// Code generated from _gen/386.rules; DO NOT EDIT. // generated with: cd _gen; go run . package ssa import "math" import "cmd/compile/internal/types" func rewriteValue386(v *Value) bool { switch v.Op { case Op386ADCL: return rewriteValue386_Op386ADCL(v) case Op386ADDL: return rewriteValue386_Op386ADDL(v) case Op386ADDLcarry: return rewriteValue386_Op386ADDLcarry(v) case Op386ADDLconst: return rewriteValue386_Op386ADDLconst(v) case Op386ADDLconstmodify: return rewriteValue386_Op386ADDLconstmodify(v) case Op386ADDLload: return rewriteValue386_Op386ADDLload(v) case Op386ADDLmodify: return rewriteValue386_Op386ADDLmodify(v) case Op386ADDSD: return rewriteValue386_Op386ADDSD(v) case Op386ADDSDload: return rewriteValue386_Op386ADDSDload(v) case Op386ADDSS: return rewriteValue386_Op386ADDSS(v) case Op386ADDSSload: return rewriteValue386_Op386ADDSSload(v) case Op386ANDL: return rewriteValue386_Op386ANDL(v) case Op386ANDLconst: return rewriteValue386_Op386ANDLconst(v) case Op386ANDLconstmodify: return rewriteValue386_Op386ANDLconstmodify(v) case Op386ANDLload: return rewriteValue386_Op386ANDLload(v) case Op386ANDLmodify: return rewriteValue386_Op386ANDLmodify(v) case Op386CMPB: return rewriteValue386_Op386CMPB(v) case Op386CMPBconst: return rewriteValue386_Op386CMPBconst(v) case Op386CMPBload: return rewriteValue386_Op386CMPBload(v) case Op386CMPL: return rewriteValue386_Op386CMPL(v) case Op386CMPLconst: return rewriteValue386_Op386CMPLconst(v) case Op386CMPLload: return rewriteValue386_Op386CMPLload(v) case Op386CMPW: return rewriteValue386_Op386CMPW(v) case Op386CMPWconst: return rewriteValue386_Op386CMPWconst(v) case Op386CMPWload: return rewriteValue386_Op386CMPWload(v) case Op386DIVSD: return rewriteValue386_Op386DIVSD(v) case Op386DIVSDload: return rewriteValue386_Op386DIVSDload(v) case Op386DIVSS: return rewriteValue386_Op386DIVSS(v) case Op386DIVSSload: return rewriteValue386_Op386DIVSSload(v) case Op386LEAL: return rewriteValue386_Op386LEAL(v) case Op386LEAL1: return rewriteValue386_Op386LEAL1(v) case Op386LEAL2: return rewriteValue386_Op386LEAL2(v) case Op386LEAL4: return rewriteValue386_Op386LEAL4(v) case Op386LEAL8: return rewriteValue386_Op386LEAL8(v) case Op386MOVBLSX: return rewriteValue386_Op386MOVBLSX(v) case Op386MOVBLSXload: return rewriteValue386_Op386MOVBLSXload(v) case Op386MOVBLZX: return rewriteValue386_Op386MOVBLZX(v) case Op386MOVBload: return rewriteValue386_Op386MOVBload(v) case Op386MOVBstore: return rewriteValue386_Op386MOVBstore(v) case Op386MOVBstoreconst: return rewriteValue386_Op386MOVBstoreconst(v) case Op386MOVLload: return rewriteValue386_Op386MOVLload(v) case Op386MOVLstore: return rewriteValue386_Op386MOVLstore(v) case Op386MOVLstoreconst: return rewriteValue386_Op386MOVLstoreconst(v) case Op386MOVSDconst: return rewriteValue386_Op386MOVSDconst(v) case Op386MOVSDload: return rewriteValue386_Op386MOVSDload(v) case Op386MOVSDstore: return rewriteValue386_Op386MOVSDstore(v) case Op386MOVSSconst: return rewriteValue386_Op386MOVSSconst(v) case Op386MOVSSload: return rewriteValue386_Op386MOVSSload(v) case Op386MOVSSstore: return rewriteValue386_Op386MOVSSstore(v) case Op386MOVWLSX: return rewriteValue386_Op386MOVWLSX(v) case Op386MOVWLSXload: return rewriteValue386_Op386MOVWLSXload(v) case Op386MOVWLZX: return rewriteValue386_Op386MOVWLZX(v) case Op386MOVWload: return rewriteValue386_Op386MOVWload(v) case Op386MOVWstore: return rewriteValue386_Op386MOVWstore(v) case Op386MOVWstoreconst: return rewriteValue386_Op386MOVWstoreconst(v) case Op386MULL: return rewriteValue386_Op386MULL(v) case Op386MULLconst: return rewriteValue386_Op386MULLconst(v) case Op386MULLload: return rewriteValue386_Op386MULLload(v) case Op386MULSD: return rewriteValue386_Op386MULSD(v) case Op386MULSDload: return rewriteValue386_Op386MULSDload(v) case Op386MULSS: return rewriteValue386_Op386MULSS(v) case Op386MULSSload: return rewriteValue386_Op386MULSSload(v) case Op386NEGL: return rewriteValue386_Op386NEGL(v) case Op386NOTL: return rewriteValue386_Op386NOTL(v) case Op386ORL: return rewriteValue386_Op386ORL(v) case Op386ORLconst: return rewriteValue386_Op386ORLconst(v) case Op386ORLconstmodify: return rewriteValue386_Op386ORLconstmodify(v) case Op386ORLload: return rewriteValue386_Op386ORLload(v) case Op386ORLmodify: return rewriteValue386_Op386ORLmodify(v) case Op386ROLB: return rewriteValue386_Op386ROLB(v) case Op386ROLBconst: return rewriteValue386_Op386ROLBconst(v) case Op386ROLL: return rewriteValue386_Op386ROLL(v) case Op386ROLLconst: return rewriteValue386_Op386ROLLconst(v) case Op386ROLW: return rewriteValue386_Op386ROLW(v) case Op386ROLWconst: return rewriteValue386_Op386ROLWconst(v) case Op386SARB: return rewriteValue386_Op386SARB(v) case Op386SARBconst: return rewriteValue386_Op386SARBconst(v) case Op386SARL: return rewriteValue386_Op386SARL(v) case Op386SARLconst: return rewriteValue386_Op386SARLconst(v) case Op386SARW: return rewriteValue386_Op386SARW(v) case Op386SARWconst: return rewriteValue386_Op386SARWconst(v) case Op386SBBL: return rewriteValue386_Op386SBBL(v) case Op386SBBLcarrymask: return rewriteValue386_Op386SBBLcarrymask(v) case Op386SETA: return rewriteValue386_Op386SETA(v) case Op386SETAE: return rewriteValue386_Op386SETAE(v) case Op386SETB: return rewriteValue386_Op386SETB(v) case Op386SETBE: return rewriteValue386_Op386SETBE(v) case Op386SETEQ: return rewriteValue386_Op386SETEQ(v) case Op386SETG: return rewriteValue386_Op386SETG(v) case Op386SETGE: return rewriteValue386_Op386SETGE(v) case Op386SETL: return rewriteValue386_Op386SETL(v) case Op386SETLE: return rewriteValue386_Op386SETLE(v) case Op386SETNE: return rewriteValue386_Op386SETNE(v) case Op386SHLL: return rewriteValue386_Op386SHLL(v) case Op386SHLLconst: return rewriteValue386_Op386SHLLconst(v) case Op386SHRB: return rewriteValue386_Op386SHRB(v) case Op386SHRBconst: return rewriteValue386_Op386SHRBconst(v) case Op386SHRL: return rewriteValue386_Op386SHRL(v) case Op386SHRLconst: return rewriteValue386_Op386SHRLconst(v) case Op386SHRW: return rewriteValue386_Op386SHRW(v) case Op386SHRWconst: return rewriteValue386_Op386SHRWconst(v) case Op386SUBL: return rewriteValue386_Op386SUBL(v) case Op386SUBLcarry: return rewriteValue386_Op386SUBLcarry(v) case Op386SUBLconst: return rewriteValue386_Op386SUBLconst(v) case Op386SUBLload: return rewriteValue386_Op386SUBLload(v) case Op386SUBLmodify: return rewriteValue386_Op386SUBLmodify(v) case Op386SUBSD: return rewriteValue386_Op386SUBSD(v) case Op386SUBSDload: return rewriteValue386_Op386SUBSDload(v) case Op386SUBSS: return rewriteValue386_Op386SUBSS(v) case Op386SUBSSload: return rewriteValue386_Op386SUBSSload(v) case Op386XORL: return rewriteValue386_Op386XORL(v) case Op386XORLconst: return rewriteValue386_Op386XORLconst(v) case Op386XORLconstmodify: return rewriteValue386_Op386XORLconstmodify(v) case Op386XORLload: return rewriteValue386_Op386XORLload(v) case Op386XORLmodify: return rewriteValue386_Op386XORLmodify(v) case OpAdd16: v.Op = Op386ADDL return true case OpAdd32: v.Op = Op386ADDL return true case OpAdd32F: v.Op = Op386ADDSS return true case OpAdd32carry: v.Op = Op386ADDLcarry return true case OpAdd32withcarry: v.Op = Op386ADCL return true case OpAdd64F: v.Op = Op386ADDSD return true case OpAdd8: v.Op = Op386ADDL return true case OpAddPtr: v.Op = Op386ADDL return true case OpAddr: return rewriteValue386_OpAddr(v) case OpAnd16: v.Op = Op386ANDL return true case OpAnd32: v.Op = Op386ANDL return true case OpAnd8: v.Op = Op386ANDL return true case OpAndB: v.Op = Op386ANDL return true case OpAvg32u: v.Op = Op386AVGLU return true case OpBswap32: v.Op = Op386BSWAPL return true case OpClosureCall: v.Op = Op386CALLclosure return true case OpCom16: v.Op = Op386NOTL return true case OpCom32: v.Op = Op386NOTL return true case OpCom8: v.Op = Op386NOTL return true case OpConst16: return rewriteValue386_OpConst16(v) case OpConst32: v.Op = Op386MOVLconst return true case OpConst32F: v.Op = Op386MOVSSconst return true case OpConst64F: v.Op = Op386MOVSDconst return true case OpConst8: return rewriteValue386_OpConst8(v) case OpConstBool: return rewriteValue386_OpConstBool(v) case OpConstNil: return rewriteValue386_OpConstNil(v) case OpCtz16: return rewriteValue386_OpCtz16(v) case OpCtz16NonZero: v.Op = Op386BSFL return true case OpCvt32Fto32: v.Op = Op386CVTTSS2SL return true case OpCvt32Fto64F: v.Op = Op386CVTSS2SD return true case OpCvt32to32F: v.Op = Op386CVTSL2SS return true case OpCvt32to64F: v.Op = Op386CVTSL2SD return true case OpCvt64Fto32: v.Op = Op386CVTTSD2SL return true case OpCvt64Fto32F: v.Op = Op386CVTSD2SS return true case OpCvtBoolToUint8: v.Op = OpCopy return true case OpDiv16: v.Op = Op386DIVW return true case OpDiv16u: v.Op = Op386DIVWU return true case OpDiv32: v.Op = Op386DIVL return true case OpDiv32F: v.Op = Op386DIVSS return true case OpDiv32u: v.Op = Op386DIVLU return true case OpDiv64F: v.Op = Op386DIVSD return true case OpDiv8: return rewriteValue386_OpDiv8(v) case OpDiv8u: return rewriteValue386_OpDiv8u(v) case OpEq16: return rewriteValue386_OpEq16(v) case OpEq32: return rewriteValue386_OpEq32(v) case OpEq32F: return rewriteValue386_OpEq32F(v) case OpEq64F: return rewriteValue386_OpEq64F(v) case OpEq8: return rewriteValue386_OpEq8(v) case OpEqB: return rewriteValue386_OpEqB(v) case OpEqPtr: return rewriteValue386_OpEqPtr(v) case OpGetCallerPC: v.Op = Op386LoweredGetCallerPC return true case OpGetCallerSP: v.Op = Op386LoweredGetCallerSP return true case OpGetClosurePtr: v.Op = Op386LoweredGetClosurePtr return true case OpGetG: v.Op = Op386LoweredGetG return true case OpHmul32: v.Op = Op386HMULL return true case OpHmul32u: v.Op = Op386HMULLU return true case OpInterCall: v.Op = Op386CALLinter return true case OpIsInBounds: return rewriteValue386_OpIsInBounds(v) case OpIsNonNil: return rewriteValue386_OpIsNonNil(v) case OpIsSliceInBounds: return rewriteValue386_OpIsSliceInBounds(v) case OpLeq16: return rewriteValue386_OpLeq16(v) case OpLeq16U: return rewriteValue386_OpLeq16U(v) case OpLeq32: return rewriteValue386_OpLeq32(v) case OpLeq32F: return rewriteValue386_OpLeq32F(v) case OpLeq32U: return rewriteValue386_OpLeq32U(v) case OpLeq64F: return rewriteValue386_OpLeq64F(v) case OpLeq8: return rewriteValue386_OpLeq8(v) case OpLeq8U: return rewriteValue386_OpLeq8U(v) case OpLess16: return rewriteValue386_OpLess16(v) case OpLess16U: return rewriteValue386_OpLess16U(v) case OpLess32: return rewriteValue386_OpLess32(v) case OpLess32F: return rewriteValue386_OpLess32F(v) case OpLess32U: return rewriteValue386_OpLess32U(v) case OpLess64F: return rewriteValue386_OpLess64F(v) case OpLess8: return rewriteValue386_OpLess8(v) case OpLess8U: return rewriteValue386_OpLess8U(v) case OpLoad: return rewriteValue386_OpLoad(v) case OpLocalAddr: return rewriteValue386_OpLocalAddr(v) case OpLsh16x16: return rewriteValue386_OpLsh16x16(v) case OpLsh16x32: return rewriteValue386_OpLsh16x32(v) case OpLsh16x64: return rewriteValue386_OpLsh16x64(v) case OpLsh16x8: return rewriteValue386_OpLsh16x8(v) case OpLsh32x16: return rewriteValue386_OpLsh32x16(v) case OpLsh32x32: return rewriteValue386_OpLsh32x32(v) case OpLsh32x64: return rewriteValue386_OpLsh32x64(v) case OpLsh32x8: return rewriteValue386_OpLsh32x8(v) case OpLsh8x16: return rewriteValue386_OpLsh8x16(v) case OpLsh8x32: return rewriteValue386_OpLsh8x32(v) case OpLsh8x64: return rewriteValue386_OpLsh8x64(v) case OpLsh8x8: return rewriteValue386_OpLsh8x8(v) case OpMod16: v.Op = Op386MODW return true case OpMod16u: v.Op = Op386MODWU return true case OpMod32: v.Op = Op386MODL return true case OpMod32u: v.Op = Op386MODLU return true case OpMod8: return rewriteValue386_OpMod8(v) case OpMod8u: return rewriteValue386_OpMod8u(v) case OpMove: return rewriteValue386_OpMove(v) case OpMul16: v.Op = Op386MULL return true case OpMul32: v.Op = Op386MULL return true case OpMul32F: v.Op = Op386MULSS return true case OpMul32uhilo: v.Op = Op386MULLQU return true case OpMul64F: v.Op = Op386MULSD return true case OpMul8: v.Op = Op386MULL return true case OpNeg16: v.Op = Op386NEGL return true case OpNeg32: v.Op = Op386NEGL return true case OpNeg32F: return rewriteValue386_OpNeg32F(v) case OpNeg64F: return rewriteValue386_OpNeg64F(v) case OpNeg8: v.Op = Op386NEGL return true case OpNeq16: return rewriteValue386_OpNeq16(v) case OpNeq32: return rewriteValue386_OpNeq32(v) case OpNeq32F: return rewriteValue386_OpNeq32F(v) case OpNeq64F: return rewriteValue386_OpNeq64F(v) case OpNeq8: return rewriteValue386_OpNeq8(v) case OpNeqB: return rewriteValue386_OpNeqB(v) case OpNeqPtr: return rewriteValue386_OpNeqPtr(v) case OpNilCheck: v.Op = Op386LoweredNilCheck return true case OpNot: return rewriteValue386_OpNot(v) case OpOffPtr: return rewriteValue386_OpOffPtr(v) case OpOr16: v.Op = Op386ORL return true case OpOr32: v.Op = Op386ORL return true case OpOr8: v.Op = Op386ORL return true case OpOrB: v.Op = Op386ORL return true case OpPanicBounds: return rewriteValue386_OpPanicBounds(v) case OpPanicExtend: return rewriteValue386_OpPanicExtend(v) case OpRotateLeft16: v.Op = Op386ROLW return true case OpRotateLeft32: v.Op = Op386ROLL return true case OpRotateLeft8: v.Op = Op386ROLB return true case OpRound32F: v.Op = OpCopy return true case OpRound64F: v.Op = OpCopy return true case OpRsh16Ux16: return rewriteValue386_OpRsh16Ux16(v) case OpRsh16Ux32: return rewriteValue386_OpRsh16Ux32(v) case OpRsh16Ux64: return rewriteValue386_OpRsh16Ux64(v) case OpRsh16Ux8: return rewriteValue386_OpRsh16Ux8(v) case OpRsh16x16: return rewriteValue386_OpRsh16x16(v) case OpRsh16x32: return rewriteValue386_OpRsh16x32(v) case OpRsh16x64: return rewriteValue386_OpRsh16x64(v) case OpRsh16x8: return rewriteValue386_OpRsh16x8(v) case OpRsh32Ux16: return rewriteValue386_OpRsh32Ux16(v) case OpRsh32Ux32: return rewriteValue386_OpRsh32Ux32(v) case OpRsh32Ux64: return rewriteValue386_OpRsh32Ux64(v) case OpRsh32Ux8: return rewriteValue386_OpRsh32Ux8(v) case OpRsh32x16: return rewriteValue386_OpRsh32x16(v) case OpRsh32x32: return rewriteValue386_OpRsh32x32(v) case OpRsh32x64: return rewriteValue386_OpRsh32x64(v) case OpRsh32x8: return rewriteValue386_OpRsh32x8(v) case OpRsh8Ux16: return rewriteValue386_OpRsh8Ux16(v) case OpRsh8Ux32: return rewriteValue386_OpRsh8Ux32(v) case OpRsh8Ux64: return rewriteValue386_OpRsh8Ux64(v) case OpRsh8Ux8: return rewriteValue386_OpRsh8Ux8(v) case OpRsh8x16: return rewriteValue386_OpRsh8x16(v) case OpRsh8x32: return rewriteValue386_OpRsh8x32(v) case OpRsh8x64: return rewriteValue386_OpRsh8x64(v) case OpRsh8x8: return rewriteValue386_OpRsh8x8(v) case OpSelect0: return rewriteValue386_OpSelect0(v) case OpSelect1: return rewriteValue386_OpSelect1(v) case OpSignExt16to32: v.Op = Op386MOVWLSX return true case OpSignExt8to16: v.Op = Op386MOVBLSX return true case OpSignExt8to32: v.Op = Op386MOVBLSX return true case OpSignmask: return rewriteValue386_OpSignmask(v) case OpSlicemask: return rewriteValue386_OpSlicemask(v) case OpSqrt: v.Op = Op386SQRTSD return true case OpSqrt32: v.Op = Op386SQRTSS return true case OpStaticCall: v.Op = Op386CALLstatic return true case OpStore: return rewriteValue386_OpStore(v) case OpSub16: v.Op = Op386SUBL return true case OpSub32: v.Op = Op386SUBL return