidateCFG() { f.cachedPostorder = nil f.cachedIdom = nil f.cachedSdom = nil f.cachedLoopnest = nil } // DebugHashMatch returns // // base.DebugHashMatch(this function's package.name) // // for use in bug isolation. The return value is true unless // environment variable GOSSAHASH is set, in which case "it depends". // See [base.DebugHashMatch] for more information. func (f *Func) DebugHashMatch() bool { if !base.HasDebugHash() { return true } name := f.fe.MyImportPath() + "." + f.Name return base.DebugHashMatch(name) } func (f *Func) spSb() (sp, sb *Value) { initpos := src.NoXPos // These are originally created with no position in ssa.go; if they are optimized out then recreated, should be the same. for _, v := range f.Entry.Values { if v.Op == OpSB { sb = v } if v.Op == OpSP { sp = v } if sb != nil && sp != nil { return } } if sb == nil { sb = f.Entry.NewValue0(initpos.WithNotStmt(), OpSB, f.Config.Types.Uintptr) } if sp == nil { sp = f.Entry.NewValue0(initpos.WithNotStmt(), OpSP, f.Config.Types.Uintptr) } return } // useFMA allows targeted debugging w/ GOFMAHASH // If you have an architecture-dependent FP glitch, this will help you find it. func (f *Func) useFMA(v *Value) bool { if !f.Config.UseFMA { return false } if base.FmaHash == nil { return true } ctxt := v.Block.Func.Config.Ctxt() return base.FmaHash.DebugHashMatchPos(ctxt, v.Pos) }