// Copyright 2018 The Go Authors. All rights reserved. // Use of this source code is governed by a BSD-style // license that can be found in the LICENSE file. package ssa import ( "cmd/compile/internal/base" "fmt" "math" ) type indVarFlags uint8 const ( indVarMinExc indVarFlags = 1 << iota // minimum value is exclusive (default: inclusive) indVarMaxInc // maximum value is inclusive (default: exclusive) ) type indVar struct { ind *Value // induction variable min *Value // minimum value, inclusive/exclusive depends on flags max *Value // maximum value, inclusive/exclusive depends on flags entry *Block // entry block in the loop. flags indVarFlags // Invariant: for all blocks strictly dominated by entry: // min <= ind < max [if flags == 0] // min < ind < max [if flags == indVarMinExc] // min <= ind <= max [if flags == indVarMaxInc] // min < ind <= max [if flags == indVarMinExc|indVarMaxInc] } // parseIndVar checks whether the SSA value passed as argument is a valid induction // variable, and, if so, extracts: // - the minimum bound // - the increment value // - the "next" value (SSA value that is Phi'd into the induction variable every loop) // // Currently, we detect induction variables that match (Phi min nxt), // with nxt being (Add inc ind). // If it can't parse the induction variable correctly, it returns (nil, nil, nil). func parseIndVar(ind *Value) (min, inc, nxt *Value) { if ind.Op != OpPhi { return } if n := ind.Args[0]; n.Op == OpAdd64 && (n.Args[0] == ind || n.Args[1] == ind) { min, nxt = ind.Args[1], n } else if n := ind.Args[1]; n.Op == OpAdd64 && (n.Args[0] == ind || n.Args[1] == ind) { min, nxt = ind.Args[0], n } else { // Not a recognized induction variable. return } if nxt.Args[0] == ind { // nxt = ind + inc inc = nxt.Args[1] } else if nxt.Args[1] == ind { // nxt = inc + ind inc = nxt.Args[0] } else { panic("unreachable") // one of the cases must be true from the above. } return } // findIndVar finds induction variables in a function. // // Look for variables and blocks that satisfy the following // // loop: // ind = (Phi min nxt), // if ind < max // then goto enter_loop // else goto exit_loop // // enter_loop: // do something // nxt = inc + ind // goto loop // // exit_loop: // // TODO: handle 32 bit operations func findIndVar(f *Func) []indVar { var iv []indVar sdom := f.Sdom() for _, b := range f.Blocks { if b.Kind != BlockIf || len(b.Preds) != 2 { continue } var ind *Value // induction variable var init *Value // starting value var limit *Value // ending value // Check thet the control if it either ind = 0; i-- init, inc, nxt = parseIndVar(limit) if init == nil { // No recognied induction variable on either operand continue } // Ok, the arguments were reversed. Swap them, and remember that we're // looking at a ind >/>= loop (so the induction must be decrementing). ind, limit = limit, ind less = false } if ind.Block != b { // TODO: Could be extended to include disjointed loop headers. // I don't think this is causing missed optimizations in real world code often. // See https://go.dev/issue/63955 continue } // Expect the increment to be a nonzero constant. if inc.Op != OpConst64 { continue } step := inc.AuxInt if step == 0 { continue } // Increment sign must match comparison direction. // When incrementing, the termination comparison must be ind />= limit. // See issue 26116. if step > 0 && !less { continue } if step < 0 && less { continue } // Up to now we extracted the induction variable (ind), // the increment delta (inc), the temporary sum (nxt), // the initial value (init) and the limiting value (limit). // // We also know that ind has the form (Phi init nxt) where // nxt is (Add inc nxt) which means: 1) inc dominates nxt // and 2) there is a loop starting at inc and containing nxt. // // We need to prove that the induction variable is incremented // only when it's smaller than the limiting value. // Two conditions must happen listed below to accept ind // as an induction variable. // First condition: loop entry has a single predecessor, which // is the header block. This implies that b.Succs[0] is // reached iff ind < limit. if len(b.Succs[0].b.Preds) != 1 { // b.Succs[1] must exit the loop. continue } // Second condition: b.Succs[0] dominates nxt so that // nxt is computed when inc < limit. if !sdom.IsAncestorEq(b.Succs[0].b, nxt.Block) { // inc+ind can only be reached through the branch that enters the loop. continue } // Check for overflow/underflow. We need to make sure that inc never causes // the induction variable to wrap around. // We use a function wrapper here for easy return true / return false / keep going logic. // This function returns true if the increment will never overflow/underflow. ok := func() bool { if step > 0 { if limit.Op == OpConst64 { // Figure out the actual largest value. v := limit.AuxInt if !inclusive { if v == math.MinInt64 { return false // < minint is never satisfiable. } v-- } if init.Op == OpConst64 { // Use stride to compute a better lower limit. if init.AuxInt > v { return false } v = addU(init.AuxInt, diff(v, init.AuxInt)/uint64(step)*uint64(step)) } if addWillOverflow(v, step) { return false } if inclusive && v != limit.AuxInt || !inclusive && v+1 != limit.AuxInt { // We know a better limit than the programmer did. Use our limit instead. limit = f.ConstInt64(f.Config.Types.Int64, v) inclusive = true } return true } if step == 1 && !inclusive { // Can't overflow because maxint is never a possible value. return true } // If the limit is not a constant, check to see if it is a // negative offset from a known non-negative value. knn, k := findKNN(limit) if knn == nil || k < 0 { return false } // limit == (something nonnegative) - k. That subtraction can't underflow, so // we can trust it. if inclusive { // ind <= knn - k cannot overflow if step is at most k return step <= k } // ind < knn - k cannot overflow if step is at most k+1 return step <= k+1 && k != math.MaxInt64 } else { // step < 0 if limit.Op == OpConst64 { // Figure out the actual smallest value. v := limit.AuxInt if !inclusive { if v == math.MaxInt64 { return false // > maxint is never satisfiable. } v++ } if init.Op == OpConst64 { // Use stride to compute a better lower limit. if init.AuxInt < v { return false } v = subU(init.AuxInt, diff(init.AuxInt, v)/uint64(-step)*uint64(-step)) } if subWillUnderflow(v, -step) { return false } if inclusive && v != limit.AuxInt || !inclusive && v-1 != limit.AuxInt { // We know a better limit than the programmer did. Use our limit instead. limit = f.ConstInt64(f.Config.Types.Int64, v) inclusive = true } return true } if step == -1 && !inclusive { // Can't underflow because minint is never a possible value. return true } } return false } if ok() { flags := indVarFlags(0) var min, max *Value if step > 0 { min = init max = limit if inclusive { flags |= indVarMaxInc } } else { min = limit max = init flags |= indVarMaxInc if !inclusive { flags |= indVarMinExc } step = -step } if f.pass.debug >= 1 { printIndVar(b, ind, min, max, step, flags) } iv = append(iv, indVar{ ind: ind, min: min, max: max, entry: b.Succs[0].b, flags: flags, }) b.Logf("found induction variable %v (inc = %v, min = %v, max = %v)\n", ind, inc, min, max) } // TODO: other unrolling idioms // for i := 0; i < KNN - KNN % k ; i += k // for i := 0; i < KNN&^(k-1) ; i += k // k a power of 2 // for i := 0; i < KNN&(-k) ; i += k // k a power of 2 } return iv } // addWillOverflow reports whether x+y would result in a value more than maxint. func addWillOverflow(x, y int64) bool { return x+y < x } // subWillUnderflow reports whether x-y would result in a value less than minint. func subWillUnderflow(x, y int64) bool { return x-y > x } // diff returns x-y as a uint64. Requires x>=y. func diff(x, y int64) uint64 { if x < y { base.Fatalf("diff %d - %d underflowed", x, y) } return uint64(x - y) } // addU returns x+y. Requires that x+y does not overflow an int64. func addU(x int64, y uint64) int64 { if y >= 1<<63 { if x >= 0 { base.Fatalf("addU overflowed %d + %d", x, y) } x += 1<<63 - 1 x += 1 y -= 1 << 63 } if addWillOverflow(x, int64(y)) { base.Fatalf("addU overflowed %d + %d", x, y) } return x + int64(y) } // subU returns x-y. Requires that x-y does not underflow an int64. func subU(x int64, y uint64) int64 { if y >= 1<<63 { if x < 0 { base.Fatalf("subU underflowed %d - %d", x, y) } x -= 1<<63 - 1 x -= 1 y -= 1 << 63 } if subWillUnderflow(x, int64(y)) { base.Fatalf("subU underflowed %d - %d", x, y) } return x - int64(y) } // if v is known to be x - c, where x is known to be nonnegative and c is a // constant, return x, c. Otherwise return nil, 0. func findKNN(v *Value) (*Value, int64) { var x, y *Value x = v switch v.Op { case OpSub64: x = v.Args[0] y = v.Args[1] case OpAdd64: x = v.Args[0] y = v.Args[1] if x.Op == OpConst64 { x, y = y, x } } switch x.Op { case OpSliceLen, OpStringLen, OpSliceCap: default: return nil, 0 } if y == nil { return x, 0 } if y.Op != OpConst64 { return nil, 0 } if v.Op == OpAdd64 { return x, -y.AuxInt } return x, y.AuxInt } func printIndVar(b *Block, i, min, max *Value, inc int64, flags indVarFlags) { mb1, mb2 := "[", "]" if flags&indVarMinExc != 0 { mb1 = "(" } if flags&indVarMaxInc == 0 { mb2 = ")" } mlim1, mlim2 := fmt.Sprint(min.AuxInt), fmt.Sprint(max.AuxInt) if !min.isGenericIntConst() { if b.Func.pass.debug >= 2 { mlim1 = fmt.Sprint(min) } else { mlim1 = "?" } } if !max.isGenericIntConst() { if b.Func.pass.debug >= 2 { mlim2 = fmt.Sprint(max) } else { mlim2 = "?" } } extra := "" if b.Func.pass.debug >= 2 { extra = fmt.Sprintf(" (%s)", i) } b.Func.Warnl(b.Pos, "Induction variable: limits %v%v,%v%v, increment %d%s", mb1, mlim1, mlim2, mb2, inc, extra) }