true case OpSub32F: v.Op = Op386SUBSS return true case OpSub32carry: v.Op = Op386SUBLcarry return true case OpSub32withcarry: v.Op = Op386SBBL return true case OpSub64F: v.Op = Op386SUBSD return true case OpSub8: v.Op = Op386SUBL return true case OpSubPtr: v.Op = Op386SUBL return true case OpTailCall: v.Op = Op386CALLtail return true case OpTrunc16to8: v.Op = OpCopy return true case OpTrunc32to16: v.Op = OpCopy return true case OpTrunc32to8: v.Op = OpCopy return true case OpWB: v.Op = Op386LoweredWB return true case OpXor16: v.Op = Op386XORL return true case OpXor32: v.Op = Op386XORL return true case OpXor8: v.Op = Op386XORL return true case OpZero: return rewriteValue386_OpZero(v) case OpZeroExt16to32: v.Op = Op386MOVWLZX return true case OpZeroExt8to16: v.Op = Op386MOVBLZX return true case OpZeroExt8to32: v.Op = Op386MOVBLZX return true case OpZeromask: return rewriteValue386_OpZeromask(v) } return false } func rewriteValue386_Op386ADCL(v *Value) bool { v_2 := v.Args[2] v_1 := v.Args[1] v_0 := v.Args[0] // match: (ADCL x (MOVLconst [c]) f) // result: (ADCLconst [c] x f) for { for _i0 := 0; _i0 <= 1; _i0, v_0, v_1 = _i0+1, v_1, v_0 { x := v_0 if v_1.Op != Op386MOVLconst { continue } c := auxIntToInt32(v_1.AuxInt) f := v_2 v.reset(Op386ADCLconst) v.AuxInt = int32ToAuxInt(c) v.AddArg2(x, f) return true } break } return false } func rewriteValue386_Op386ADDL(v *Value) bool { v_1 := v.Args[1] v_0 := v.Args[0] // match: (ADDL x (MOVLconst [c])) // result: (ADDLconst [c] x) for { for _i0 := 0; _i0 <= 1; _i0, v_0, v_1 = _i0+1, v_1, v_0 { x := v_0 if v_1.Op != Op386MOVLconst { continue } c := auxIntToInt32(v_1.AuxInt) v.reset(Op386ADDLconst) v.AuxInt = int32ToAuxInt(c) v.AddArg(x) return true } break } // match: (ADDL x (SHLLconst [3] y)) // result: (LEAL8 x y) for { for _i0 := 0; _i0 <= 1; _i0, v_0, v_1 = _i0+1, v_1, v_0 { x := v_0 if v_1.Op != Op386SHLLconst || auxIntToInt32(v_1.AuxInt) != 3 { continue } y := v_1.Args[0] v.reset(Op386LEAL8) v.AddArg2(x, y) return true } break } // match: (ADDL x (SHLLconst [2] y)) // result: (LEAL4 x y) for { for _i0 := 0; _i0 <= 1; _i0, v_0, v_1 = _i0+1, v_1, v_0 { x := v_0 if v_1.Op != Op386SHLLconst || auxIntToInt32(v_1.AuxInt) != 2 { continue } y := v_1.Args[0] v.reset(Op386LEAL4) v.AddArg2(x, y) return true } break } // match: (ADDL x (SHLLconst [1] y)) // result: (LEAL2 x y) for { for _i0 := 0; _i0 <= 1; _i0, v_0, v_1 = _i0+1, v_1, v_0 { x := v_0 if v_1.Op != Op386SHLLconst || auxIntToInt32(v_1.AuxInt) != 1 { continue } y := v_1.Args[0] v.reset(Op386LEAL2) v.AddArg2(x, y) return true } break } // match: (ADDL x (ADDL y y)) // result: (LEAL2 x y) for { for _i0 := 0; _i0 <= 1; _i0, v_0, v_1 = _i0+1, v_1, v_0 { x := v_0 if v_1.Op != Op386ADDL { continue } y := v_1.Args[1] if y != v_1.Args[0] { continue } v.reset(Op386LEAL2) v.AddArg2(x, y) return true } break } // match: (ADDL x (ADDL x y)) // result: (LEAL2 y x) for { for _i0 := 0; _i0 <= 1; _i0, v_0, v_1 = _i0+1, v_1, v_0 { x := v_0 if v_1.Op != Op386ADDL { continue } _ = v_1.Args[1] v_1_0 := v_1.Args[0] v_1_1 := v_1.Args[1] for _i1 := 0; _i1 <= 1; _i1, v_1_0, v_1_1 = _i1+1, v_1_1, v_1_0 { if x != v_1_0 { continue } y := v_1_1 v.reset(Op386LEAL2) v.AddArg2(y, x) return true } } break } // match: (ADDL (ADDLconst [c] x) y) // result: (LEAL1 [c] x y) for { for _i0 := 0; _i0 <= 1; _i0, v_0, v_1 = _i0+1, v_1, v_0 { if v_0.Op != Op386ADDLconst { continue } c := auxIntToInt32(v_0.AuxInt) x := v_0.Args[0] y := v_1 v.reset(Op386LEAL1) v.AuxInt = int32ToAuxInt(c) v.AddArg2(x, y) return true } break } // match: (ADDL x (LEAL [c] {s} y)) // cond: x.Op != OpSB && y.Op != OpSB // result: (LEAL1 [c] {s} x y) for { for _i0 := 0; _i0 <= 1; _i0, v_0, v_1 = _i0+1, v_1, v_0 { x := v_0 if v_1.Op != Op386LEAL { continue } c := auxIntToInt32(v_1.AuxInt) s := auxToSym(v_1.Aux) y := v_1.Args[0] if !(x.Op != OpSB && y.Op != OpSB) { continue } v.reset(Op386LEAL1) v.AuxInt = int32ToAuxInt(c) v.Aux = symToAux(s) v.AddArg2(x, y) return true } break } // match: (ADDL x l:(MOVLload [off] {sym} ptr mem)) // cond: canMergeLoadClobber(v, l, x) && clobber(l) // result: (ADDLload x [off] {sym} ptr mem) for { for _i0 := 0; _i0 <= 1; _i0, v_0, v_1 = _i0+1, v_1, v_0 { x := v_0 l := v_1 if l.Op != Op386MOVLload { continue } off := auxIntToInt32(l.AuxInt) sym := auxToSym(l.Aux) mem := l.Args[1] ptr := l.Args[0] if !(canMergeLoadClobber(v, l, x) && clobber(l)) { continue } v.reset(Op386ADDLload) v.AuxInt = int32ToAuxInt(off) v.Aux = symToAux(sym) v.AddArg3(x, ptr, mem) return true } break } // match: (ADDL x (NEGL y)) // result: (SUBL x y) for { for _i0 := 0; _i0 <= 1; _i0, v_0, v_1 = _i0+1, v_1, v_0 { x := v_0 if v_1.Op != Op386NEGL { continue } y := v_1.Args[0] v.reset(Op386SUBL) v.AddArg2(x, y) return true } break } return false } func rewriteValue386_Op386ADDLcarry(v *Value) bool { v_1 := v.Args[1] v_0 := v.Args[0] // match: (ADDLcarry x (MOVLconst [c])) // result: (ADDLconstcarry [c] x) for { for _i0 := 0; _i0 <= 1; _i0, v_0, v_1 = _i0+1, v_1, v_0 { x := v_0 if v_1.Op != Op386MOVLconst { continue } c := auxIntToInt32(v_1.AuxInt) v.reset(Op386ADDLconstcarry) v.AuxInt = int32ToAuxInt(c) v.AddArg(x) return true } break } return false } func rewriteValue386_Op386ADDLconst(v *Value) bool { v_0 := v.Args[0] // match: (ADDLconst [c] (ADDL x y)) // result: (LEAL1 [c] x y) for { c := auxIntToInt32(v.AuxInt) if v_0.Op != Op386ADDL { break } y := v_0.Args[1] x := v_0.Args[0] v.reset(Op386LEAL1) v.AuxInt = int32ToAuxInt(c) v.AddArg2(x, y) return true } // match: (ADDLconst [c] (LEAL [d] {s} x)) // cond: is32Bit(int64(c)+int64(d)) // result: (LEAL [c+d] {s} x) for { c := auxIntToInt32(v.AuxInt) if v_0.Op != Op386LEAL { break } d := auxIntToInt32(v_0.AuxInt) s := auxToSym(v_0.Aux) x := v_0.Args[0] if !(is32Bit(int64(c) + int64(d))) { break } v.reset(Op386LEAL) v.AuxInt = int32ToAuxInt(c + d) v.Aux = symToAux(s) v.AddArg(x) return true } // match: (ADDLconst [c] x:(SP)) // result: (LEAL [c] x) for { c := auxIntToInt32(v.AuxInt) x := v_0 if x.Op != OpSP { break } v.reset(Op386LEAL) v.AuxInt = int32ToAuxInt(c) v.AddArg(x) return true } // match: (ADDLconst [c] (LEAL1 [d] {s} x y)) // cond: is32Bit(int64(c)+int64(d)) // result: (LEAL1 [c+d] {s} x y) for { c := auxIntToInt32(v.AuxInt) if v_0.Op != Op386LEAL1 { break } d := auxIntToInt32(v_0.AuxInt) s := auxToSym(v_0.Aux) y := v_0.Args[1] x := v_0.Args[0] if !(is32Bit(int64(c) + int64(d))) { break } v.reset(Op386LEAL1) v.AuxInt = int32ToAuxInt(c + d) v.Aux = symToAux(s) v.AddArg2(x, y) return true } // match: (ADDLconst [c] (LEAL2 [d] {s} x y)) // cond: is32Bit(int64(c)+int64(d)) // result: (LEAL2 [c+d] {s} x y) for { c := auxIntToInt32(v.AuxInt) if v_0.Op != Op386LEAL2 { break } d := auxIntToInt32(v_0.AuxInt) s := auxToSym(v_0.Aux) y := v_0.Args[1] x := v_0.Args[0] if !(is32Bit(int64(c) + int64(d))) { break } v.reset(Op386LEAL2) v.AuxInt = int32ToAuxInt(c + d) v.Aux = symToAux(s) v.AddArg2(x, y) return true } // match: (ADDLconst [c] (LEAL4 [d] {s} x y)) // cond: is32Bit(int64(c)+int64(d)) // result: (LEAL4 [c+d] {s} x y) for { c := auxIntToInt32(v.AuxInt) if v_0.Op != Op386LEAL4 { break } d := auxIntToInt32(v_0.AuxInt) s := auxToSym(v_0.Aux) y := v_0.Args[1] x := v_0.Args[0] if !(is32Bit(int64(c) + int64(d))) { break } v.reset(Op386LEAL4) v.AuxInt = int32ToAuxInt(c + d) v.Aux = symToAux(s) v.AddArg2(x, y) return true } // match: (ADDLconst [c] (LEAL8 [d] {s} x y)) // cond: is32Bit(int64(c)+int64(d)) // result: (LEAL8 [c+d] {s} x y) for { c := auxIntToInt32(v.AuxInt) if v_0.Op != Op386LEAL8 { break } d := auxIntToInt32(v_0.AuxInt) s := auxToSym(v_0.Aux) y := v_0.Args[1] x := v_0.Args[0] if !(is32Bit(int64(c) + int64(d))) { break } v.reset(Op386LEAL8) v.AuxInt = int32ToAuxInt(c + d) v.Aux = symToAux(s) v.AddArg2(x, y) return true } // match: (ADDLconst [c] x) // cond: c==0 // result: x for { c := auxIntToInt32(v.AuxInt) x := v_0 if !(c == 0) { break } v.copyOf(x) return true } // match: (ADDLconst [c] (MOVLconst [d])) // result: (MOVLconst [c+d]) for { c := auxIntToInt32(v.AuxInt) if v_0.Op != Op386MOVLconst { break } d := auxIntToInt32(v_0.AuxInt) v.reset(Op386MOVLconst) v.AuxInt = int32ToAuxInt(c + d) return true } // match: (ADDLconst [c] (ADDLconst [d] x)) // result: (ADDLconst [c+d] x) for { c := auxIntToInt32(v.AuxInt) if v_0.Op != Op386ADDLconst { break } d := auxIntToInt32(v_0.AuxInt) x := v_0.Args[0] v.reset(Op386ADDLconst) v.AuxInt = int32ToAuxInt(c + d) v.AddArg(x) return true } return false } func rewriteValue386_Op386ADDLconstmodify(v *Value) bool { v_1 := v.Args[1] v_0 := v.Args[0] b := v.Block config := b.Func.Config // match: (ADDLconstmodify [valoff1] {sym} (ADDLconst [off2] base) mem) // cond: valoff1.canAdd32(off2) // result: (ADDLconstmodify [valoff1.addOffset32(off2)] {sym} base mem) for { valoff1 := auxIntToValAndOff(v.AuxInt) sym := auxToSym(v.Aux) if v_0.Op != Op386ADDLconst { break } off2 := auxIntToInt32(v_0.AuxInt) base := v_0.Args[0] mem := v_1 if !(valoff1.canAdd32(off2)) { break } v.reset(Op386ADDLconstmodify) v.AuxInt = valAndOffToAuxInt(valoff1.addOffset32(off2)) v.Aux = symToAux(sym) v.AddArg2(base, mem) return true } // match: (ADDLconstmodify [valoff1] {sym1} (LEAL [off2] {sym2} base) mem) // cond: valoff1.canAdd32(off2) && canMergeSym(sym1, sym2) && (base.Op != OpSB || !config.ctxt.Flag_shared) // result: (ADDLconstmodify [valoff1.addOffset32(off2)] {mergeSym(sym1,sym2)} base mem) for { valoff1 := auxIntToValAndOff(v.AuxInt) sym1 := auxToSym(v.Aux) if v_0.Op != Op386LEAL { break } off2 := auxIntToInt32(v_0.AuxInt) sym2 := auxToSym(v_0.Aux) base := v_0.Args[0] mem := v_1 if !(valoff1.canAdd32(off2) && canMergeSym(sym1, sym2) && (base.Op != OpSB || !config.ctxt.Flag_shared)) { break } v.reset(Op386ADDLconstmodify) v.AuxInt = valAndOffToAuxInt(valoff1.addOffset32(off2)) v.Aux = symToAux(mergeSym(sym1, sym2)) v.AddArg2(base, mem) return true } return false } func rewriteValue386_Op386ADDLload(v *Value) bool { v_2 := v.Args[2] v_1 := v.Args[1] v_0 := v.Args[0] b := v.Block config := b.Func.Config // match: (ADDLload [off1] {sym} val (ADDLconst [off2] base) mem) // cond: is32Bit(int64(off1)+int64(off2)) // result: (ADDLload [off1+off2] {sym} val base mem) for { off1 := auxIntToInt32(v.AuxInt) sym := auxToSym(v.Aux) val := v_0 if v_1.Op != Op386ADDLconst { break } off2 := auxIntToInt32(v_1.AuxInt) base := v_1.Args[0] mem := v_2 if !(is32Bit(int64(off1) + int64(off2))) { break } v.reset(Op386ADDLload) v.AuxInt = int32ToAuxInt(off1 + off2) v.Aux = symToAux(sym) v.AddArg3(val, base, mem) return true } // match: (ADDLload [off1] {sym1} val (LEAL [off2] {sym2} base) mem) // cond: is32Bit(int64(off1)+int64(off2)) && canMergeSym(sym1, sym2) && (base.Op != OpSB || !config.ctxt.Flag_shared) // result: (ADDLload [off1+off2] {mergeSym(sym1,sym2)} val base mem) for { off1 := auxIntToInt32(v.AuxInt) sym1 := auxToSym(v.Aux) val := v_0 if v_1.Op != Op386LEAL { break } off2 := auxIntToInt32(v_1.AuxInt) sym2 := auxToSym(v_1.Aux) base := v_1.Args[0] mem := v_2 if !(is32Bit(int64(off1)+int64(off2)) && canMergeSym(sym1, sym2) && (base.Op != OpSB || !config.ctxt.Flag_shared)) { break } v.reset(Op386ADDLload) v.AuxInt = int32ToAuxInt(off1 + off2) v.Aux = symToAux(mergeSym(sym1, sym2)) v.AddArg3(val, base, mem) return true } return false } func rewriteValue386_Op386ADDLmodify(v *Value) bool { v_2 := v.Args[2] v_1 := v.Args[1] v_0 := v.Args[0] b := v.Block config := b.Func.Config // match: (ADDLmodify [off1] {sym} (ADDLconst [off2] base) val mem) // cond: is32Bit(int64(off1)+int64(off2)) // result: (ADDLmodify [off1+off2] {sym} base val mem) for { off1 := auxIntToInt32(v.AuxInt) sym := auxToSym(v.Aux) if v_0.Op != Op386ADDLconst { break } off2 := auxIntToInt32(v_0.AuxInt) base := v_0.Args[0] val := v_1 mem := v_2 if !(is32Bit(int64(off1) + int64(off2))) { break } v.reset(Op386ADDLmodify) v.AuxInt = int32ToAuxInt(off1 + off2) v.Aux = symToAux(sym) v.AddArg3(base, val, mem) return true } // match: (ADDLmodify [off1] {sym1} (LEAL [off2] {sym2} base) val mem) // cond: is32Bit(int64(off1)+int64(off2)) && canMergeSym(sym1, sym2) && (base.Op != OpSB || !config.ctxt.Flag_shared) // result: (ADDLmodify [off1+off2] {mergeSym(sym1,sym2)} base val mem) for { off1 := auxIntToInt32(v.AuxInt) sym1 := auxToSym(v.Aux) if v_0.Op != Op386LEAL { break } off2 := auxIntToInt32(v_0.AuxInt) sym2 := auxToSym(v_0.Aux) base := v_0.Args[0] val := v_1 mem := v_2 if !(is32Bit(int64(off1)+int64(off2)) && canMergeSym(sym1, sym2) && (base.Op != OpSB || !config.ctxt.Flag_shared)) { break } v.reset(Op386ADDLmodify) v.AuxInt = int32ToAuxInt(off1 + off2) v.Aux = symToAux(mergeSym(sym1, sym2)) v.AddArg3(base, val, mem) return true } return false } func rewriteValue386_Op386ADDSD(v *Value) bool { v_1 := v.Args[1] v_0 := v.Args[0] // match: (ADDSD x l:(MOVSDload [off] {sym} ptr mem)) // cond: canMergeLoadClobber(v, l, x) && clobber(l) // result: (ADDSDload x [off] {sym} ptr mem) for { for _i0 := 0; _i0 <= 1; _i0, v_0, v_1 = _i0+1, v_1, v_0 { x := v_0 l := v_1 if l.Op != Op386MOVSDload { continue } off := auxIntToInt32(l.AuxInt) sym := auxToSym(l.Aux) mem := l.Args[1] ptr := l.Args[0] if !(canMergeLoadClobber(v, l, x) && clobber(l)) { continue } v.reset(Op386ADDSDload) v.AuxInt = int32ToAuxInt(off) v.Aux = symToAux(sym) v.AddArg3(x, ptr, mem) return true } break } return false } func rewriteValue386_Op386ADDSDload(v *Value) bool { v_2 := v.Args[2] v_1 := v.Args[1] v_0 := v.Args[0] b := v.Block config := b.Func.Config // match: (ADDSDload [off1] {sym} val (ADDLconst [off2] base) mem) // cond: is32Bit(int64(off1)+int64(off2)) // result: (ADDSDload [off1+off2] {sym} val base mem) for { off1 := auxIntToInt32(v.AuxInt) sym := auxToSym(v.Aux) val := v_0 if v_1.Op != Op386ADDLconst { break } off2 := auxIntToInt32(v_1.AuxInt) base := v_1.Args[0] mem := v_2 if !(is32Bit(int64(off1) + int64(off2))) { break } v.reset(Op386ADDSDload) v.AuxInt = int32ToAuxInt(off1 + off2) v.Aux = symToAux(sym) v.AddArg3(val, base, mem) return true } // match: (ADDSDload [off1] {sym1} val (LEAL [off2] {sym2} base) mem) // cond: is32Bit(int64(off1)+int64(off2)) && canMergeSym(sym1, sym2) && (base.Op != OpSB || !config.ctxt.Flag_shared) // result: (ADDSDload [off1+off2] {mergeSym(sym1,sym2)} val base mem) for { off1 := auxIntToInt32(v.AuxInt) sym1 := auxToSym(v.Aux) val := v_0 if v_1.Op != Op386LEAL { break } off2 := auxIntToInt32(v_1.AuxInt) sym2 := auxToSym(v_1.Aux) base := v_1.Args[0] mem := v_2 if !(is32Bit(int64(off1)+int64(off2)) && canMergeSym(sym1, sym2) && (base.Op != OpSB || !config.ctxt.Flag_shared)) { break } v.reset(Op386ADDSDload) v.AuxInt = int32ToAuxInt(off1 + off2) v.Aux = symToAux(mergeSym(sym1, sym2)) v.AddArg3(val, base, mem) return true } return false } func rewriteValue386_Op386ADDSS(v *Value) bool { v_1 := v.Args[1] v_0 := v.Args[0] // match: (ADDSS x l:(MOVSSload [off] {sym} ptr mem)) // cond: canMergeLoadClobber(v, l, x) && clobber(l) // result: (ADDSSload x [off] {sym} ptr mem) for { for _i0 := 0; _i0 <= 1; _i0, v_0, v_1 = _i0+1, v_1, v_0 { x := v_0 l := v_1 if l.Op != Op386MOVSSload { continue } off := auxIntToInt32(l.AuxInt) sym := auxToSym(l.Aux) mem := l.Args[1] ptr := l.Args[0] if !(canMergeLoadClobber(v, l, x) && clobber(l)) { continue } v.reset(Op386ADDSSload) v.AuxInt = int32ToAuxInt(off) v.Aux = symToAux(sym) v.AddArg3(x, ptr, mem) return true } break } return false } func rewriteValue386_Op386ADDSSload(v *Value) bool { v_2 := v.Args[2] v_1 := v.Args[1] v_0 := v.Args[0] b := v.Block config := b.Func.Config // match: (ADDSSload [off1] {sym} val (ADDLconst [off2] base) mem) // cond: is32Bit(int64(off1)+int64(off2)) // result: (ADDSSload [off1+off2] {sym} val base mem) for { off1 := auxIntToInt32(v.AuxInt) sym := auxToSym(v.Aux) val := v_0 if v_1.Op != Op386ADDLconst { break } off2 := auxIntToInt32(v_1.AuxInt) base := v_1.Args[0] mem := v_2 if !(is32Bit(int64(off1) + int64(off2))) { break } v.reset(Op386ADDSSload) v.AuxInt = int32ToAuxInt(off1 + off2) v.Aux = symToAux(sym) v.AddArg3(val, base, mem) return true } // match: (ADDSSload [off1] {sym1} val (LEAL [off2] {sym2} base) mem) // cond: is32Bit(int64(off1)+int64(off2)) && canMergeSym(sym1, sym2) && (base.Op != OpSB || !config.ctxt.Flag_shared) // result: (ADDSSload [off1+off2] {mergeSym(sym1,sym2)} val base mem) for { off1 := auxIntToInt32(v.AuxInt) sym1 := auxToSym(v.Aux) val := v_0 if v_1.Op != Op386LEAL { break } off2 := auxIntToInt32(v_1.AuxInt) sym2 := auxToSym(v_1.Aux) base := v_1.Args[0] mem := v_2 if !(is32Bit(int64(off1)+int64(off2)) && canMergeSym(sym1, sym2) && (base.Op != OpSB || !config.ctxt.Flag_shared)) { break } v.reset(Op386ADDSSload) v.AuxInt = int32ToAuxInt(off1 + off2) v.Aux = symToAux(mergeSym(sym1, sym2)) v.AddArg3(val, base, mem) return true } return false } func rewriteValue386_Op386ANDL(v *Value) bool { v_1 := v.Args[1] v_0 := v.Args[0] // match: (ANDL x (MOVLconst [c])) // result: (ANDLconst [c] x) for { for _i0 := 0; _i0 <= 1; _i0, v_0, v_1 = _i0+1, v_1, v_0 { x := v_0 if v_1.Op != Op386MOVLconst { continue } c := auxIntToInt32(v_1.AuxInt) v.reset(Op386ANDLconst) v.AuxInt = int32ToAuxInt(c) v.AddArg(x) return true } break } // match: (ANDL x l:(MOVLload [off] {sym} ptr mem)) // cond: canMergeLoadClobber(v, l, x) && clobber(l) // result: (ANDLload x [off] {sym} ptr mem) for { for _i0 := 0; _i0 <= 1; _i0, v_0, v_1 = _i0+1, v_1, v_0 { x := v_0 l := v_1 if l.Op != Op386MOVLload { continue } off := auxIntToInt32(l.AuxInt) sym := auxToSym(l.Aux) mem := l.Args[1] ptr := l.Args[0] if !(canMergeLoadClobber(v, l, x) && clobber(l)) { continue } v.reset(Op386ANDLload) v.AuxInt = int32ToAuxInt(off) v.Aux = symToAux(sym) v.AddArg3(x, ptr, mem) return true } break } // match: (ANDL x x) // result: x for { x := v_0 if x != v_1 { break } v.copyOf(x) return true } return false } func rewriteValue386_Op386ANDLconst(v *Value) bool { v_0 := v.Args[0] // match: (ANDLconst [c] (ANDLconst [d] x)) // result: (ANDLconst [c & d] x) for { c := auxIntToInt32(v.AuxInt) if v_0.Op != Op386ANDLconst { break } d := auxIntToInt32(v_0.AuxInt) x := v_0.Args[0] v.reset(Op386ANDLconst) v.AuxInt = int32ToAuxInt(c & d) v.AddArg(x) return true } // match: (ANDLconst [c] _) // cond: c==0 // result: (MOVLconst [0]) for { c := auxIntToInt32(v.AuxInt) if !(c == 0) { break } v.reset(Op386MOVLconst) v.AuxInt = int32ToAuxInt(0) return true } // match: (ANDLconst [c] x) // cond: c==-1 // result: x for { c := auxIntToInt32(v.AuxInt) x := v_0 if !(c == -1) { break } v.copyOf(x) return true } // match: (ANDLconst [c] (MOVLconst [d])) // result: (MOVLconst [c&d]) for { c := auxIntToInt32(v.AuxInt) if v_0.Op != Op386MOVLconst { break } d := auxIntToInt32(v_0.AuxInt) v.reset(Op386MOVLconst) v.AuxInt = int32ToAuxInt(c & d) return true } return false } func rewriteValue386_Op386ANDLconstmodify(v *Value) bool { v_1 := v.Args[1] v_0 := v.Args[0] b := v.Block config := b.Func.Config // match: (ANDLconstmodify [valoff1] {sym} (ADDLconst [off2] base) mem) // cond: valoff1.canAdd32(off2) // result: (ANDLconstmodify [valoff1.addOffset32(off2)] {sym} base mem) for { valoff1 := auxIntToValAndOff(v.AuxInt) sym := auxToSym(v.Aux) if v_0.Op != Op386ADDLconst { break } off2 := auxIntToInt32(v_0.AuxInt) base := v_0.Args[0] mem := v_1 if !(valoff1.canAdd32(off2)) { break } v.reset(Op386ANDLconstmodify) v.AuxInt = valAndOffToAuxInt(valoff1.addOffset32(off2)) v.Aux = symToAux(sym) v.AddArg2(base, mem) return true } // match: (ANDLconstmodify [valoff1] {sym1} (LEAL [off2] {sym2} base) mem) // cond: valoff1.canAdd32(off2) && canMergeSym(sym1, sym2) && (base.Op != OpSB || !config.ctxt.Flag_shared) // result: (ANDLconstmodify [valoff1.addOffset32(off2)] {mergeSym(sym1,sym2)} base mem) for { valoff1 := auxIntToValAndOff(v.AuxInt) sym1 := auxToSym(v.Aux) if v_0.Op != Op386LEAL { break } off2 := auxIntToInt32(v_0.AuxInt) sym2 := auxToSym(v_0.Aux) base := v_0.Args[0] mem := v_1 if !(valoff1.canAdd32(off2) && canMergeSym(sym1, sym2) && (base.Op != OpSB || !config.ctxt.Flag_shared)) { break } v.reset(Op386ANDLconstmodify) v.AuxInt = valAndOffToAuxInt(valoff1.addOffset32(off2)) v.Aux = symToAux(mergeSym(sym1, sym2)) v.AddArg2(base, mem) return true } return false } func rewriteValue386_Op386ANDLload(v *Value) bool { v_2 := v.Args[2] v_1 := v.Args[1] v_0 := v.Args[0] b := v.Block config := b.Func.Config // match: (ANDLload [off1] {sym} val (ADDLconst [off2] base) mem) // cond: is32Bit(int64(off1)+int64(off2)) // result: (ANDLload [off1+off2] {sym} val base mem) for { off1 := auxIntToInt32(v.AuxInt) sym := auxToSym(v.Aux) val := v_0 if v_1.Op != Op386ADDLconst { break } off2 := auxIntToInt32(v_1.AuxInt) base := v_1.Args[0] mem := v_2 if !(is32Bit(int64(off1) + int64(off2))) { break } v.reset(Op386ANDLload) v.AuxInt = int32ToAuxInt(off1 + off2) v.Aux = symToAux(sym) v.AddArg3(val, base, mem) return true } // match: (ANDLload [off1] {sym1} val (LEAL [off2] {sym2} base) mem) // cond: is32Bit(int64(off1)+int64(off2)) && canMergeSym(sym1, sym2) && (base.Op != OpSB || !config.ctxt.Flag_shared) // result: (ANDLload [off1+off2] {mergeSym(sym1,sym2)} val base mem) for { off1 := auxIntToInt32(v.AuxInt) sym1 := auxToSym(v.Aux) val := v_0 if v_1.Op != Op386LEAL { break } off2 := auxIntToInt32(v_1.AuxInt) sym2 := auxToSym(v_1.Aux) base := v_1.Args[0] mem := v_2 if !(is32Bit(int64(off1)+int64(off2)) && canMergeSym(sym1, sym2) && (base.Op != OpSB || !config.ctxt.Flag_shared)) { break } v.reset(Op386ANDLload) v.AuxInt = int32ToAuxInt(off1 + off2) v.Aux = symToAux(mergeSym(sym1, sym2)) v.AddArg3(val, base, mem) return true } return false } func rewriteValue386_Op386ANDLmodify(v *Value) bool { v_2 := v.Args[2] v_1 := v.Args[1] v_0 := v.Args[0] b := v.Block config := b.Func.Config // match: (ANDLmodify [off1] {sym} (ADDLconst [off2] base) val mem) // cond: is32Bit(int64(off1)+int64(off2)) // result: (ANDLmodify [off1+off2] {sym} base val mem) for { off1 := auxIntToInt32(v.AuxInt) sym := auxToSym(v.Aux) if v_0.Op != Op386ADDLconst { break } off2 := auxIntToInt32(v_0.AuxInt) base := v_0.Args[0] val := v_1 mem := v_2 if !(is32Bit(int64(off1) + int64(off2))) { break } v.reset(Op386ANDLmodify) v.AuxInt = int32ToAuxInt(off1 + off2) v.Aux = symToAux(sym) v.AddArg3(base, val, mem) return true } // match: (ANDLmodify [off1] {sym1} (LEAL [off2] {sym2} base) val mem) // cond: is32Bit(int64(off1)+int64(off2)) && canMergeSym(sym1, sym2) && (base.Op != OpSB || !config.ctxt.Flag_shared) // result: (ANDLmodify [off1+off2] {mergeSym(sym1,sym2)} base val mem) for { off1 := auxIntToInt32(v.AuxInt) sym1 := auxToSym(v.Aux) if v_0.Op != Op386LEAL { break } off2 := auxIntToInt32(v_0.AuxInt) sym2 := auxToSym(v_0.Aux) base := v_0.Args[0] val := v_1 mem := v_2 if !(is32Bit(int64(off1)+int64(off2)) && canMergeSym(sym1, sym2) && (base.Op != OpSB || !config.ctxt.Flag_shared)) { break } v.reset(Op386ANDLmodify) v.AuxInt = int32ToAuxInt(off1 + off2) v.Aux = symToAux(mergeSym(sym1, sym2)) v.AddArg3(base, val, mem) return true } return false } func rewriteValue386_Op386CMPB(v *Value) bool { v_1 := v.Args[1] v_0 := v.Args[0] b := v.Block // match: (CMPB x (MOVLconst [c])) // result: (CMPBconst x [int8(c)]) for { x := v_0 if v_1.Op != Op386MOVLconst { break } c := auxIntToInt32(v_1.AuxInt) v.reset(Op386CMPBconst) v.AuxInt = int8ToAuxInt(int8(c)) v.AddArg(x) return true } // match: (CMPB (MOVLconst [c]) x) // result: (InvertFlags (CMPBconst x [int8(c)])) for { if v_0.Op != Op386MOVLconst { break } c := auxIntToInt32(v_0.AuxInt) x := v_1 v.reset(Op386InvertFlags) v0 := b.NewValue0(v.Pos, Op386CMPBconst, types.TypeFlags) v0.AuxInt = int8ToAuxInt(int8(c)) v0.AddArg(x) v.AddArg(v0) return true } // match: (CMPB x y) // cond: canonLessThan(x,y) // result: (InvertFlags (CMPB y x)) for { x := v_0 y := v_1 if !(canonLessThan(x, y)) { break } v.reset(Op386InvertFlags) v0 := b.NewValue0(v.Pos, Op386CMPB, types.TypeFlags) v0.AddArg2(y, x) v.AddArg(v0) return true } // match: (CMPB l:(MOVBload {sym} [off] ptr mem) x) // cond: canMergeLoad(v, l) && clobber(l) // result: (CMPBload {sym} [off] ptr x mem) for { l := v_0 if l.Op != Op386MOVBload { break } off := auxIntToInt32(l.AuxInt) sym := auxToSym(l.Aux) mem := l.Args[1] ptr := l.Args[0] x := v_1 if !(canMergeLoad(v, l) && clobber(l)) { break } v.reset(Op386CMPBload) v.AuxInt = int32ToAuxInt(off) v.Aux = symToAux(sym) v.AddArg3(ptr, x, mem) return true } // match: (CMPB x l:(MOVBload {sym} [off] ptr mem)) // cond: canMergeLoad(v, l) && clobber(l) // result: (InvertFlags (CMPBload {sym} [off] ptr x mem)) for { x := v_0 l := v_1 if l.Op != Op386MOVBload { break } off := auxIntToInt32(l.AuxInt) sym := auxToSym(l.Aux) mem := l.Args[1] ptr := l.Args[0] if !(canMergeLoad(v, l) && clobber(l)) { break } v.reset(Op386InvertFlags) v0 := b.NewValue0(l.Pos, Op386CMPBload, types.TypeFlags) v0.AuxInt = int32ToAuxInt(off) v0.Aux = symToAux(sym) v0.AddArg3(ptr, x, mem) v.AddArg(v0) return true } return false } func rewriteValue386_Op386CMPBconst(v *Value) bool { v_0 := v.Args[0] b := v.Block // match: (CMPBconst (MOVLconst [x]) [y]) // cond: int8(x)==y // result: (FlagEQ) for { y := auxIntToInt8(v.AuxInt) if v_0.Op != Op386MOVLconst { break } x := auxIntToInt32(v_0.AuxInt) if !(int8(x) == y) { break } v.reset(Op386FlagEQ) return true } // match: (CMPBconst (MOVLconst [x]) [y]) // cond: int8(x)uint8(y) // result: (FlagLT_UGT) for { y := auxIntToInt8(v.AuxInt) if v_0.Op != Op386MOVLconst { break } x := auxIntToInt32(v_0.AuxInt) if !(int8(x) < y && uint8(x) > uint8(y)) { break } v.reset(Op386FlagLT_UGT) return true } // match: (CMPBconst (MOVLconst [x]) [y]) // cond: int8(x)>y && uint8(x) y && uint8(x) < uint8(y)) { break } v.reset(Op386FlagGT_ULT) return true } // match: (CMPBconst (MOVLconst [x]) [y]) // cond: int8(x)>y && uint8(x)>uint8(y) // result: (FlagGT_UGT) for { y := auxIntToInt8(v.AuxInt) if v_0.Op != Op386MOVLconst { break } x := auxIntToInt32(v_0.AuxInt) if !(int8(x) > y && uint8(x) > uint8(y)) { break } v.reset(Op386FlagGT_UGT) return true } // match: (CMPBconst (ANDLconst _ [m]) [n]) // cond: 0 <= int8(m) && int8(m) < n // result: (FlagLT_ULT) for { n := auxIntToInt8(v.AuxInt) if v_0.Op != Op386ANDLconst { break } m := auxIntToInt32(v_0.AuxInt) if !(0 <= int8(m) && int8(m) < n) { break } v.reset(Op386FlagLT_ULT) return true } // match: (CMPBconst l:(ANDL x y) [0]) // cond: l.Uses==1 // result: (TESTB x y) for { if auxIntToInt8(v.AuxInt) != 0 { break } l := v_0 if l.Op != Op386ANDL { break } y := l.Args[1] x := l.Args[0] if !(l.Uses == 1) { break } v.reset(Op386TESTB) v.AddArg2(x, y) return true } // match: (CMPBconst l:(ANDLconst [c] x) [0]) // cond: l.Uses==1 // result: (TESTBconst [int8(c)] x) for { if auxIntToInt8(v.AuxInt) != 0 { break } l := v_0 if l.Op != Op386ANDLconst { break } c := auxIntToInt32(l.AuxInt) x := l.Args[0] if !(l.Uses == 1) { break } v.reset(Op386TESTBconst) v.AuxInt = int8ToAuxInt(int8(c)) v.AddArg(x) return true } // match: (CMPBconst x [0]) // result: (TESTB x x) for { if auxIntToInt8(v.AuxInt) != 0 { break } x := v_0 v.reset(Op386TESTB) v.AddArg2(x, x) return true } // match: (CMPBconst l:(MOVBload {sym} [off] ptr mem) [c]) // cond: l.Uses == 1 && clobber(l) // result: @l.Block (CMPBconstload {sym} [makeValAndOff(int32(c),off)] ptr mem) for { c := auxIntToInt8(v.AuxInt) l := v_0 if l.Op != Op386MOVBload { break } off := auxIntToInt32(l.AuxInt) sym := auxToSym(l.Aux) mem := l.Args[1] ptr := l.Args[0] if !(l.Uses == 1 && clobber(l)) { break } b = l.Block v0 := b.NewValue0(l.Pos, Op386CMPBconstload, types.TypeFlags) v.copyOf(v0) v0.AuxInt = valAndOffToAuxInt(makeValAndOff(int32(c), off)) v0.Aux = symToAux(sym) v0.AddArg2(ptr, mem) return true } return false } func rewriteValue386_Op386CMPBload(v *Value) bool { v_2 := v.Args[2] v_1 := v.Args[1] v_0 := v.Args[0] // match: (CMPBload {sym} [off] ptr (MOVLconst [c]) mem) // result: (CMPBconstload {sym} [makeValAndOff(int32(int8(c)),off)] ptr mem) for { off := auxIntToInt32(v.AuxInt) sym := auxToSym(v.Aux) ptr := v_0 if v_1.Op != Op386MOVLconst { break } c := auxIntToInt32(v_1.AuxInt) mem := v_2 v.reset(Op386CMPBconstload) v.AuxInt = valAndOffToAuxInt(makeValAndOff(int32(int8(c)), off)) v.Aux = symToAux(sym) v.AddArg2(ptr, mem) return true } return false } func rewriteValue386_Op386CMPL(v *Value) bool { v_1 := v.Args[1] v_0 := v.Args[0] b := v.Block // match: (CMPL x (MOVLconst [c])) // result: (CMPLconst x [c]) for { x := v_0 if v_1.Op != Op386MOVLconst { break } c := auxIntToInt32(v_1.AuxInt) v.reset(Op386CMPLconst) v.AuxInt = int32ToAuxInt(c) v.AddArg(x) return true } // match: (CMPL (MOVLconst [c]) x) // result: (InvertFlags (CMPLconst x [c])) for { if v_0.Op != Op386MOVLconst { break } c := auxIntToInt32(v_0.AuxInt) x := v_1 v.reset(Op386InvertFlags) v0 := b.NewValue0(v.Pos, Op386CMPLconst, types.TypeFlags) v0.AuxInt = int32ToAuxInt(c) v0.AddArg(x) v.AddArg(v0) return true } // match: (CMPL x y) // cond: canonLessThan(x,y) // result: (InvertFlags (CMPL y x)) for { x := v_0 y := v_1 if !(canonLessThan(x, y)) { break } v.reset(Op386InvertFlags) v0 := b.NewValue0(v.Pos, Op386CMPL, types.TypeFlags) v0.AddArg2(y, x) v.AddArg(v0) return true } // match: (CMPL l:(MOVLload {sym} [off] ptr mem) x) // cond: canMergeLoad(v, l) && clobber(l) // result: (CMPLload {sym} [off] ptr x mem) for { l := v_0 if l.Op != Op386MOVLload { break } off := auxIntToInt32(l.AuxInt) sym := auxToSym(l.Aux) mem := l.Args[1] ptr := l.Args[0] x := v_1 if !(canMergeLoad(v, l) && clobber(l)) { break } v.reset(Op386CMPLload) v.AuxInt = int32ToAuxInt(off) v.Aux = symToAux(sym) v.AddArg3(ptr, x, mem) return true } // match: (CMPL x l:(MOVLload {sym} [off] ptr mem)) // cond: canMergeLoad(v, l) && clobber(l) // result: (InvertFlags (CMPLload {sym} [off] ptr x mem)) for { x := v_0 l := v_1 if l.Op != Op386MOVLload { break } off := auxIntToInt32(l.AuxInt) sym := auxToSym(l.Aux) mem := l.Args[1] ptr := l.Args[0] if !(canMergeLoad(v, l) && clobber(l)) { break } v.reset(Op386InvertFlags) v0 := b.NewValue0(l.Pos, Op386CMPLload, types.TypeFlags) v0.AuxInt = int32ToAuxInt(off) v0.Aux = symToAux(sym) v0.AddArg3(ptr, x, mem) v.AddArg(v0) return true } return false } func rewriteValue386_Op386CMPLconst(v *Value) bool { v_0 := v.Args[0] b := v.Block // match: (CMPLconst (MOVLconst [x]) [y]) // cond: x==y // result: (FlagEQ) for { y := auxIntToInt32(v.AuxInt) if v_0.Op != Op386MOVLconst { break } x := auxIntToInt32(v_0.AuxInt) if !(x == y) { break } v.reset(Op386FlagEQ) return true } // match: (CMPLconst (MOVLconst [x]) [y]) // cond: xuint32(y) // result: (FlagLT_UGT) for { y := auxIntToInt32(v.AuxInt) if v_0.Op != Op386MOVLconst { break } x := auxIntToInt32(v_0.AuxInt) if !(x < y && uint32(x) > uint32(y)) { break } v.reset(Op386FlagLT_UGT) return true } // match: (CMPLconst (MOVLconst [x]) [y]) // cond: x>y && uint32(x) y && uint32(x) < uint32(y)) { break } v.reset(Op386FlagGT_ULT) return true } // match: (CMPLconst (MOVLconst [x]) [y]) // cond: x>y && uint32(x)>uint32(y) // result: (FlagGT_UGT) for { y := auxIntToInt32(v.AuxInt) if v_0.Op != Op386MOVLconst { break } x := auxIntToInt32(v_0.AuxInt) if !(x > y && uint32(x) > uint32(y)) { break } v.reset(Op386FlagGT_UGT) return true } // match: (CMPLconst (SHRLconst _ [c]) [n]) // cond: 0 <= n && 0 < c && c <= 32 && (1<uint16(y) // result: (FlagLT_UGT) for { y := auxIntToInt16(v.AuxInt) if v_0.Op != Op386MOVLconst { break } x := auxIntToInt32(v_0.AuxInt) if !(int16(x) < y && uint16(x) > uint16(y)) { break } v.reset(Op386FlagLT_UGT) return true } // match: (CMPWconst (MOVLconst [x]) [y]) // cond: int16(x)>y && uint16(x) y && uint16(x) < uint16(y)) { break } v.reset(Op386FlagGT_ULT) return true } // match: (CMPWconst (MOVLconst [x]) [y]) // cond: int16(x)>y && uint16(x)>uint16(y) // result: (FlagGT_UGT) for { y := auxIntToInt16(v.AuxInt) if v_0.Op != Op386MOVLconst { break } x := auxIntToInt32(v_0.AuxInt) if !(int16(x) > y && uint16(x) > uint16(y)) { break } v.reset(Op386FlagGT_UGT) return true } // match: (CMPWconst (ANDLconst _ [m]) [n]) // cond: 0 <= int16(m) && int16(m) < n // result: (FlagLT_ULT) for { n := auxIntToInt16(v.AuxInt) if v_0.Op != Op386ANDLconst { break } m := auxIntToInt32(v_0.AuxInt) if !(0 <= int16(m) && int16(m) < n) { break } v.reset(Op386FlagLT_ULT) return true } // match: (CMPWconst l:(ANDL x y) [0]) // cond: l.Uses==1 // result: (TESTW x y) for { if auxIntToInt16(v.AuxInt) != 0 { break } l := v_0 if l.Op != Op386ANDL { break } y := l.Args[1] x := l.Args[0] if !(l.Uses == 1) { break } v.reset(Op386TESTW) v.AddArg2(x, y) return true } // match: (CMPWconst l:(ANDLconst [c] x) [0]) // cond: l.Uses==1 // result: (TESTWconst [int16(c)] x) for { if auxIntToInt16(v.AuxInt) != 0 { break } l := v_0 if l.Op != Op386ANDLconst { break } c := auxIntToInt32(l.AuxInt) x := l.Args[0] if !(l.Uses == 1) { break } v.reset(Op386TESTWconst) v.AuxInt = int16ToAuxInt(int16(c)) v.AddArg(x) return true } // match: (CMPWconst x [0]) // result: (TESTW x x) for { if auxIntToInt16(v.AuxInt) != 0 { break } x := v_0 v.reset(Op386TESTW) v.AddArg2(x, x) return true } // match: (CMPWconst l:(MOVWload {sym} [off] ptr mem) [c]) // cond: l.Uses == 1 && clobber(l) // result: @l.Block (CMPWconstload {sym} [makeValAndOff(int32(c),off)] ptr mem) for { c := auxIntToInt16(v.AuxInt) l := v_0 if l.Op != Op386MOVWload { break } off := auxIntToInt32(l.AuxInt) sym := auxToSym(l.Aux) mem := l.Args[1] ptr := l.Args[0] if !(l.Uses == 1 && clobber(l)) { break } b = l.Block v0 := b.NewValue0(l.Pos, Op386CMPWconstload, types.TypeFlags) v.copyOf(v0) v0.AuxInt = valAndOffToAuxInt(makeValAndOff(int32(c), off)) v0.Aux = symToAux(sym) v0.AddArg2(ptr, mem) return true } return false } func rewriteValue386_Op386CMPWload(v *Value) bool { v_2 := v.Args[2] v_1 := v.Args[1] v_0 := v.Args[0] // match: (CMPWload {sym} [off] ptr (MOVLconst [c]) mem) // result: (CMPWconstload {sym} [makeValAndOff(int32(int16(c)),off)] ptr mem) for { off := auxIntToInt32(v.AuxInt) sym := auxToSym(v.Aux) ptr := v_0 if v_1.Op != Op386MOVLconst { break } c := auxIntToInt32(v_1.AuxInt) mem := v_2 v.reset(Op386CMPWconstload) v.AuxInt = valAndOffToAuxInt(makeValAndOff(int32(int16(c)), off)) v.Aux = symToAux(sym) v.AddArg2(ptr, mem) return true } return false } func rewriteValue386_Op386DIVSD(v *Value) bool { v_1 := v.Args[1] v_0 := v.Args[0] // match: (DIVSD x l:(MOVSDload [off] {sym} ptr mem)) // cond: canMergeLoadClobber(v, l, x) && clobber(l) // result: (DIVSDload x [off] {sym} ptr mem) for { x := v_0 l := v_1 if l.Op != Op386MOVSDload { break } off := auxIntToInt32(l.AuxInt) sym := auxToSym(l.Aux) mem := l.Args[1] ptr := l.Args[0] if !(canMergeLoadClobber(v, l, x) && clobber(l)) { break } v.reset(Op386DIVSDload) v.AuxInt = int32ToAuxInt(off) v.Aux = symToAux(sym) v.AddArg3(x, ptr, mem) return true } return false } func rewriteValue386_Op386DIVSDload(v *Value) bool { v_2 := v.Args[2] v_1 := v.Args[1] v_0 := v.Args[0] b := v.Block config := b.Func.Config // match: (DIVSDload [off1] {sym} val (ADDLconst [off2] base) mem) // cond: is32Bit(int64(off1)+int64(off2)) // result: (DIVSDload [off1+off2] {sym} val base mem) for { off1 := auxIntToInt32(v.AuxInt) sym := auxToSym(v.Aux) val := v_0 if v_1.Op != Op386ADDLconst { break } off2 := auxIntToInt32(v_1.AuxInt) base := v_1.Args[0] mem := v_2 if !(is32Bit(int64(off1) + int64(off2))) { break } v.reset(Op386DIVSDload) v.AuxInt = int32ToAuxInt(off1 + off2) v.Aux = symToAux(sym) v.AddArg3(val, base, mem) return true } // match: (DIVSDload [off1] {sym1} val (LEAL [off2] {sym2} base) mem) // cond: is32Bit(int64(off1)+int64(off2)) && canMergeSym(sym1, sym2) && (base.Op != OpSB || !config.ctxt.Flag_shared) // result: (DIVSDload [off1+off2] {mergeSym(sym1,sym2)} val base mem) for { off1 := auxIntToInt32(v.AuxInt) sym1 := auxToSym(v.Aux) val := v_0 if v_1.Op != Op386LEAL { break } off2 := auxIntToInt32(v_1.AuxInt) sym2 := auxToSym(v_1.Aux) base := v_1.Args[0] mem := v_2 if !(is32Bit(int64(off1)+int64(off2)) && canMergeSym(sym1, sym2) && (base.Op != OpSB || !config.ctxt.Flag_shared)) { break } v.reset(Op386DIVSDload) v.AuxInt = int32ToAuxInt(off1 + off2) v.Aux = symToAux(mergeSym(sym1, sym2)) v.AddArg3(val, base, mem) return true } return false } func rewriteValue386_Op386DIVSS(v *Value) bool { v_1 := v.Args[1] v_0 := v.Args[0] // match: (DIVSS x l:(MOVSSload [off] {sym} ptr mem)) // cond: canMergeLoadClobber(v, l, x) && clobber(l) // result: (DIVSSload x [off] {sym} ptr mem) for { x := v_0 l := v_1 if l.Op != Op386MOVSSload { break } off := auxIntToInt32(l.AuxInt) sym := auxToSym(l.Aux) mem := l.Args[1] ptr := l.Args[0] if !(canMergeLoadClobber(v, l, x) && clobber(l)) { break } v.reset(Op386DIVSSload) v.AuxInt = int32ToAuxInt(off) v.Aux = symToAux(sym) v.AddArg3(x, ptr, mem) return true } return false } func rewriteValue386_Op386DIVSSload(v *Value) bool { v_2 := v.Args[2] v_1 := v.Args[1] v_0 := v.Args[0] b := v.Block config := b.Func.Config // match: (DIVSSload [off1] {sym} val (ADDLconst [off2] base) mem) // cond: is32Bit(int64(off1)+int64(off2)) // result: (DIVSSload [off1+off2] {sym} val base mem) for { off1 := auxIntToInt32(v.AuxInt) sym := auxToSym(v.Aux) val := v_0 if v_1.Op != Op386ADDLconst { break } off2 := auxIntToInt32(v_1.AuxInt) base := v_1.Args[0] mem := v_2 if !(is32Bit(int64(off1) + int64(off2))) { break } v.reset(Op386DIVSSload) v.AuxInt = int32ToAuxInt(off1 + off2) v.Aux = symToAux(sym) v.AddArg3(val, base, mem) return true } // match: (DIVSSload [off1] {sym1} val (LEAL [off2] {sym2} base) mem) // cond: is32Bit(int64(off1)+int64(off2)) && canMergeSym(sym1, sym2) && (base.Op != OpSB || !config.ctxt.Flag_shared) // result: (DIVSSload [off1+off2] {mergeSym(sym1,sym2)} val base mem) for { off1 := auxIntToInt32(v.AuxInt) sym1 := auxToSym(v.Aux) val := v_0 if v_1.Op != Op386LEAL { break } off2 := auxIntToInt32(v_1.AuxInt) sym2 := auxToSym(v_1.Aux) base := v_1.Args[0] mem := v_2 if !(is32Bit(int64(off1)+int64(off2)) && canMergeSym(sym1, sym2) && (base.Op != OpSB || !config.ctxt.Flag_shared)) { break } v.reset(Op386DIVSSload) v.AuxInt = int32ToAuxInt(off1 + off2) v.Aux = symToAux(mergeSym(sym1, sym2)) v.AddArg3(val, base, mem) return true } return false } func rewriteValue386_Op386LEAL(v *Value) bool { v_0 := v.Args[0] // match: (LEAL [c] {s} (ADDLconst [d] x)) // cond: is32Bit(int64(c)+int64(d)) // result: (LEAL [c+d] {s} x) for { c := auxIntToInt32(v.AuxInt) s := auxToSym(v.Aux) if v_0.Op != Op386ADDLconst { break } d := auxIntToInt32(v_0.AuxInt) x := v_0.Args[0] if !(is32Bit(int64(c) + int64(d))) { break } v.reset(Op386LEAL) v.AuxInt = int32ToAuxInt(c + d) v.Aux = symToAux(s) v.AddArg(x) return true } // match: (LEAL [c] {s} (ADDL x y)) // cond: x.Op != OpSB && y.Op != OpSB // result: (LEAL1 [c] {s} x y) for { c := auxIntToInt32(v.AuxInt) s := auxToSym(v.Aux) if v_0.Op != Op386ADDL { break } _ = v_0.Args[1] v_0_0 := v_0.Args[0] v_0_1 := v_0.Args[1] for _i0 := 0; _i0 <= 1; _i0, v_0_0, v_0_1 = _i0+1, v_0_1, v_0_0 { x := v_0_0 y := v_0_1 if !(x.Op != OpSB && y.Op != OpSB) { continue } v.reset(Op386LEAL1) v.AuxInt = int32ToAuxInt(c) v.Aux = symToAux(s) v.AddArg2(x, y) return true } break } // match: (LEAL [off1] {sym1} (LEAL [off2] {sym2} x)) // cond: is32Bit(int64(off1)+int64(off2)) && canMergeSym(sym1, sym2) // result: (LEAL [off1+off2] {mergeSym(sym1,sym2)} x) for { off1 := auxIntToInt32(v.AuxInt) sym1 := auxToSym(v.Aux) if v_0.Op != Op386LEAL { break } off2 := auxIntToInt32(v_0.AuxInt) sym2 := auxToSym(v_0.Aux) x := v_0.Args[0] if !(is32Bit(int64(off1)+int64(off2)) && canMergeSym(sym1, sym2)) { break } v.reset(Op386LEAL) v.AuxInt = int32ToAuxInt(off1 + off2) v.Aux = symToAux(mergeSym(sym1, sym2)) v.AddArg(x) return true } // match: (LEAL [off1] {sym1} (LEAL1 [off2] {sym2} x y)) // cond: is32Bit(int64(off1)+int64(off2)) && canMergeSym(sym1, sym2) // result: (LEAL1 [off1+off2] {mergeSym(sym1,sym2)} x y) for { off1 := auxIntToInt32(v.AuxInt) sym1 := auxToSym(v.Aux) if v_0.Op != Op386LEAL1 { break } off2 := auxIntToInt32(v_0.AuxInt) sym2 := auxToSym(v_0.Aux) y := v_0.Args[1] x := v_0.Args[0] if !(is32Bit(int64(off1)+int64(off2)) && canMergeSym(sym1, sym2)) { break } v.reset(Op386LEAL1) v.AuxInt = int32ToAuxInt(off1 + off2) v.Aux = symToAux(mergeSym(sym1, sym2)) v.AddArg2(x, y) return true } // match: (LEAL [off1] {sym1} (LEAL2 [off2] {sym2} x y)) // cond: is32Bit(int64(off1)+int64(off2)) && canMergeSym(sym1, sym2) // result: (LEAL2 [off1+off2] {mergeSym(sym1,sym2)} x y) for { off1 := auxIntToInt32(v.AuxInt) sym1 := auxToSym(v.Aux) if v_0.Op != Op386LEAL2 { break } off2 := auxIntToInt32(v_0.AuxInt) sym2 := auxToSym(v_0.Aux) y := v_0.Args[1] x := v_0.Args[0] if !(is32Bit(int64(off1)+int64(off2)) && canMergeSym(sym1, sym2)) { break } v.reset(Op386LEAL2) v.AuxInt = int32ToAuxInt(off1 + off2) v.Aux = symToAux(mergeSym(sym1, sym2)) v.AddArg2(x, y) return true } // match: (LEAL [off1] {sym1} (LEAL4 [off2] {sym2} x y)) // cond: is32Bit(int64(off1)+int64(off2)) && canMergeSym(sym1, sym2) // result: (LEAL4 [off1+off2] {mergeSym(sym1,sym2)} x y) for { off1 := auxIntToInt32(v.AuxInt) sym1 := auxToSym(v.Aux) if v_0.Op != Op386LEAL4 { break } off2 := auxIntToInt32(v_0.AuxInt) sym2 := auxToSym(v_0.Aux) y := v_0.Args[1] x := v_0.Args[0] if !(is32Bit(int64(off1)+int64(off2)) && canMergeSym(sym1, sym2)) { break } v.reset(Op386LEAL4) v.AuxInt = int32ToAuxInt(off1 + off2) v.Aux = symToAux(mergeSym(sym1, sym2)) v.AddArg2(x, y) return true } // match: (LEAL [off1] {sym1} (LEAL8 [off2] {sym2} x y)) // cond: is32Bit(int64(off1)+int64(off2)) && canMergeSym(sym1, sym2) // result: (LEAL8 [off1+off2] {mergeSym(sym1,sym2)} x y) for { off1 := auxIntToInt32(v.AuxInt) sym1 := auxToSym(v.Aux) if v_0.Op != Op386LEAL8 { break } off2 := auxIntToInt32(v_0.AuxInt) sym2 := auxToSym(v_0.Aux) y := v_0.Args[1] x := v_0.Args[0] if !(is32Bit(int64(off1)+int64(off2)) && canMergeSym(sym1, sym2)) { break } v.reset(Op386LEAL8) v.AuxInt = int32ToAuxInt(off1 + off2) v.Aux = symToAux(mergeSym(sym1, sym2)) v.AddArg2(x, y) return true } return false } func rewriteValue386_Op386LEAL1(v *Value) bool { v_1 := v.Args[1] v_0 := v.Args[0] // match: (LEAL1 [c] {s} (ADDLconst [d] x) y) // cond: is32Bit(int64(c)+int64(d)) && x.Op != OpSB // result: (LEAL1 [c+d] {s} x y) for { c := auxIntToInt32(v.AuxInt) s := auxToSym(v.Aux) for _i0 := 0; _i0 <= 1; _i0, v_0, v_1 = _i0+1, v_1, v_0 { if v_0.Op != Op386ADDLconst { continue } d := auxIntToInt32(v_0.AuxInt) x := v_0.Args[0] y := v_1 if !(is32Bit(int64(c)+int64(d)) && x.Op != OpSB) { continue } v.reset(Op386LEAL1) v.AuxInt = int32ToAuxInt(c + d) v.Aux = symToAux(s) v.AddArg2(x, y) return true } break } // match: (LEAL1 [c] {s} x (SHLLconst [1] y)) // result: (LEAL2 [c] {s} x y) for { c := auxIntToInt32(v.AuxInt) s := auxToSym(v.Aux) for _i0 := 0; _i0 <= 1; _i0, v_0, v_1 = _i0+1, v_1, v_0 { x := v_0 if v_1.Op != Op386SHLLconst || auxIntToInt32(v_1.AuxInt) != 1 { continue } y := v_1.Args[0] v.reset(Op386LEAL2) v.AuxInt = int32ToAuxInt(c) v.Aux = symToAux(s) v.AddArg2(x, y) return true } break } // match: (LEAL1 [c] {s} x (SHLLconst [2] y)) // result: (LEAL4 [c] {s} x y) for { c := auxIntToInt32(v.AuxInt) s := auxToSym(v.Aux) for _i0 := 0; _i0 <= 1; _i0, v_0, v_1 = _i0+1, v_1, v_0 { x := v_0 if v_1.Op != Op386SHLLconst || auxIntToInt32(v_1.AuxInt) != 2 { continue } y := v_1.Args[0] v.reset(Op386LEAL4) v.AuxInt = int32ToAuxInt(c) v.Aux = symToAux(s) v.AddArg2(x, y) return true } break } // match: (LEAL1 [c] {s} x (SHLLconst [3] y)) // result: (LEAL8 [c] {s} x y) for { c := auxIntToInt32(v.AuxInt) s := auxToSym(v.Aux) for _i0 := 0; _i0 <= 1; _i0, v_0, v_1 = _i0+1, v_1, v_0 { x := v_0 if v_1.Op != Op386SHLLconst || auxIntToInt32(v_1.AuxInt) != 3 { continue } y := v_1.Args[0] v.reset(Op386LEAL8) v.AuxInt = int32ToAuxInt(c) v.Aux = symToAux(s) v.AddArg2(x, y) return true } break } // match: (LEAL1 [off1] {sym1} (LEAL [off2] {sym2} x) y) // cond: is32Bit(int64(off1)+int64(off2)) && canMergeSym(sym1, sym2) && x.Op != OpSB // result: (LEAL1 [off1+off2] {mergeSym(sym1,sym2)} x y) for { off1 := auxIntToInt32(v.AuxInt) sym1 := auxToSym(v.Aux) for _i0 := 0; _i0 <= 1; _i0, v_0, v_1 = _i0+1, v_1, v_0 { if v_0.Op != Op386LEAL { continue } off2 := auxIntToInt32(v_0.AuxInt) sym2 := auxToSym(v_0.Aux) x := v_0.Args[0] y := v_1 if !(is32Bit(int64(off1)+int64(off2)) && canMergeSym(sym1, sym2) && x.Op != OpSB) { continue } v.reset(Op386LEAL1) v.AuxInt = int32ToAuxInt(off1 + off2) v.Aux = symToAux(mergeSym(sym1, sym2)) v.AddArg2(x, y) return true } break } // match: (LEAL1 [off1] {sym1} x (LEAL1 [off2] {sym2} y y)) // cond: is32Bit(int64(off1)+int64(off2)) && canMergeSym(sym1, sym2) // result: (LEAL2 [off1+off2] {mergeSym(sym1, sym2)} x y) for { off1 := auxIntToInt32(v.AuxInt) sym1 := auxToSym(v.Aux) for _i0 := 0; _i0 <= 1; _i0, v_0, v_1 = _i0+1, v_1, v_0 { x := v_0 if v_1.Op != Op386LEAL1 { continue } off2 := auxIntToInt32(v_1.AuxInt) sym2 := auxToSym(v_1.Aux) y := v_1.Args[1] if y != v_1.Args[0] || !(is32Bit(int64(off1)+int64(off2)) && canMergeSym(sym1, sym2)) { continue } v.reset(Op386LEAL2) v.AuxInt = int32ToAuxInt(off1 + off2) v.Aux = symToAux(mergeSym(sym1, sym2)) v.AddArg2(x, y) return true } break } // match: (LEAL1 [off1] {sym1} x (LEAL1 [off2] {sym2} x y)) // cond: is32Bit(int64(off1)+int64(off2)) && canMergeSym(sym1, sym2) // result: (LEAL2 [off1+off2] {mergeSym(sym1, sym2)} y x) for { off1 := auxIntToInt32(v.AuxInt) sym1 := auxToSym(v.Aux) for _i0 := 0; _i0 <= 1; _i0, v_0, v_1 = _i0+1, v_1, v_0 { x := v_0 if v_1.Op != Op386LEAL1 { continue } off2 := auxIntToInt32(v_1.AuxInt) sym2 := auxToSym(v_1.Aux) _ = v_1.Args[1] v_1_0 := v_1.Args[0] v_1_1 := v_1.Args[1] for _i1 := 0; _i1 <= 1; _i1, v_1_0, v_1_1 = _i1+1, v_1_1, v_1_0 { if x != v_1_0 { continue } y := v_1_1 if !(is32Bit(int64(off1)+int64(off2)) && canMergeSym(sym1, sym2)) { continue } v.reset(Op386LEAL2) v.AuxInt = int32ToAuxInt(off1 + off2) v.Aux = symToAux(mergeSym(sym1, sym2)) v.AddArg2(y, x) return true } } break } // match: (LEAL1 [0] {nil} x y) // result: (ADDL x y) for { if auxIntToInt32(v.AuxInt) != 0 || auxToSym(v.Aux) != nil { break } x := v_0 y := v_1 v.reset(Op386ADDL) v.AddArg2(x, y) return true } return false } func rewriteValue386_Op386LEAL2(v *Value) bool { v_1 := v.Args[1] v_0 := v.Args[0] // match: (LEAL2 [c] {s} (ADDLconst [d] x) y) // cond: is32Bit(int64(c)+int64(d)) && x.Op != OpSB // result: (LEAL2 [c+d] {s} x y) for { c := auxIntToInt32(v.AuxInt) s := auxToSym(v.Aux) if v_0.Op != Op386ADDLconst { break } d := auxIntToInt32(v_0.AuxInt) x := v_0.Args[0] y := v_1 if !(is32Bit(int64(c)+int64(d)) && x.Op != OpSB) { break } v.reset(Op386LEAL2) v.AuxInt = int32ToAuxInt(c + d) v.Aux = symToAux(s) v.AddArg2(x, y) return true } // match: (LEAL2 [c] {s} x (ADDLconst [d] y)) // cond: is32Bit(int64(c)+2*int64(d)) && y.Op != OpSB // result: (LEAL2 [c+2*d] {s} x y) for { c := auxIntToInt32(v.AuxInt) s := auxToSym(v.Aux) x := v_0 if v_1.Op != Op386ADDLconst { break } d := auxIntToInt32(v_1.AuxInt) y := v_1.Args[0] if !(is32Bit(int64(c)+2*int64(d)) && y.Op != OpSB) { break } v.reset(Op386LEAL2) v.AuxInt = int32ToAuxInt(c + 2*d) v.Aux = symToAux(s) v.AddArg2(x, y) return true } // match: (LEAL2 [c] {s} x (SHLLconst [1] y)) // result: (LEAL4 [c] {s} x y) for { c := auxIntToInt32(v.AuxInt) s := auxToSym(v.Aux) x := v_0 if v_1.Op != Op386SHLLconst || auxIntToInt32(v_1.AuxInt) != 1 { break } y := v_1.Args[0] v.reset(Op386LEAL4) v.AuxInt = int32ToAuxInt(c) v.Aux = symToAux(s) v.AddArg2(x, y) return true } // match: (LEAL2 [c] {s} x (SHLLconst [2] y)) // result: (LEAL8 [c] {s} x y) for { c := auxIntToInt32(v.AuxInt) s := auxToSym(v.Aux) x := v_0 if v_1.Op != Op386SHLLconst || auxIntToInt32(v_1.AuxInt) != 2 { break } y := v_1.Args[0] v.reset(Op386LEAL8) v.AuxInt = int32ToAuxInt(c) v.Aux = symToAux(s) v.AddArg2(x, y) return true } // match: (LEAL2 [off1] {sym1} (LEAL [off2] {sym2} x) y) // cond: is32Bit(int64(off1)+int64(off2)) && canMergeSym(sym1, sym2) && x.Op != OpSB // result: (LEAL2 [off1+off2] {mergeSym(sym1,sym2)} x y) for { off1 := auxIntToInt32(v.AuxInt) sym1 := auxToSym(v.Aux) if v_0.Op != Op386LEAL { break } off2 := auxIntToInt32(v_0.AuxInt) sym2 := auxToSym(v_0.Aux) x := v_0.Args[0] y := v_1 if !(is32Bit(int64(off1)+int64(off2)) && canMergeSym(sym1, sym2) && x.Op != OpSB) { break } v.reset(Op386LEAL2) v.AuxInt = int32ToAuxInt(off1 + off2) v.Aux = symToAux(mergeSym(sym1, sym2)) v.AddArg2(x, y) return true } // match: (LEAL2 [off1] {sym} x (LEAL1 [off2] {nil} y y)) // cond: is32Bit(int64(off1)+2*int64(off2)) // result: (LEAL4 [off1+2*off2] {sym} x y) for { off1 := auxIntToInt32(v.AuxInt) sym := auxToSym(v.Aux) x := v_0 if v_1.Op != Op386LEAL1 { break } off2 := auxIntToInt32(v_1.AuxInt) if auxToSym(v_1.Aux) != nil { break } y := v_1.Args[1] if y != v_1.Args[0] || !(is32Bit(int64(off1) + 2*int64(off2))) { break } v.reset(Op386LEAL4) v.AuxInt = int32ToAuxInt(off1 + 2*off2) v.Aux = symToAux(sym) v.AddArg2(x, y) return true } return false } func rewriteValue386_Op386LEAL4(v *Value) bool { v_1 := v.Args[1] v_0 := v.Args[0] // match: (LEAL4 [c] {s} (ADDLconst [d] x) y) // cond: is32Bit(int64(c)+int64(d)) && x.Op != OpSB // result: (LEAL4 [c+d] {s} x y) for { c := auxIntToInt32(v.AuxInt) s := auxToSym(v.Aux) if v_0.Op != Op386ADDLconst { break } d := auxIntToInt32(v_0.AuxInt) x := v_0.Args[0] y := v_1 if !(is32Bit(int64(c)+int64(d)) && x.Op != OpSB) { break } v.reset(Op386LEAL4) v.AuxInt = int32ToAuxInt(c + d) v.Aux = symToAux(s) v.AddArg2(x, y) return true } // match: (LEAL4 [c] {s} x (ADDLconst [d] y)) // cond: is32Bit(int64(c)+4*int64(d)) && y.Op != OpSB // result: (LEAL4 [c+4*d] {s} x y) for { c := auxIntToInt32(v.AuxInt) s := auxToSym(v.Aux) x := v_0 if v_1.Op != Op386ADDLconst { break } d := auxIntToInt32(v_1.AuxInt) y := v_1.Args[0] if !(is32Bit(int64(c)+4*int64(d)) && y.Op != OpSB) { break } v.reset(Op386LEAL4) v.AuxInt = int32ToAuxInt(c + 4*d) v.Aux = symToAux(s) v.AddArg2(x, y) return true } // match: (LEAL4 [c] {s} x (SHLLconst [1] y)) // result: (LEAL8 [c] {s} x y) for { c := auxIntToInt32(v.AuxInt) s := auxToSym(v.Aux) x := v_0 if v_1.Op != Op386SHLLconst || auxIntToInt32(v_1.AuxInt) != 1 { break } y := v_1.Args[0] v.reset(Op386LEAL8) v.AuxInt = int32ToAuxInt(c) v.Aux = symToAux(s) v.AddArg2(x, y) return true } // match: (LEAL4 [off1] {sym1} (LEAL [off2] {sym2} x) y) // cond: is32Bit(int64(off1)+int64(off2)) && canMergeSym(sym1, sym2) && x.Op != OpSB // result: (LEAL4 [off1+off2] {mergeSym(sym1,sym2)} x y) for { off1 := auxIntToInt32(v.AuxInt) sym1 := auxToSym(v.Aux) if v_0.Op != Op386LEAL { break } off2 := auxIntToInt32(v_0.AuxInt) sym2 := auxToSym(v_0.Aux) x := v_0.Args[0] y := v_1 if !(is32Bit(int64(off1)+int64(off2)) && canMergeSym(sym1, sym2) && x.Op != OpSB) { break } v.reset(Op386LEAL4) v.AuxInt = int32ToAuxInt(off1 + off2) v.Aux = symToAux(mergeSym(sym1, sym2)) v.AddArg2(x, y) return true } // match: (LEAL4 [off1] {sym} x (LEAL1 [off2] {nil} y y)) // cond: is32Bit(int64(off1)+4*int64(off2)) // result: (LEAL8 [off1+4*off2] {sym} x y) for { off1 := auxIntToInt32(v.AuxInt) sym := auxToSym(v.Aux) x := v_0 if v_1.Op != Op386LEAL1 { break } off2 := auxIntToInt32(v_1.AuxInt) if auxToSym(v_1.Aux) != nil { break } y := v_1.Args[1] if y != v_1.Args[0] || !(is32Bit(int64(off1) + 4*int64(off2))) { break } v.reset(Op386LEAL8) v.AuxInt = int32ToAuxInt(off1 + 4*off2) v.Aux = symToAux(sym) v.AddArg2(x, y) return true } return false } func rewriteValue386_Op386LEAL8(v *Value) bool { v_1 := v.Args[1] v_0 := v.Args[0] // match: (LEAL8 [c] {s} (ADDLconst [d] x) y) // cond: is32Bit(int64(c)+int64(d)) && x.Op != OpSB // result: (LEAL8 [c+d] {s} x y) for { c := auxIntToInt32(v.AuxInt) s := auxToSym(v.Aux) if v_0.Op != Op386ADDLconst { break } d := auxIntToInt32(v_0.AuxInt) x := v_0.Args[0] y := v_1 if !(is32Bit(int64(c)+int64(d)) && x.Op != OpSB) { break } v.reset(Op386LEAL8) v.AuxInt = int32ToAuxInt(c + d) v.Aux = symToAux(s) v.AddArg2(x, y) return true } // match: (LEAL8 [c] {s} x (ADDLconst [d] y)) // cond: is32Bit(int64(c)+8*int64(d)) && y.Op != OpSB // result: (LEAL8 [c+8*d] {s} x y) for { c := auxIntToInt32(v.AuxInt) s := auxToSym(v.Aux) x := v_0 if v_1.Op != Op386ADDLconst { break } d := auxIntToInt32(v_1.AuxInt) y := v_1.Args[0] if !(is32Bit(int64(c)+8*int64(d)) && y.Op != OpSB) { break } v.reset(Op386LEAL8) v.AuxInt = int32ToAuxInt(c + 8*d) v.Aux = symToAux(s) v.AddArg2(x, y) return true } // match: (LEAL8 [off1] {sym1} (LEAL [off2] {sym2} x) y) // cond: is32Bit(int64(off1)+int64(off2)) && canMergeSym(sym1, sym2) && x.Op != OpSB // result: (LEAL8 [off1+off2] {mergeSym(sym1,sym2)} x y) for { off1 := auxIntToInt32(v.AuxInt) sym1 := auxToSym(v.Aux) if v_0.Op != Op386LEAL { break } off2 := auxIntToInt32(v_0.AuxInt) sym2 := auxToSym(v_0.Aux) x := v_0.Args[0] y := v_1 if !(is32Bit(int64(off1)+int64(off2)) && canMergeSym(sym1, sym2) && x.Op != OpSB) { break } v.reset(Op386LEAL8) v.AuxInt = int32ToAuxInt(off1 + off2) v.Aux = symToAux(mergeSym(sym1, sym2)) v.AddArg2(x, y) return true } return false } func rewriteValue386_Op386MOVBLSX(v *Value) bool { v_0 := v.Args[0] b := v.Block // match: (MOVBLSX x:(MOVBload [off] {sym} ptr mem)) // cond: x.Uses == 1 && clobber(x) // result: @x.Block (MOVBLSXload [off] {sym} ptr mem) for { x := v_0 if x.Op != Op386MOVBload { break } off := auxIntToInt32(x.AuxInt) sym := auxToSym(x.Aux) mem := x.Args[1] ptr := x.Args[0] if !(x.Uses == 1 && clobber(x)) { break } b = x.Block v0 := b.NewValue0(x.Pos, Op386MOVBLSXload, v.Type) v.copyOf(v0) v0.AuxInt = int32ToAuxInt(off) v0.Aux = symToAux(sym) v0.AddArg2(ptr, mem) return true } // match: (MOVBLSX (ANDLconst [c] x)) // cond: c & 0x80 == 0 // result: (ANDLconst [c & 0x7f] x) for { if v_0.Op != Op386ANDLconst { break } c := auxIntToInt32(v_0.AuxInt) x := v_0.Args[0] if !(c&0x80 == 0) { break } v.reset(Op386ANDLconst) v.AuxInt = int32ToAuxInt(c & 0x7f) v.AddArg(x) return true } return false } func rewriteValue386_Op386MOVBLSXload(v *Value) bool { v_1 := v.Args[1] v_0 := v.Args[0] b := v.Block config := b.Func.Config // match: (MOVBLSXload [off] {sym} ptr (MOVBstore [off2] {sym2} ptr2 x _)) // cond: sym == sym2 && off == off2 && isSamePtr(ptr, ptr2) // result: (MOVBLSX x) for { off := auxIntToInt32(v.AuxInt) sym := auxToSym(v.Aux) ptr := v_0 if v_1.Op != Op386MOVBstore { break } off2 := auxIntToInt32(v_1.AuxInt) sym2 := auxToSym(v_1.Aux) x := v_1.Args[1] ptr2 := v_1.Args[0] if !(sym == sym2 && off == off2 && isSamePtr(ptr, ptr2)) { break } v.reset(Op386MOVBLSX) v.AddArg(x) return true } // match: (MOVBLSXload [off1] {sym1} (LEAL [off2] {sym2} base) mem) // cond: is32Bit(int64(off1)+int64(off2)) && canMergeSym(sym1, sym2) && (base.Op != OpSB || !config.ctxt.Flag_shared) // result: (MOVBLSXload [off1+off2] {mergeSym(sym1,sym2)} base mem) for { off1 := auxIntToInt32(v.AuxInt) sym1 := auxToSym(v.Aux) if v_0.Op != Op386LEAL { break } off2 := auxIntToInt32(v_0.AuxInt) sym2 := auxToSym(v_0.Aux) base := v_0.Args[0] mem := v_1 if !(is32Bit(int64(off1)+int64(off2)) && canMergeSym(sym1, sym2) && (base.Op != OpSB || !config.ctxt.Flag_shared)) { break } v.reset(Op386MOVBLSXload) v.AuxInt = int32ToAuxInt(off1 + off2) v.Aux = symToAux(mergeSym(sym1, sym2)) v.AddArg2(base, mem) return true } return false } func rewriteValue386_Op386MOVBLZX(v *Value) bool { v_0 := v.Args[0] b := v.Block // match: (MOVBLZX x:(MOVBload [off] {sym} ptr mem)) // cond: x.Uses == 1 && clobber(x) // result: @x.Block (MOVBload [off] {sym} ptr mem) for { x := v_0 if x.Op != Op386MOVBload { break } off := auxIntToInt32(x.AuxInt) sym := auxToSym(x.Aux) mem := x.Args[1] ptr := x.Args[0] if !(x.Uses == 1 && clobber(x)) { break } b = x.Block v0 := b.NewValue0(x.Pos, Op386MOVBload, v.Type) v.copyOf(v0) v0.AuxInt = int32ToAuxInt(off) v0.Aux = symToAux(sym) v0.AddArg2(ptr, mem) return true } // match: (MOVBLZX (ANDLconst [c] x)) // result: (ANDLconst [c & 0xff] x) for { if v_0.Op != Op386ANDLconst { break } c := auxIntToInt32(v_0.AuxInt) x := v_0.Args[0] v.reset(Op386ANDLconst) v.AuxInt = int32ToAuxInt(c & 0xff) v.AddArg(x) return true } return false } func rewriteValue386_Op386MOVBload(v *Value) bool { v_1 := v.Args[1] v_0 := v.Args[0] b := v.Block config := b.Func.Config // match: (MOVBload [off] {sym} ptr (MOVBstore [off2] {sym2} ptr2 x _)) // cond: sym == sym2 && off == off2 && isSamePtr(ptr, ptr2) // result: (MOVBLZX x) for { off := auxIntToInt32(v.AuxInt) sym := auxToSym(v.Aux) ptr := v_0 if v_1.Op != Op386MOVBstore { break } off2 := auxIntToInt32(v_1.AuxInt) sym2 := auxToSym(v_1.Aux) x := v_1.Args[1] ptr2 := v_1.Args[0] if !(sym == sym2 && off == off2 && isSamePtr(ptr, ptr2)) { break } v.reset(Op386MOVBLZX) v.AddArg(x) return true } // match: (MOVBload [off1] {sym} (ADDLconst [off2] ptr) mem) // cond: is32Bit(int64(off1)+int64(off2)) // result: (MOVBload [off1+off2] {sym} ptr mem) for { off1 := auxIntToInt32(v.AuxInt) sym := auxToSym(v.Aux) if v_0.Op != Op386ADDLconst { break } off2 := auxIntToInt32(v_0.AuxInt) ptr := v_0.Args[0] mem := v_1 if !(is32Bit(int64(off1) + int64(off2))) { break } v.reset(Op386MOVBload) v.AuxInt = int32ToAuxInt(off1 + off2) v.Aux = symToAux(sym) v.AddArg2(ptr, mem) return true } // match: (MOVBload [off1] {sym1} (LEAL [off2] {sym2} base) mem) // cond: is32Bit(int64(off1)+int64(off2)) && canMergeSym(sym1, sym2) && (base.Op != OpSB || !config.ctxt.Flag_shared) // result: (MOVBload [off1+off2] {mergeSym(sym1,sym2)} base mem) for { off1 := auxIntToInt32(v.AuxInt) sym1 := auxToSym(v.Aux) if v_0.Op != Op386LEAL { break } off2 := auxIntToInt32(v_0.AuxInt) sym2 := auxToSym(v_0.Aux) base := v_0.Args[0] mem := v_1 if !(is32Bit(int64(off1)+int64(off2)) && canMergeSym(sym1, sym2) && (base.Op != OpSB || !config.ctxt.Flag_shared)) { break } v.reset(Op386MOVBload) v.AuxInt = int32ToAuxInt(off1 + off2) v.Aux = symToAux(mergeSym(sym1, sym2)) v.AddArg2(base, mem) return true } // match: (MOVBload [off] {sym} (SB) _) // cond: symIsRO(sym) // result: (MOVLconst [int32(read8(sym, int64(off)))]) for { off := auxIntToInt32(v.AuxInt) sym := auxToSym(v.Aux) if v_0.Op != OpSB || !(symIsRO(sym)) { break } v.reset(Op386MOVLconst) v.AuxInt = int32ToAuxInt(int32(read8(sym, int64(off)))) return true } return false } func rewriteValue386_Op386MOVBstore(v *Value) bool { v_2 := v.Args[2] v_1 := v.Args[1] v_0 := v.Args[0] b := v.Block config := b.Func.Config // match: (MOVBstore [off] {sym} ptr (MOVBLSX x) mem) // result: (MOVBstore [off] {sym} ptr x mem) for { off := auxIntToInt32(v.AuxInt) sym := auxToSym(v.Aux) ptr := v_0 if v_1.Op != Op386MOVBLSX { break } x := v_1.Args[0] mem := v_2 v.reset(Op386MOVBstore) v.AuxInt = int32ToAuxInt(off) v.Aux = symToAux(sym) v.AddArg3(ptr, x, mem) return true } // match: (MOVBstore [off] {sym} ptr (MOVBLZX x) mem) // result: (MOVBstore [off] {sym} ptr x mem) for { off := auxIntToInt32(v.AuxInt) sym := auxToSym(v.Aux) ptr := v_0 if v_1.Op != Op386MOVBLZX { break } x := v_1.Args[0] mem := v_2 v.reset(Op386MOVBstore) v.AuxInt = int32ToAuxInt(off) v.Aux = symToAux(sym) v.AddArg3(ptr, x, mem) return true } // match: (MOVBstore [off1] {sym} (ADDLconst [off2] ptr) val mem) // cond: is32Bit(int64(off1)+int64(off2)) // result: (MOVBstore [off1+off2] {sym} ptr val mem) for { off1 := auxIntToInt32(v.AuxInt) sym := auxToSym(v.Aux) if v_0.Op != Op386ADDLconst { break } off2 := auxIntToInt32(v_0.AuxInt) ptr := v_0.Args[0] val := v_1 mem := v_2 if !(is32Bit(int64(off1) + int64(off2))) { break } v.reset(Op386MOVBstore) v.AuxInt = int32ToAuxInt(off1 + off2) v.Aux = symToAux(sym) v.AddArg3(ptr, val, mem) return true } // match: (MOVBstore [off] {sym} ptr (MOVLconst [c]) mem) // result: (MOVBstoreconst [makeValAndOff(c,off)] {sym} ptr mem) for { off := auxIntToInt32(v.AuxInt) sym := auxToSym(v.Aux) ptr := v_0 if v_1.Op != Op386MOVLconst { break } c := auxIntToInt32(v_1.AuxInt) mem := v_2 v.reset(Op386MOVBstoreconst) v.AuxInt = valAndOffToAuxInt(makeValAndOff(c, off)) v.Aux = symToAux(sym) v.AddArg2(ptr, mem) return true } // match: (MOVBstore [off1] {sym1} (LEAL [off2] {sym2} base) val mem) // cond: is32Bit(int64(off1)+int64(off2)) && canMergeSym(sym1, sym2) && (base.Op != OpSB || !config.ctxt.Flag_shared) // result: (MOVBstore [off1+off2] {mergeSym(sym1,sym2)} base val mem) for { off1 := auxIntToInt32(v.AuxInt) sym1 := auxToSym(v.Aux) if v_0.Op != Op386LEAL { break } off2 := auxIntToInt32(v_0.AuxInt) sym2 := auxToSym(v_0.Aux) base := v_0.Args[0] val := v_1 mem := v_2 if !(is32Bit(int64(off1)+int64(off2)) && canMergeSym(sym1, sym2) && (base.Op != OpSB || !config.ctxt.Flag_shared)) { break } v.reset(Op386MOVBstore) v.AuxInt = int32ToAuxInt(off1 + off2) v.Aux = symToAux(mergeSym(sym1, sym2)) v.AddArg3(base, val, mem) return true } // match: (MOVBstore [i] {s} p (SHRWconst [8] w) x:(MOVBstore [i-1] {s} p w mem)) // cond: x.Uses == 1 && clobber(x) // result: (MOVWstore [i-1] {s} p w mem) for { i := auxIntToInt32(v.AuxInt) s := auxToSym(v.Aux) p := v_0 if v_1.Op != Op386SHRWconst || auxIntToInt16(v_1.AuxInt) != 8 { break } w := v_1.Args[0] x := v_2 if x.Op != Op386MOVBstore || auxIntToInt32(x.AuxInt) != i-1 || auxToSym(x.Aux) != s { break } mem := x.Args[2] if p != x.Args[0] || w != x.Args[1] || !(x.Uses == 1 && clobber(x)) { break } v.reset(Op386MOVWstore) v.AuxInt = int32ToAuxInt(i - 1) v.Aux = symToAux(s) v.AddArg3(p, w, mem) return true } // match: (MOVBstore [i] {s} p (SHRLconst [8] w) x:(MOVBstore [i-1] {s} p w mem)) // cond: x.Uses == 1 && clobber(x) // result: (MOVWstore [i-1] {s} p w mem) for { i := auxIntToInt32(v.AuxInt) s := auxToSym(v.Aux) p := v_0 if v_1.Op != Op386SHRLconst || auxIntToInt32(v_1.AuxInt) != 8 { break } w := v_1.Args[0] x := v_2 if x.Op != Op386MOVBstore || auxIntToInt32(x.AuxInt) != i-1 || auxToSym(x.Aux) != s { break } mem := x.Args[2] if p != x.Args[0] || w != x.Args[1] || !(x.Uses == 1 && clobber(x)) { break } v.reset(Op386MOVWstore) v.AuxInt = int32ToAuxInt(i - 1) v.Aux = symToAux(s) v.AddArg3(p, w, mem) return true } // match: (MOVBstore [i] {s} p w x:(MOVBstore {s} [i+1] p (SHRWconst [8] w) mem)) // cond: x.Uses == 1 && clobber(x) // result: (MOVWstore [i] {s} p w mem) for { i := auxIntToInt32(v.AuxInt) s := auxToSym(v.Aux) p := v_0 w := v_1 x := v_2 if x.Op != Op386MOVBstore || auxIntToInt32(x.AuxInt) != i+1 || auxToSym(x.Aux) != s { break } mem := x.Args[2] if p != x.Args[0] { break } x_1 := x.Args[1] if x_1.Op != Op386SHRWconst || auxIntToInt16(x_1.AuxInt) != 8 || w != x_1.Args[0] || !(x.Uses == 1 && clobber(x)) { break } v.reset(Op386MOVWstore) v.AuxInt = int32ToAuxInt(i) v.Aux = symToAux(s) v.AddArg3(p, w, mem) return true } // match: (MOVBstore [i] {s} p w x:(MOVBstore {s} [i+1] p (SHRLconst [8] w) mem)) // cond: x.Uses == 1 && clobber(x) // result: (MOVWstore [i] {s} p w mem) for { i := auxIntToInt32(v.AuxInt) s := auxToSym(v.Aux) p := v_0 w := v_1 x := v_2 if x.Op != Op386MOVBstore || auxIntToInt32(x.AuxInt) != i+1 || auxToSym(x.Aux) != s { break } mem := x.Args[2] if p != x.Args[0] { break } x_1 := x.Args[1] if x_1.Op != Op386SHRLconst || auxIntToInt32(x_1.AuxInt) != 8 || w != x_1.Args[0] || !(x.Uses == 1 && clobber(x)) { break } v.reset(Op386MOVWstore) v.AuxInt = int32ToAuxInt(i) v.Aux = symToAux(s) v.AddArg3(p, w, mem) return true } // match: (MOVBstore [i] {s} p (SHRLconst [j] w) x:(MOVBstore [i-1] {s} p w0:(SHRLconst [j-8] w) mem)) // cond: x.Uses == 1 && clobber(x) // result: (MOVWstore [i-1] {s} p w0 mem) for { i := auxIntToInt32(v.AuxInt) s := auxToSym(v.Aux) p := v_0 if v_1.Op != Op386SHRLconst { break } j := auxIntToInt32(v_1.AuxInt) w := v_1.Args[0] x := v_2 if x.Op != Op386MOVBstore || auxIntToInt32(x.AuxInt) != i-1 || auxToSym(x.Aux) != s { break } mem := x.Args[2] if p != x.Args[0] { break } w0 := x.Args[1] if w0.Op != Op386SHRLconst || auxIntToInt32(w0.AuxInt) != j-8 || w != w0.Args[0] || !(x.Uses == 1 && clobber(x)) { break } v.reset(Op386MOVWstore) v.AuxInt = int32ToAuxInt(i - 1) v.Aux = symToAux(s) v.AddArg3(p, w0, mem) return true } // match: (MOVBstore [i] {s} p1 (SHRWconst [8] w) x:(MOVBstore [i] {s} p0 w mem)) // cond: x.Uses == 1 && sequentialAddresses(p0, p1, 1) && clobber(x) // result: (MOVWstore [i] {s} p0 w mem) for { i := auxIntToInt32(v.AuxInt) s := auxToSym(v.Aux) p1 := v_0 if v_1.Op != Op386SHRWconst || auxIntToInt16(v_1.AuxInt) != 8 { break } w := v_1.Args[0] x := v_2 if x.Op != Op386MOVBstore || auxIntToInt32(x.AuxInt) != i || auxToSym(x.Aux) != s { break } mem := x.Args[2] p0 := x.Args[0] if w != x.Args[1] || !(x.Uses == 1 && sequentialAddresses(p0, p1, 1) && clobber(x)) { break } v.reset(Op386MOVWstore) v.AuxInt = int32ToAuxInt(i) v.Aux = symToAux(s) v.AddArg3(p0, w, mem) return true } // match: (MOVBstore [i] {s} p1 (SHRLconst [8] w) x:(MOVBstore [i] {s} p0 w mem)) // cond: x.Uses == 1 && sequentialAddresses(p0, p1, 1) && clobber(x) // result: (MOVWstore [i] {s} p0 w mem) for { i := auxIntToInt32(v.AuxInt) s := auxToSym(v.Aux) p1 := v_0 if v_1.Op != Op386SHRLconst || auxIntToInt32(v_1.AuxInt) != 8 { break } w := v_1.Args[0] x := v_2 if x.Op != Op386MOVBstore || auxIntToInt32(x.AuxInt) != i || auxToSym(x.Aux) != s { break } mem := x.Args[2] p0 := x.Args[0] if w != x.Args[1] || !(x.Uses == 1 && sequentialAddresses(p0, p1, 1) && clobber(x)) { break } v.reset(Op386MOVWstore) v.AuxInt = int32ToAuxInt(i) v.Aux = symToAux(s) v.AddArg3(p0, w, mem) return true } // match: (MOVBstore [i] {s} p0 w x:(MOVBstore {s} [i] p1 (SHRWconst [8] w) mem)) // cond: x.Uses == 1 && sequentialAddresses(p0, p1, 1) && clobber(x) // result: (MOVWstore [i] {s} p0 w mem) for { i := auxIntToInt32(v.AuxInt) s := auxToSym(v.Aux) p0 := v_0 w := v_1 x := v_2 if x.Op != Op386MOVBstore || auxIntToInt32(x.AuxInt) != i || auxToSym(x.Aux) != s { break } mem := x.Args[2] p1 := x.Args[0] x_1 := x.Args[1] if x_1.Op != Op386SHRWconst || auxIntToInt16(x_1.AuxInt) != 8 || w != x_1.Args[0] || !(x.Uses == 1 && sequentialAddresses(p0, p1, 1) && clobber(x)) { break } v.reset(Op386MOVWstore) v.AuxInt = int32ToAuxInt(i) v.Aux = symToAux(s) v.AddArg3(p0, w, mem) return true } // match: (MOVBstore [i] {s} p0 w x:(MOVBstore {s} [i] p1 (SHRLconst [8] w) mem)) // cond: x.Uses == 1 && sequentialAddresses(p0, p1, 1) && clobber(x) // result: (MOVWstore [i] {s} p0 w mem) for { i := auxIntToInt32(v.AuxInt) s := auxToSym(v.Aux) p0 := v_0 w := v_1 x := v_2 if x.Op != Op386MOVBstore || auxIntToInt32(x.AuxInt) != i || auxToSym(x.Aux) != s { break } mem := x.Args[2] p1 := x.Args[0] x_1 := x.Args[1] if x_1.Op != Op386SHRLconst || auxIntToInt32(x_1.AuxInt) != 8 || w != x_1.Args[0] || !(x.Uses == 1 && sequentialAddresses(p0, p1, 1) && clobber(x)) { break } v.reset(Op386MOVWstore) v.AuxInt = int32ToAuxInt(i) v.Aux = symToAux(s) v.AddArg3(p0, w, mem) return true } // match: (MOVBstore [i] {s} p1 (SHRLconst [j] w) x:(MOVBstore [i] {s} p0 w0:(SHRLconst [j-8] w) mem)) // cond: x.Uses == 1 && sequentialAddresses(p0, p1, 1) && clobber(x) // result: (MOVWstore [i] {s} p0 w0 mem) for { i := auxIntToInt32(v.AuxInt) s := auxToSym(v.Aux) p1 := v_0 if v_1.Op != Op386SHRLconst { break } j := auxIntToInt32(v_1.AuxInt) w := v_1.Args[0] x := v_2 if x.Op != Op386MOVBstore || auxIntToInt32(x.AuxInt) != i || auxToSym(x.Aux) != s { break } mem := x.Args[2] p0 := x.Args[0] w0 := x.Args[1] if w0.Op != Op386SHRLconst || auxIntToInt32(w0.AuxInt) != j-8 || w != w0.Args[0] || !(x.Uses == 1 && sequentialAddresses(p0, p1, 1) && clobber(x)) { break } v.reset(Op386MOVWstore) v.AuxInt = int32ToAuxInt(i) v.Aux = symToAux(s) v.AddArg3(p0, w0, mem) return true } return false } func rewriteValue386_Op386MOVBstoreconst(v *Value) bool { v_1 := v.Args[1] v_0 := v.Args[0] b := v.Block config := b.Func.Config // match: (MOVBstoreconst [sc] {s} (ADDLconst [off] ptr) mem) // cond: sc.canAdd32(off) // result: (MOVBstoreconst [sc.addOffset32(off)] {s} ptr mem) for { sc := auxIntToValAndOff(v.AuxInt) s := auxToSym(v.Aux) if v_0.Op != Op386ADDLconst { break } off := auxIntToInt32(v_0.AuxInt) ptr := v_0.Args[0] mem := v_1 if !(sc.canAdd32(off)) { break } v.reset(Op386MOVBstoreconst) v.AuxInt = valAndOffToAuxInt(sc.addOffset32(off)) v.Aux = symToAux(s) v.AddArg2(ptr, mem) return true } // match: (MOVBstoreconst [sc] {sym1} (LEAL [off] {sym2} ptr) mem) // cond: canMergeSym(sym1, sym2) && sc.canAdd32(off) && (ptr.Op != OpSB || !config.ctxt.Flag_shared) // result: (MOVBstoreconst [sc.addOffset32(off)] {mergeSym(sym1, sym2)} ptr mem) for { sc := auxIntToValAndOff(v.AuxInt) sym1 := auxToSym(v.Aux) if v_0.Op != Op386LEAL { break } off := auxIntToInt32(v_0.AuxInt) sym2 := auxToSym(v_0.Aux) ptr := v_0.Args[0] mem := v_1 if !(canMergeSym(sym1, sym2) && sc.canAdd32(off) && (ptr.Op != OpSB || !config.ctxt.Flag_shared)) { break } v.reset(Op386MOVBstoreconst) v.AuxInt = valAndOffToAuxInt(sc.addOffset32(off)) v.Aux = symToAux(mergeSym(sym1, sym2)) v.AddArg2(ptr, mem) return true } // match: (MOVBstoreconst [c] {s} p x:(MOVBstoreconst [a] {s} p mem)) // cond: x.Uses == 1 && a.Off() + 1 == c.Off() && clobber(x) // result: (MOVWstoreconst [makeValAndOff(a.Val()&0xff | c.Val()<<8, a.Off())] {s} p mem) for { c := auxIntToValAndOff(v.AuxInt) s := auxToSym(v.Aux) p := v_0 x := v_1 if x.Op != Op386MOVBstoreconst { break } a := auxIntToValAndOff(x.AuxInt) if auxToSym(x.Aux) != s { break } mem := x.Args[1] if p != x.Args[0] || !(x.Uses == 1 && a.Off()+1 == c.Off() && clobber(x)) { break } v.reset(Op386MOVWstoreconst) v.AuxInt = valAndOffToAuxInt(makeValAndOff(a.Val()&0xff|c.Val()<<8, a.Off())) v.Aux = symToAux(s) v.AddArg2(p, mem) return true } // match: (MOVBstoreconst [a] {s} p x:(MOVBstoreconst [c] {s} p mem)) // cond: x.Uses == 1 && a.Off() + 1 == c.Off() && clobber(x) // result: (MOVWstoreconst [makeValAndOff(a.Val()&0xff | c.Val()<<8, a.Off())] {s} p mem) for { a := auxIntToValAndOff(v.AuxInt) s := auxToSym(v.Aux) p := v_0 x := v_1 if x.Op != Op386MOVBstoreconst { break } c := auxIntToValAndOff(x.AuxInt) if auxToSym(x.Aux) != s { break } mem := x.Args[1] if p != x.Args[0] || !(x.Uses == 1 && a.Off()+1 == c.Off() && clobber(x)) { break } v.reset(Op386MOVWstoreconst) v.AuxInt = valAndOffToAuxInt(makeValAndOff(a.Val()&0xff|c.Val()<<8, a.Off())) v.Aux = symToAux(s) v.AddArg2(p, mem) return true } // match: (MOVBstoreconst [c] {s} p1 x:(MOVBstoreconst [a] {s} p0 mem)) // cond: x.Uses == 1 && a.Off() == c.Off() && sequentialAddresses(p0, p1, 1) && clobber(x) // result: (MOVWstoreconst [makeValAndOff(a.Val()&0xff | c.Val()<<8, a.Off())] {s} p0 mem) for { c := auxIntToValAndOff(v.AuxInt) s := auxToSym(v.Aux) p1 := v_0 x := v_1 if x.Op != Op386MOVBstoreconst { break } a := auxIntToValAndOff(x.AuxInt) if auxToSym(x.Aux) != s { break } mem := x.Args[1] p0 := x.Args[0] if !(x.Uses == 1 && a.Off() == c.Off() && sequentialAddresses(p0, p1, 1) && clobber(x)) { break } v.reset(Op386MOVWstoreconst) v.AuxInt = valAndOffToAuxInt(makeValAndOff(a.Val()&0xff|c.Val()<<8, a.Off())) v.Aux = symToAux(s) v.AddArg2(p0, mem) return true } // match: (MOVBstoreconst [a] {s} p0 x:(MOVBstoreconst [c] {s} p1 mem)) // cond: x.Uses == 1 && a.Off() == c.Off() && sequentialAddresses(p0, p1, 1) && clobber(x) // result: (MOVWstoreconst [makeValAndOff(a.Val()&0xff | c.Val()<<8, a.Off())] {s} p0 mem) for { a := auxIntToValAndOff(v.AuxInt) s := auxToSym(v.Aux) p0 := v_0 x := v_1 if x.Op != Op386MOVBstoreconst { break } c := auxIntToValAndOff(x.AuxInt) if auxToSym(x.Aux) != s { break } mem := x.Args[1] p1 := x.Args[0] if !(x.Uses == 1 && a.Off() == c.Off() && sequentialAddresses(p0, p1, 1) && clobber(x)) { break } v.reset(Op386MOVWstoreconst) v.AuxInt = valAndOffToAuxInt(makeValAndOff(a.Val()&0xff|c.Val()<<8, a.Off())) v.Aux = symToAux(s) v.AddArg2(p0, mem) return true } return false } func rewriteValue386_Op386MOVLload(v *Value) bool { v_1 := v.Args[1] v_0 := v.Args[0] b := v.Block config := b.Func.Config // match: (MOVLload [off] {sym} ptr (MOVLstore [off2] {sym2} ptr2 x _)) // cond: sym == sym2 && off == off2 && isSamePtr(ptr, ptr2) // result: x for { off := auxIntToInt32(v.AuxInt) sym := auxToSym(v.Aux) ptr := v_0 if v_1.Op != Op386MOVLstore { break } off2 := auxIntToInt32(v_1.AuxInt) sym2 := auxToSym(v_1.Aux) x := v_1.Args[1] ptr2 := v_1.Args[0] if !(sym == sym2 && off == off2 && isSamePtr(ptr, ptr2)) { break } v.copyOf(x) return true } // match: (MOVLload [off1] {sym} (ADDLconst [off2] ptr) mem) // cond: is32Bit(int64(off1)+int64(off2)) // result: (MOVLload [off1+off2] {sym} ptr mem) for { off1 := auxIntToInt32(v.AuxInt) sym := auxToSym(v.Aux) if v_0.Op != Op386ADDLconst { break } off2 := auxIntToInt32(v_0.AuxInt) ptr := v_0.Args[0] mem := v_1 if !(is32Bit(int64(off1) + int64(off2))) { break } v.reset(Op386MOVLload) v.AuxInt = int32ToAuxInt(off1 + off2) v.Aux = symToAux(sym) v.AddArg2(ptr, mem) return true } // match: (MOVLload [off1] {sym1} (LEAL [off2] {sym2} base) mem) // cond: is32Bit(int64(off1)+int64(off2)) && canMergeSym(sym1, sym2) && (base.Op != OpSB || !config.ctxt.Flag_shared) // result: (MOVLload [off1+off2] {mergeSym(sym1,sym2)} base mem) for { off1 := auxIntToInt32(v.AuxInt) sym1 := auxToSym(v.Aux) if v_0.Op != Op386LEAL { break } off2 := auxIntToInt32(v_0.AuxInt) sym2 := auxToSym(v_0.Aux) base := v_0.Args[0] mem := v_1 if !(is32Bit(int64(off1)+int64(off2)) && canMergeSym(sym1, sym2) && (base.Op != OpSB || !config.ctxt.Flag_shared)) { break } v.reset(Op386MOVLload) v.AuxInt = int32ToAuxInt(off1 + off2) v.Aux = symToAux(mergeSym(sym1, sym2)) v.AddArg2(base, mem) return true } // match: (MOVLload [off] {sym} (SB) _) // cond: symIsRO(sym) // result: (MOVLconst [int32(read32(sym, int64(off), config.ctxt.Arch.ByteOrder))]) for { off := auxIntToInt32(v.AuxInt) sym := auxToSym(v.Aux) if v_0.Op != OpSB || !(symIsRO(sym)) { break } v.reset(Op386MOVLconst) v.AuxInt = int32ToAuxInt(int32(read32(sym, int64(off), config.ctxt.Arch.ByteOrder))) return true } return false } func rewriteValue386_Op386MOVLstore(v *Value) bool { v_2 := v.Args[2] v_1 := v.Args[1] v_0 := v.Args[0] b := v.Block config := b.Func.Config // match: (MOVLstore [off1] {sym} (ADDLconst [off2] ptr) val mem) // cond: is32Bit(int64(off1)+int64(off2)) // result: (MOVLstore [off1+off2] {sym} ptr val mem) for { off1 := auxIntToInt32(v.AuxInt) sym := auxToSym(v.Aux) if v_0.Op != Op386ADDLconst { break } off2 := auxIntToInt32(v_0.AuxInt) ptr := v_0.Args[0] val := v_1 mem := v_2 if !(is32Bit(int64(off1) + int64(off2))) { break } v.reset(Op386MOVLstore) v.AuxInt = int32ToAuxInt(off1 + off2) v.Aux = symToAux(sym) v.AddArg3(ptr, val, mem) return true } // match: (MOVLstore [off] {sym} ptr (MOVLconst [c]) mem) // result: (MOVLstoreconst [makeValAndOff(c,off)] {sym} ptr mem) for { off := auxIntToInt32(v.AuxInt) sym := auxToSym(v.Aux) ptr := v_0 if v_1.Op != Op386MOVLconst { break } c := auxIntToInt32(v_1.AuxInt) mem := v_2 v.reset(Op386MOVLstoreconst) v.AuxInt = valAndOffToAuxInt(makeValAndOff(c, off)) v.Aux = symToAux(sym) v.AddArg2(ptr, mem) return true } // match: (MOVLstore [off1] {sym1} (LEAL [off2] {sym2} base) val mem) // cond: is32Bit(int64(off1)+int64(off2)) && canMergeSym(sym1, sym2) && (base.Op != OpSB || !config.ctxt.Flag_shared) // result: (MOVLstore [off1+off2] {mergeSym(sym1,sym2)} base val mem) for { off1 := auxIntToInt32(v.AuxInt) sym1 := auxToSym(v.Aux) if v_0.Op != Op386LEAL { break } off2 := auxIntToInt32(v_0.AuxInt) sym2 := auxToSym(v_0.Aux) base := v_0.Args[0] val := v_1 mem := v_2 if !(is32Bit(int64(off1)+int64(off2)) && canMergeSym(sym1, sym2) && (base.Op != OpSB || !config.ctxt.Flag_shared)) { break } v.reset(Op386MOVLstore) v.AuxInt = int32ToAuxInt(off1 + off2) v.Aux = symToAux(mergeSym(sym1, sym2)) v.AddArg3(base, val, mem) return true } // match: (MOVLstore {sym} [off] ptr y:(ADDLload x [off] {sym} ptr mem) mem) // cond: y.Uses==1 && clobber(y) // result: (ADDLmodify [off] {sym} ptr x mem) for { off := auxIntToInt32(v.AuxInt) sym := auxToSym(v.Aux) ptr := v_0 y := v_1 if y.Op != Op386ADDLload || auxIntToInt32(y.AuxInt) != off || auxToSym(y.Aux) != sym { break } mem := y.Args[2] x := y.Args[0] if ptr != y.Args[1] || mem != v_2 || !(y.Uses == 1 && clobber(y)) { break } v.reset(Op386ADDLmodify) v.AuxInt = int32ToAuxInt(off) v.Aux = symToAux(sym) v.AddArg3(ptr, x, mem) return true } // match: (MOVLstore {sym} [off] ptr y:(ANDLload x [off] {sym} ptr mem) mem) // cond: y.Uses==1 && clobber(y) // result: (ANDLmodify [off] {sym} ptr x mem) for { off := auxIntToInt32(v.AuxInt) sym := auxToSym(v.Aux) ptr := v_0 y := v_1 if y.Op != Op386ANDLload || auxIntToInt32(y.AuxInt) != off || auxToSym(y.Aux) != sym { break } mem := y.Args[2] x := y.Args[0] if ptr != y.Args[1] || mem != v_2 || !(y.Uses == 1 && clobber(y)) { break } v.reset(Op386ANDLmodify) v.AuxInt = int32ToAuxInt(off) v.Aux = symToAux(sym) v.AddArg3(ptr, x, mem) return true } // match: (MOVLstore {sym} [off] ptr y:(ORLload x [off] {sym} ptr mem) mem) // cond: y.Uses==1 && clobber(y) // result: (ORLmodify [off] {sym} ptr x mem) for { off := auxIntToInt32(v.AuxInt) sym := auxToSym(v.Aux) ptr := v_0 y := v_1 if y.Op != Op386ORLload || auxIntToInt32(y.AuxInt) != off || auxToSym(y.Aux) != sym { break } mem := y.Args[2] x := y.Args[0] if ptr != y.Args[1] || mem != v_2 || !(y.Uses == 1 && clobber(y)) { break } v.reset(Op386ORLmodify) v.AuxInt = int32ToAuxInt(off) v.Aux = symToAux(sym) v.AddArg3(ptr, x, mem) return true } // match: (MOVLstore {sym} [off] ptr y:(XORLload x [off] {sym} ptr mem) mem) // cond: y.Uses==1 && clobber(y) // result: (XORLmodify [off] {sym} ptr x mem) for { off := auxIntToInt32(v.AuxInt) sym := auxToSym(v.Aux) ptr := v_0 y := v_1 if y.Op != Op386XORLload || auxIntToInt32(y.AuxInt) != off || auxToSym(y.Aux) != sym { break } mem := y.Args[2] x := y.Args[0] if ptr != y.Args[1] || mem != v_2 || !(y.Uses == 1 && clobber(y)) { break } v.reset(Op386XORLmodify) v.AuxInt = int32ToAuxInt(off) v.Aux = symToAux(sym) v.AddArg3(ptr, x, mem) return true } // match: (MOVLstore {sym} [off] ptr y:(ADDL l:(MOVLload [off] {sym} ptr mem) x) mem) // cond: y.Uses==1 && l.Uses==1 && clobber(y, l) // result: (ADDLmodify [off] {sym} ptr x mem) for { off := auxIntToInt32(v.AuxInt) sym := auxToSym(v.Aux) ptr := v_0 y := v_1 if y.Op != Op386ADDL { break } _ = y.Args[1] y_0 := y.Args[0] y_1 := y.Args[1] for _i0 := 0; _i0 <= 1; _i0, y_0, y_1 = _i0+1, y_1, y_0 { l := y_0 if l.Op != Op386MOVLload || auxIntToInt32(l.AuxInt) != off || auxToSym(l.Aux) != sym { continue } mem := l.Args[1] if ptr != l.Args[0] { continue } x := y_1 if mem != v_2 || !(y.Uses == 1 && l.Uses == 1 && clobber(y, l)) { continue } v.reset(Op386ADDLmodify) v.AuxInt = int32ToAuxInt(off) v.Aux = symToAux(sym) v.AddArg3(ptr, x, mem) return true } break } // match: (MOVLstore {sym} [off] ptr y:(SUBL l:(MOVLload [off] {sym} ptr mem) x) mem) // cond: y.Uses==1 && l.Uses==1 && clobber(y, l) // result: (SUBLmodify [off] {sym} ptr x mem) for { off := auxIntToInt32(v.AuxInt) sym := auxToSym(v.Aux) ptr := v_0 y := v_1 if y.Op != Op386SUBL { break } x := y.Args[1] l := y.Args[0] if l.Op != Op386MOVLload || auxIntToInt32(l.AuxInt) != off || auxToSym(l.Aux) != sym { break } mem := l.Args[1] if ptr != l.Args[0] || mem != v_2 || !(y.Uses == 1 && l.Uses == 1 && clobber(y, l)) { break } v.reset(Op386SUBLmodify) v.AuxInt = int32ToAuxInt(off) v.Aux = symToAux(sym) v.AddArg3(ptr, x, mem) return true } // match: (MOVLstore {sym} [off] ptr y:(ANDL l:(MOVLload [off] {sym} ptr mem) x) mem) // cond: y.Uses==1 && l.Uses==1 && clobber(y, l) // result: (ANDLmodify [off] {sym} ptr x mem) for { off := auxIntToInt32(v.AuxInt) sym := auxToSym(v.Aux) ptr := v_0 y := v_1 if y.Op != Op386ANDL { break } _ = y.Args[1] y_0 := y.Args[0] y_1 := y.Args[1] for _i0 := 0; _i0 <= 1; _i0, y_0, y_1 = _i0+1, y_1, y_0 { l := y_0 if l.Op != Op386MOVLload || auxIntToInt32(l.AuxInt) != off || auxToSym(l.Aux) != sym { continue } mem := l.Args[1] if ptr != l.Args[0] { continue } x := y_1 if mem != v_2 || !(y.Uses == 1 && l.Uses == 1 && clobber(y, l)) { continue } v.reset(Op386ANDLmodify) v.AuxInt = int32ToAuxInt(off) v.Aux = symToAux(sym) v.AddArg3(ptr, x, mem) return true } break } // match: (MOVLstore {sym} [off] ptr y:(ORL l:(MOVLload [off] {sym} ptr mem) x) mem) // cond: y.Uses==1 && l.Uses==1 && clobber(y, l) // result: (ORLmodify [off] {sym} ptr x mem) for { off := auxIntToInt32(v.AuxInt) sym := auxToSym(v.Aux) ptr := v_0 y := v_1 if y.Op != Op386ORL { break } _ = y.Args[1] y_0 := y.Args[0] y_1 := y.Args[1] for _i0 := 0; _i0 <= 1; _i0, y_0, y_1 = _i0+1, y_1, y_0 { l := y_0 if l.Op != Op386MOVLload || auxIntToInt32(l.AuxInt) != off || auxToSym(l.Aux) != sym { continue } mem := l.Args[1] if ptr != l.Args[0] { continue } x := y_1 if mem != v_2 || !(y.Uses == 1 && l.Uses == 1 && clobber(y, l)) { continue } v.reset(Op386ORLmodify) v.AuxInt = int32ToAuxInt(off) v.Aux = symToAux(sym) v.AddArg3(ptr, x, mem) return true } break } // match: (MOVLstore {sym} [off] ptr y:(XORL l:(MOVLload [off] {sym} ptr mem) x) mem) // cond: y.Uses==1 && l.Uses==1 && clobber(y, l) // result: (XORLmodify [off] {sym} ptr x mem) for { off := auxIntToInt32(v.AuxInt) sym := auxToSym(v.Aux) ptr := v_0 y := v_1 if y.Op != Op386XORL { break } _ = y.Args[1] y_0 := y.Args[0] y_1 := y.Args[1] for _i0 := 0; _i0 <= 1; _i0, y_0, y_1 = _i0+1, y_1, y_0 { l := y_0 if l.Op != Op386MOVLload || auxIntToInt32(l.AuxInt) != off || auxToSym(l.Aux) != sym { continue } mem := l.Args[1] if ptr != l.Args[0] { continue } x := y_1 if mem != v_2 || !(y.Uses == 1 && l.Uses == 1 && clobber(y, l)) { continue } v.reset(Op386XORLmodify) v.AuxInt = int32ToAuxInt(off) v.Aux = symToAux(sym) v.AddArg3(ptr, x, mem) return true } break } // match: (MOVLstore {sym} [off] ptr y:(ADDLconst [c] l:(MOVLload [off] {sym} ptr mem)) mem) // cond: y.Uses==1 && l.Uses==1 && clobber(y, l) // result: (ADDLconstmodify [makeValAndOff(c,off)] {sym} ptr mem) for { off := auxIntToInt32(v.AuxInt) sym := auxToSym(v.Aux) ptr := v_0 y := v_1 if y.Op != Op386ADDLconst { break } c := auxIntToInt32(y.AuxInt) l := y.Args[0] if l.Op != Op386MOVLload || auxIntToInt32(l.AuxInt) != off || auxToSym(l.Aux) != sym { break } mem := l.Args[1] if ptr != l.Args[0] || mem != v_2 || !(y.Uses == 1 && l.Uses == 1 && clobber(y, l)) { break } v.reset(Op386ADDLconstmodify) v.AuxInt = valAndOffToAuxInt(makeValAndOff(c, off)) v.Aux = symToAux(sym) v.AddArg2(ptr, mem) return true } // match: (MOVLstore {sym} [off] ptr y:(ANDLconst [c] l:(MOVLload [off] {sym} ptr mem)) mem) // cond: y.Uses==1 && l.Uses==1 && clobber(y, l) // result: (ANDLconstmodify [makeValAndOff(c,off)] {sym} ptr mem) for { off := auxIntToInt32(v.AuxInt) sym := auxToSym(v.Aux) ptr := v_0 y := v_1 if y.Op != Op386ANDLconst { break } c := auxIntToInt32(y.AuxInt) l := y.Args[0] if l.Op != Op386MOVLload || auxIntToInt32(l.AuxInt) != off || auxToSym(l.Aux) != sym { break } mem := l.Args[1] if ptr != l.Args[0] || mem != v_2 || !(y.Uses == 1 && l.Uses == 1 && clobber(y, l)) { break } v.reset(Op386ANDLconstmodify) v.AuxInt = valAndOffToAuxInt(makeValAndOff(c, off)) v.Aux = symToAux(sym) v.AddArg2(ptr, mem) return true } // match: (MOVLstore {sym} [off] ptr y:(ORLconst [c] l:(MOVLload [off] {sym} ptr mem)) mem) // cond: y.Uses==1 && l.Uses==1 && clobber(y, l) // result: (ORLconstmodify [makeValAndOff(c,off)] {sym} ptr mem) for { off := auxIntToInt32(v.AuxInt) sym := auxToSym(v.Aux) ptr := v_0 y := v_1 if y.Op != Op386ORLconst { break } c := auxIntToInt32(y.AuxInt) l := y.Args[0] if l.Op != Op386MOVLload || auxIntToInt32(l.AuxInt) != off || auxToSym(l.Aux) != sym { break } mem := l.Args[1] if ptr != l.Args[0] || mem != v_2 || !(y.Uses == 1 && l.Uses == 1 && clobber(y, l)) { break } v.reset(Op386ORLconstmodify) v.AuxInt = valAndOffToAuxInt(makeValAndOff(c, off)) v.Aux = symToAux(sym) v.AddArg2(ptr, mem) return true } // match: (MOVLstore {sym} [off] ptr y:(XORLconst [c] l:(MOVLload [off] {sym} ptr mem)) mem) // cond: y.Uses==1 && l.Uses==1 && clobber(y, l) // result: (XORLconstmodify [makeValAndOff(c,off)] {sym} ptr mem) for { off := auxIntToInt32(v.AuxInt) sym := auxToSym(v.Aux) ptr := v_0 y := v_1 if y.Op != Op386XORLconst { break } c := auxIntToInt32(y.AuxInt) l := y.Args[0] if l.Op != Op386MOVLload || auxIntToInt32(l.AuxInt) != off || auxToSym(l.Aux) != sym { break } mem := l.Args[1] if ptr != l.Args[0] || mem != v_2 || !(y.Uses == 1 && l.Uses == 1 && clobber(y, l)) { break } v.reset(Op386XORLconstmodify) v.AuxInt = valAndOffToAuxInt(makeValAndOff(c, off)) v.Aux = symToAux(sym) v.AddArg2(ptr, mem) return true } return false } func rewriteValue386_Op386MOVLstoreconst(v *Value) bool { v_1 := v.Args[1] v_0 := v.Args[0] b := v.Block config := b.Func.Config // match: (MOVLstoreconst [sc] {s} (ADDLconst [off] ptr) mem) // cond: sc.canAdd32(off) // result: (MOVLstoreconst [sc.addOffset32(off)] {s} ptr mem) for { sc := auxIntToValAndOff(v.AuxInt) s := auxToSym(v.Aux) if v_0.Op != Op386ADDLconst { break } off := auxIntToInt32(v_0.AuxInt) ptr := v_0.Args[0] mem := v_1 if !(sc.canAdd32(off)) { break } v.reset(Op386MOVLstoreconst) v.AuxInt = valAndOffToAuxInt(sc.addOffset32(off)) v.Aux = symToAux(s) v.AddArg2(ptr, mem) return true } // match: (MOVLstoreconst [sc] {sym1} (LEAL [off] {sym2} ptr) mem) // cond: canMergeSym(sym1, sym2) && sc.canAdd32(off) && (ptr.Op != OpSB || !config.ctxt.Flag_shared) // result: (MOVLstoreconst [sc.addOffset32(off)] {mergeSym(sym1, sym2)} ptr mem) for { sc := auxIntToValAndOff(v.AuxInt) sym1 := auxToSym(v.Aux) if v_0.Op != Op386LEAL { break } off := auxIntToInt32(v_0.AuxInt) sym2 := auxToSym(v_0.Aux) ptr := v_0.Args[0] mem := v_1 if !(canMergeSym(sym1, sym2) && sc.canAdd32(off) && (ptr.Op != OpSB || !config.ctxt.Flag_shared)) { break } v.reset(Op386MOVLstoreconst) v.AuxInt = valAndOffToAuxInt(sc.addOffset32(off)) v.Aux = symToAux(mergeSym(sym1, sym2)) v.AddArg2(ptr, mem) return true } return false } func rewriteValue386_Op386MOVSDconst(v *Value) bool { b := v.Block config := b.Func.Config typ := &b.Func.Config.Types // match: (MOVSDconst [c]) // cond: config.ctxt.Flag_shared // result: (MOVSDconst2 (MOVSDconst1 [c])) for { c := auxIntToFloat64(v.AuxInt) if !(config.ctxt.Flag_shared) { break } v.reset(Op386MOVSDconst2) v0 := b.NewValue0(v.Pos, Op386MOVSDconst1, typ.UInt32) v0.AuxInt = float64ToAuxInt(c) v.AddArg(v0) return true } return false } func rewriteValue386_Op386MOVSDload(v *Value) bool { v_1 := v.Args[1] v_0 := v.Args[0] b := v.Block config := b.Func.Config // match: (MOVSDload [off1] {sym} (ADDLconst [off2] ptr) mem) // cond: is32Bit(int64(off1)+int64(off2)) // result: (MOVSDload [off1+off2] {sym} ptr mem) for { off1 := auxIntToInt32(v.AuxInt) sym := auxToSym(v.Aux) if v_0.Op != Op386ADDLconst { break } off2 := auxIntToInt32(v_0.AuxInt) ptr := v_0.Args[0] mem := v_1 if !(is32Bit(int64(off1) + int64(off2))) { break } v.reset(Op386MOVSDload) v.AuxInt = int32ToAuxInt(off1 + off2) v.Aux = symToAux(sym) v.AddArg2(ptr, mem) return true } // match: (MOVSDload [off1] {sym1} (LEAL [off2] {sym2} base) mem) // cond: is32Bit(int64(off1)+int64(off2)) && canMergeSym(sym1, sym2) && (base.Op != OpSB || !config.ctxt.Flag_shared) // result: (MOVSDload [off1+off2] {mergeSym(sym1,sym2)} base mem) for { off1 := auxIntToInt32(v.AuxInt) sym1 := auxToSym(v.Aux) if v_0.Op != Op386LEAL { break } off2 := auxIntToInt32(v_0.AuxInt) sym2 := auxToSym(v_0.Aux) base := v_0.Args[0] mem := v_1 if !(is32Bit(int64(off1)+int64(off2)) && canMergeSym(sym1, sym2) && (base.Op != OpSB || !config.ctxt.Flag_shared)) { break } v.reset(Op386MOVSDload) v.AuxInt = int32ToAuxInt(off1 + off2) v.Aux = symToAux(mergeSym(sym1, sym2)) v.AddArg2(base, mem) return true } return false } func rewriteValue386_Op386MOVSDstore(v *Value) bool { v_2 := v.Args[2] v_1 := v.Args[1] v_0 := v.Args[0] b := v.Block config := b.Func.Config // match: (MOVSDstore [off1] {sym} (ADDLconst [off2] ptr) val mem) // cond: is32Bit(int64(off1)+int64(off2)) // result: (MOVSDstore [off1+off2] {sym} ptr val mem) for { off1 := auxIntToInt32(v.AuxInt) sym := auxToSym(v.Aux) if v_0.Op != Op386ADDLconst { break } off2 := auxIntToInt32(v_0.AuxInt) ptr := v_0.Args[0] val := v_1 mem := v_2 if !(is32Bit(int64(off1) + int64(off2))) { break } v.reset(Op386MOVSDstore) v.AuxInt = int32ToAuxInt(off1 + off2) v.Aux = symToAux(sym) v.AddArg3(ptr, val, mem) return true } // match: (MOVSDstore [off1] {sym1} (LEAL [off2] {sym2} base) val mem) // cond: is32Bit(int64(off1)+int64(off2)) && canMergeSym(sym1, sym2) && (base.Op != OpSB || !config.ctxt.Flag_shared) // result: (MOVSDstore [off1+off2] {mergeSym(sym1,sym2)} base val mem) for { off1 := auxIntToInt32(v.AuxInt) sym1 := auxToSym(v.Aux) if v_0.Op != Op386LEAL { break } off2 := auxIntToInt32(v_0.AuxInt) sym2 := auxToSym(v_0.Aux) base := v_0.Args[0] val := v_1 mem := v_2 if !(is32Bit(int64(off1)+int64(off2)) && canMergeSym(sym1, sym2) && (base.Op != OpSB || !config.ctxt.Flag_shared)) { break } v.reset(Op386MOVSDstore) v.AuxInt = int32ToAuxInt(off1 + off2) v.Aux = symToAux(mergeSym(sym1, sym2)) v.AddArg3(base, val, mem) return true } return false } func rewriteValue386_Op386MOVSSconst(v *Value) bool { b := v.Block config := b.Func.Config typ := &b.Func.Config.Types // match: (MOVSSconst [c]) // cond: config.ctxt.Flag_shared // result: (MOVSSconst2 (MOVSSconst1 [c])) for { c := auxIntToFloat32(v.AuxInt) if !(config.ctxt.Flag_shared) { break } v.reset(Op386MOVSSconst2) v0 := b.NewValue0(v.Pos, Op386MOVSSconst1, typ.UInt32) v0.AuxInt = float32ToAuxInt(c) v.AddArg(v0) return true } return false } func rewriteValue386_Op386MOVSSload(v *Value) bool { v_1 := v.Args[1] v_0 := v.Args[0] b := v.Block config := b.Func.Config // match: (MOVSSload [off1] {sym} (ADDLconst [off2] ptr) mem) // cond: is32Bit(int64(off1)+int64(off2)) // result: (MOVSSload [off1+off2] {sym} ptr mem) for { off1 := auxIntToInt32(v.AuxInt) sym := auxToSym(v.Aux) if v_0.Op != Op386ADDLconst { break } off2 := auxIntToInt32(v_0.AuxInt) ptr := v_0.Args[0] mem := v_1 if !(is32Bit(int64(off1) + int64(off2))) { break } v.reset(Op386MOVSSload) v.AuxInt = int32ToAuxInt(off1 + off2) v.Aux = symToAux(sym) v.AddArg2(ptr, mem) return true } // match: (MOVSSload [off1] {sym1} (LEAL [off2] {sym2} base) mem) // cond: is32Bit(int64(off1)+int64(off2)) && canMergeSym(sym1, sym2) && (base.Op != OpSB || !config.ctxt.Flag_shared) // result: (MOVSSload [off1+off2] {mergeSym(sym1,sym2)} base mem) for { off1 := auxIntToInt32(v.AuxInt) sym1 := auxToSym(v.Aux) if v_0.Op != Op386LEAL { break } off2 := auxIntToInt32(v_0.AuxInt) sym2 := auxToSym(v_0.Aux) base := v_0.Args[0] mem := v_1 if !(is32Bit(int64(off1)+int64(off2)) && canMergeSym(sym1, sym2) && (base.Op != OpSB || !config.ctxt.Flag_shared)) { break } v.reset(Op386MOVSSload) v.AuxInt = int32ToAuxInt(off1 + off2) v.Aux = symToAux(mergeSym(sym1, sym2)) v.AddArg2(base, mem) return true } return false } func rewriteValue386_Op386MOVSSstore(v *Value) bool { v_2 := v.Args[2] v_1 := v.Args[1] v_0 := v.Args[0] b := v.Block config := b.Func.Config // match: (MOVSSstore [off1] {sym} (ADDLconst [off2] ptr) val mem) // cond: is32Bit(int64(off1)+int64(off2)) // result: (MOVSSstore [off1+off2] {sym} ptr val mem) for { off1 := auxIntToInt32(v.AuxInt) sym := auxToSym(v.Aux) if v_0.Op != Op386ADDLconst { break } off2 := auxIntToInt32(v_0.AuxInt) ptr := v_0.Args[0] val := v_1 mem := v_2 if !(is32Bit(int64(off1) + int64(off2))) { break } v.reset(Op386MOVSSstore) v.AuxInt = int32ToAuxInt(off1 + off2) v.Aux = symToAux(sym) v.AddArg3(ptr, val, mem) return true } // match: (MOVSSstore [off1] {sym1} (LEAL [off2] {sym2} base) val mem) // cond: is32Bit(int64(off1)+int64(off2)) && canMergeSym(sym1, sym2) && (base.Op != OpSB || !config.ctxt.Flag_shared) // result: (MOVSSstore [off1+off2] {mergeSym(sym1,sym2)} base val mem) for { off1 := auxIntToInt32(v.AuxInt) sym1 := auxToSym(v.Aux) if v_0.Op != Op386LEAL { break } off2 := auxIntToInt32(v_0.AuxInt) sym2 := auxToSym(v_0.Aux) base := v_0.Args[0] val := v_1 mem := v_2 if !(is32Bit(int64(off1)+int64(off2)) && canMergeSym(sym1, sym2) && (base.Op != OpSB || !config.ctxt.Flag_shared)) { break } v.reset(Op386MOVSSstore) v.AuxInt = int32ToAuxInt(off1 + off2) v.Aux = symToAux(mergeSym(sym1, sym2)) v.AddArg3(base, val, mem) return true } return false } func rewriteValue386_Op386MOVWLSX(v *Value) bool { v_0 := v.Args[0] b := v.Block // match: (MOVWLSX x:(MOVWload [off] {sym} ptr mem)) // cond: x.Uses == 1 && clobber(x) // result: @x.Block (MOVWLSXload [off] {sym} ptr mem) for { x := v_0 if x.Op != Op386MOVWload { break } off := auxIntToInt32(x.AuxInt) sym := auxToSym(x.Aux) mem := x.Args[1] ptr := x.Args[0] if !(x.Uses == 1 && clobber(x)) { break } b = x.Block v0 := b.NewValue0(x.Pos, Op386MOVWLSXload, v.Type) v.copyOf(v0) v0.AuxInt = int32ToAuxInt(off) v0.Aux = symToAux(sym) v0.AddArg2(ptr, mem) return true } // match: (MOVWLSX (ANDLconst [c] x)) // cond: c & 0x8000 == 0 // result: (ANDLconst [c & 0x7fff] x) for { if v_0.Op != Op386ANDLconst { break } c := auxIntToInt32(v_0.AuxInt) x := v_0.Args[0] if !(c&0x8000 == 0) { break } v.reset(Op386ANDLconst) v.AuxInt = int32ToAuxInt(c & 0x7fff) v.AddArg(x) return true } return false } func rewriteValue386_Op386MOVWLSXload(v *Value) bool { v_1 := v.Args[1] v_0 := v.Args[0] b := v.Block config := b.Func.Config // match: (MOVWLSXload [off] {sym} ptr (MOVWstore [off2] {sym2} ptr2 x _)) // cond: sym == sym2 && off == off2 && isSamePtr(ptr, ptr2) // result: (MOVWLSX x) for { off := auxIntToInt32(v.AuxInt) sym := auxToSym(v.Aux) ptr := v_0 if v_1.Op != Op386MOVWstore { break } off2 := auxIntToInt32(v_1.AuxInt) sym2 := auxToSym(v_1.Aux) x := v_1.Args[1] ptr2 := v_1.Args[0] if !(sym == sym2 && off == off2 && isSamePtr(ptr, ptr2)) { break } v.reset(Op386MOVWLSX) v.AddArg(x) return true } // match: (MOVWLSXload [off1] {sym1} (LEAL [off2] {sym2} base) mem) // cond: is32Bit(int64(off1)+int64(off2)) && canMergeSym(sym1, sym2) && (base.Op != OpSB || !config.ctxt.Flag_shared) // result: (MOVWLSXload [off1+off2] {mergeSym(sym1,sym2)} base mem) for { off1 := auxIntToInt32(v.AuxInt) sym1 := auxToSym(v.Aux) if v_0.Op != Op386LEAL { break } off2 := auxIntToInt32(v_0.AuxInt) sym2 := auxToSym(v_0.Aux) base := v_0.Args[0] mem := v_1 if !(is32Bit(int64(off1)+int64(off2)) && canMergeSym(sym1, sym2) && (base.Op != OpSB || !config.ctxt.Flag_shared)) { break } v.reset(Op386MOVWLSXload) v.AuxInt = int32ToAuxInt(off1 + off2) v.Aux = symToAux(mergeSym(sym1, sym2)) v.AddArg2(base, mem) return true } return false } func rewriteValue386_Op386MOVWLZX(v *Value) bool { v_0 := v.Args[0] b := v.Block // match: (MOVWLZX x:(MOVWload [off] {sym} ptr mem)) // cond: x.Uses == 1 && clobber(x) // result: @x.Block (MOVWload [off] {sym} ptr mem) for { x := v_0 if x.Op != Op386MOVWload { break } off := auxIntToInt32(x.AuxInt) sym := auxToSym(x.Aux) mem := x.Args[1] ptr := x.Args[0] if !(x.Uses == 1 && clobber(x)) { break } b = x.Block v0 := b.NewValue0(x.Pos, Op386MOVWload, v.Type) v.copyOf(v0) v0.AuxInt = int32ToAuxInt(off) v0.Aux = symToAux(sym) v0.AddArg2(ptr, mem) return true } // match: (MOVWLZX (ANDLconst [c] x)) // result: (ANDLconst [c & 0xffff] x) for { if v_0.Op != Op386ANDLconst { break } c := auxIntToInt32(v_0.AuxInt) x := v_0.Args[0] v.reset(Op386ANDLconst) v.AuxInt = int32ToAuxInt(c & 0xffff) v.AddArg(x) return true } return false } func rewriteValue386_Op386MOVWload(v *Value) bool { v_1 := v.Args[1] v_0 := v.Args[0] b := v.Block config := b.Func.Config // match: (MOVWload [off] {sym} ptr (MOVWstore [off2] {sym2} ptr2 x _)) // cond: sym == sym2 && off == off2 && isSamePtr(ptr, ptr2) // result: (MOVWLZX x) for { off := auxIntToInt32(v.AuxInt) sym := auxToSym(v.Aux) ptr := v_0 if v_1.Op != Op386MOVWstore { break } off2 := auxIntToInt32(v_1.AuxInt) sym2 := auxToSym(v_1.Aux) x := v_1.Args[1] ptr2 := v_1.Args[0] if !(sym == sym2 && off == off2 && isSamePtr(ptr, ptr2)) { break } v.reset(Op386MOVWLZX) v.AddArg(x) return true } // match: (MOVWload [off1] {sym} (ADDLconst [off2] ptr) mem) // cond: is32Bit(int64(off1)+int64(off2)) // result: (MOVWload [off1+off2] {sym} ptr mem) for { off1 := auxIntToInt32(v.AuxInt) sym := auxToSym(v.Aux) if v_0.Op != Op386ADDLconst { break } off2 := auxIntToInt32(v_0.AuxInt) ptr := v_0.Args[0] mem := v_1 if !(is32Bit(int64(off1) + int64(off2))) { break } v.reset(Op386MOVWload) v.AuxInt = int32ToAuxInt(off1 + off2) v.Aux = symToAux(sym) v.AddArg2(ptr, mem) return true } // match: (MOVWload [off1] {sym1} (LEAL [off2] {sym2} base) mem) // cond: is32Bit(int64(off1)+int64(off2)) && canMergeSym(sym1, sym2) && (base.Op != OpSB || !config.ctxt.Flag_shared) // result: (MOVWload [off1+off2] {mergeSym(sym1,sym2)} base mem) for { off1 := auxIntToInt32(v.AuxInt) sym1 := auxToSym(v.Aux) if v_0.Op != Op386LEAL { break } off2 := auxIntToInt32(v_0.AuxInt) sym2 := auxToSym(v_0.Aux) base := v_0.Args[0] mem := v_1 if !(is32Bit(int64(off1)+int64(off2)) && canMergeSym(sym1, sym2) && (base.Op != OpSB || !config.ctxt.Flag_shared)) { break } v.reset(Op386MOVWload) v.AuxInt = int32ToAuxInt(off1 + off2) v.Aux = symToAux(mergeSym(sym1, sym2)) v.AddArg2(base, mem) return true } // match: (MOVWload [off] {sym} (SB) _) // cond: symIsRO(sym) // result: (MOVLconst [int32(read16(sym, int64(off), config.ctxt.Arch.ByteOrder))]) for { off := auxIntToInt32(v.AuxInt) sym := auxToSym(v.Aux) if v_0.Op != OpSB || !(symIsRO(sym)) { break } v.reset(Op386MOVLconst) v.AuxInt = int32ToAuxInt(int32(read16(sym, int64(off), config.ctxt.Arch.ByteOrder))) return true } return false } func rewriteValue386_Op386MOVWstore(v *Value) bool { v_2 := v.Args[2] v_1 := v.Args[1] v_0 := v.Args[0] b := v.Block config := b.Func.Config // match: (MOVWstore [off] {sym} ptr (MOVWLSX x) mem) // result: (MOVWstore [off] {sym} ptr x mem) for { off := auxIntToInt32(v.AuxInt) sym := auxToSym(v.Aux) ptr := v_0 if v_1.Op != Op386MOVWLSX { break } x := v_1.Args[0] mem := v_2 v.reset(Op386MOVWstore) v.AuxInt = int32ToAuxInt(off) v.Aux = symToAux(sym) v.AddArg3(ptr, x, mem) return true } // match: (MOVWstore [off] {sym} ptr (MOVWLZX x) mem) // result: (MOVWstore [off] {sym} ptr x mem) for { off := auxIntToInt32(v.AuxInt) sym := auxToSym(v.Aux) ptr := v_0 if v_1.Op != Op386MOVWLZX { break } x := v_1.Args[0] mem := v_2 v.reset(Op386MOVWstore) v.AuxInt = int32ToAuxInt(off) v.Aux = symToAux(sym) v.AddArg3(ptr, x, mem) return true } // match: (MOVWstore [off1] {sym} (ADDLconst [off2] ptr) val mem) // cond: is32Bit(int64(off1)+int64(off2)) // result: (MOVWstore [off1+off2] {sym} ptr val mem) for { off1 := auxIntToInt32(v.AuxInt) sym := auxToSym(v.Aux) if v_0.Op != Op386ADDLconst { break } off2 := auxIntToInt32(v_0.AuxInt) ptr := v_0.Args[0] val := v_1 mem := v_2 if !(is32Bit(int64(off1) + int64(off2))) { break } v.reset(Op386MOVWstore) v.AuxInt = int32ToAuxInt(off1 + off2) v.Aux = symToAux(sym) v.AddArg3(ptr, val, mem) return true } // match: (MOVWstore [off] {sym} ptr (MOVLconst [c]) mem) // result: (MOVWstoreconst [makeValAndOff(c,off)] {sym} ptr mem) for { off := auxIntToInt32(v.AuxInt) sym := auxToSym(v.Aux) ptr := v_0 if v_1.Op != Op386MOVLconst { break } c := auxIntToInt32(v_1.AuxInt) mem := v_2 v.reset(Op386MOVWstoreconst) v.AuxInt = valAndOffToAuxInt(makeValAndOff(c, off)) v.Aux = symToAux(sym) v.AddArg2(ptr, mem) return true } // match: (MOVWstore [off1] {sym1} (LEAL [off2] {sym2} base) val mem) // cond: is32Bit(int64(off1)+int64(off2)) && canMergeSym(sym1, sym2) && (base.Op != OpSB || !config.ctxt.Flag_shared) // result: (MOVWstore [off1+off2] {mergeSym(sym1,sym2)} base val mem) for { off1 := auxIntToInt32(v.AuxInt) sym1 := auxToSym(v.Aux) if v_0.Op != Op386LEAL { break } off2 := auxIntToInt32(v_0.AuxInt) sym2 := auxToSym(v_0.Aux) base := v_0.Args[0] val := v_1 mem := v_2 if !(is32Bit(int64(off1)+int64(off2)) && canMergeSym(sym1, sym2) && (base.Op != OpSB || !config.ctxt.Flag_shared)) { break } v.reset(Op386MOVWstore) v.AuxInt = int32ToAuxInt(off1 + off2) v.Aux = symToAux(mergeSym(sym1, sym2)) v.AddArg3(base, val, mem) return true } // match: (MOVWstore [i] {s} p (SHRLconst [16] w) x:(MOVWstore [i-2] {s} p w mem)) // cond: x.Uses == 1 && clobber(x) // result: (MOVLstore [i-2] {s} p w mem) for { i := auxIntToInt32(v.AuxInt) s := auxToSym(v.Aux) p := v_0 if v_1.Op != Op386SHRLconst || auxIntToInt32(v_1.AuxInt) != 16 { break } w := v_1.Args[0] x := v_2 if x.Op != Op386MOVWstore || auxIntToInt32(x.AuxInt) != i-2 || auxToSym(x.Aux) != s { break } mem := x.Args[2] if p != x.Args[0] || w != x.Args[1] || !(x.Uses == 1 && clobber(x)) { break } v.reset(Op386MOVLstore) v.AuxInt = int32ToAuxInt(i - 2) v.Aux = symToAux(s) v.AddArg3(p, w, mem) return true } // match: (MOVWstore [i] {s} p (SHRLconst [j] w) x:(MOVWstore [i-2] {s} p w0:(SHRLconst [j-16] w) mem)) // cond: x.Uses == 1 && clobber(x) // result: (MOVLstore [i-2] {s} p w0 mem) for { i := auxIntToInt32(v.AuxInt) s := auxToSym(v.Aux) p := v_0 if v_1.Op != Op386SHRLconst { break } j := auxIntToInt32(v_1.AuxInt) w := v_1.Args[0] x := v_2 if x.Op != Op386MOVWstore || auxIntToInt32(x.AuxInt) != i-2 || auxToSym(x.Aux) != s { break } mem := x.Args[2] if p != x.Args[0] { break } w0 := x.Args[1] if w0.Op != Op386SHRLconst || auxIntToInt32(w0.AuxInt) != j-16 || w != w0.Args[0] || !(x.Uses == 1 && clobber(x)) { break } v.reset(Op386MOVLstore) v.AuxInt = int32ToAuxInt(i - 2) v.Aux = symToAux(s) v.AddArg3(p, w0, mem) return true } // match: (MOVWstore [i] {s} p1 (SHRLconst [16] w) x:(MOVWstore [i] {s} p0 w mem)) // cond: x.Uses == 1 && sequentialAddresses(p0, p1, 2) && clobber(x) // result: (MOVLstore [i] {s} p0 w mem) for { i := auxIntToInt32(v.AuxInt) s := auxToSym(v.Aux) p1 := v_0 if v_1.Op != Op386SHRLconst || auxIntToInt32(v_1.AuxInt) != 16 { break } w := v_1.Args[0] x := v_2 if x.Op != Op386MOVWstore || auxIntToInt32(x.AuxInt) != i || auxToSym(x.Aux) != s { break } mem := x.Args[2] p0 := x.Args[0] if w != x.Args[1] || !(x.Uses == 1 && sequentialAddresses(p0, p1, 2) && clobber(x)) { break } v.reset(Op386MOVLstore) v.AuxInt = int32ToAuxInt(i) v.Aux = symToAux(s) v.AddArg3(p0, w, mem) return true } // match: (MOVWstore [i] {s} p1 (SHRLconst [j] w) x:(MOVWstore [i] {s} p0 w0:(SHRLconst [j-16] w) mem)) // cond: x.Uses == 1 && sequentialAddresses(p0, p1, 2) && clobber(x) // result: (MOVLstore [i] {s} p0 w0 mem) for { i := auxIntToInt32(v.AuxInt) s := auxToSym(v.Aux) p1 := v_0 if v_1.Op != Op386SHRLconst { break } j := auxIntToInt32(v_1.AuxInt) w := v_1.Args[0] x := v_2 if x.Op != Op386MOVWstore || auxIntToInt32(x.AuxInt) != i || auxToSym(x.Aux) != s { break } mem := x.Args[2] p0 := x.Args[0] w0 := x.Args[1] if w0.Op != Op386SHRLconst || auxIntToInt32(w0.AuxInt) != j-16 || w != w0.Args[0] || !(x.Uses == 1 && sequentialAddresses(p0, p1, 2) && clobber(x)) { break } v.reset(Op386MOVLstore) v.AuxInt = int32ToAuxInt(i) v.Aux = symToAux(s) v.AddArg3(p0, w0, mem) return true } return false } func rewriteValue386_Op386MOVWstoreconst(v *Value) bool { v_1 := v.Args[1] v_0 := v.Args[0] b := v.Block config := b.Func.Config // match: (MOVWstoreconst [sc] {s} (ADDLconst [off] ptr) mem) // cond: sc.canAdd32(off) // result: (MOVWstoreconst [sc.addOffset32(off)] {s} ptr mem) for { sc := auxIntToValAndOff(v.AuxInt) s := auxToSym(v.Aux) if v_0.Op != Op386ADDLconst { break } off := auxIntToInt32(v_0.AuxInt) ptr := v_0.Args[0] mem := v_1 if !(sc.canAdd32(off)) { break } v.reset(Op386MOVWstoreconst) v.AuxInt = valAndOffToAuxInt(sc.addOffset32(off)) v.Aux = symToAux(s) v.AddArg2(ptr, mem) return true } // match: (MOVWstoreconst [sc] {sym1} (LEAL [off] {sym2} ptr) mem) // cond: canMergeSym(sym1, sym2) && sc.canAdd32(off) && (ptr.Op != OpSB || !config.ctxt.Flag_shared) // result: (MOVWstoreconst [sc.addOffset32(off)] {mergeSym(sym1, sym2)} ptr mem) for { sc := auxIntToValAndOff(v.AuxInt) sym1 := auxToSym(v.Aux) if v_0.Op != Op386LEAL { break } off := auxIntToInt32(v_0.AuxInt) sym2 := auxToSym(v_0.Aux) ptr := v_0.Args[0] mem := v_1 if !(canMergeSym(sym1, sym2) && sc.canAdd32(off) && (ptr.Op != OpSB || !config.ctxt.Flag_shared)) { break } v.reset(Op386MOVWstoreconst) v.AuxInt = valAndOffToAuxInt(sc.addOffset32(off)) v.Aux = symToAux(mergeSym(sym1, sym2)) v.AddArg2(ptr, mem) return true } // match: (MOVWstoreconst [c] {s} p x:(MOVWstoreconst [a] {s} p mem)) // cond: x.Uses == 1 && a.Off() + 2 == c.Off() && clobber(x) // result: (MOVLstoreconst [makeValAndOff(a.Val()&0xffff | c.Val()<<16, a.Off())] {s} p mem) for { c := auxIntToValAndOff(v.AuxInt) s := auxToSym(v.Aux) p := v_0 x := v_1 if x.Op != Op386MOVWstoreconst { break } a := auxIntToValAndOff(x.AuxInt) if auxToSym(x.Aux) != s { break } mem := x.Args[1] if p != x.Args[0] || !(x.Uses == 1 && a.Off()+2 == c.Off() && clobber(x)) { break } v.reset(Op386MOVLstoreconst) v.AuxInt = valAndOffToAuxInt(makeValAndOff(a.Val()&0xffff|c.Val()<<16, a.Off())) v.Aux = symToAux(s) v.AddArg2(p, mem) return true } // match: (MOVWstoreconst [a] {s} p x:(MOVWstoreconst [c] {s} p mem)) // cond: x.Uses == 1 && ValAndOff(a).Off() + 2 == ValAndOff(c).Off() && clobber(x) // result: (MOVLstoreconst [makeValAndOff(a.Val()&0xffff | c.Val()<<16, a.Off())] {s} p mem) for { a := auxIntToValAndOff(v.AuxInt) s := auxToSym(v.Aux) p := v_0 x := v_1 if x.Op != Op386MOVWstoreconst { break } c := auxIntToValAndOff(x.AuxInt) if auxToSym(x.Aux) != s { break } mem := x.Args[1] if p != x.Args[0] || !(x.Uses == 1 && ValAndOff(a).Off()+2 == ValAndOff(c).Off() && clobber(x)) { break } v.reset(Op386MOVLstoreconst) v.AuxInt = valAndOffToAuxInt(makeValAndOff(a.Val()&0xffff|c.Val()<<16, a.Off())) v.Aux = symToAux(s) v.AddArg2(p, mem) return true } // match: (MOVWstoreconst [c] {s} p1 x:(MOVWstoreconst [a] {s} p0 mem)) // cond: x.Uses == 1 && a.Off() == c.Off() && sequentialAddresses(p0, p1, 2) && clobber(x) // result: (MOVLstoreconst [makeValAndOff(a.Val()&0xffff | c.Val()<<16, a.Off())] {s} p0 mem) for { c := auxIntToValAndOff(v.AuxInt) s := auxToSym(v.Aux) p1 := v_0 x := v_1 if x.Op != Op386MOVWstoreconst { break } a := auxIntToValAndOff(x.AuxInt) if auxToSym(x.Aux) != s { break } mem := x.Args[1] p0 := x.Args[0] if !(x.Uses == 1 && a.Off() == c.Off() && sequentialAddresses(p0, p1, 2) && clobber(x)) { break } v.reset(Op386MOVLstoreconst) v.AuxInt = valAndOffToAuxInt(makeValAndOff(a.Val()&0xffff|c.Val()<<16, a.Off())) v.Aux = symToAux(s) v.AddArg2(p0, mem) return true } // match: (MOVWstoreconst [a] {s} p0 x:(MOVWstoreconst [c] {s} p1 mem)) // cond: x.Uses == 1 && a.Off() == c.Off() && sequentialAddresses(p0, p1, 2) && clobber(x) // result: (MOVLstoreconst [makeValAndOff(a.Val()&0xffff | c.Val()<<16, a.Off())] {s} p0 mem) for { a := auxIntToValAndOff(v.AuxInt) s := auxToSym(v.Aux) p0 := v_0 x := v_1 if x.Op != Op386MOVWstoreconst { break } c := auxIntToValAndOff(x.AuxInt) if auxToSym(x.Aux) != s { break } mem := x.Args[1] p1 := x.Args[0] if !(x.Uses == 1 && a.Off() == c.Off() && sequentialAddresses(p0, p1, 2) && clobber(x)) { break } v.reset(Op386MOVLstoreconst) v.AuxInt = valAndOffToAuxInt(makeValAndOff(a.Val()&0xffff|c.Val()<<16, a.Off())) v.Aux = symToAux(s) v.AddArg2(p0, mem) return true } return false } func rewriteValue386_Op386MULL(v *Value) bool { v_1 := v.Args[1] v_0 := v.Args[0] // match: (MULL x (MOVLconst [c])) // result: (MULLconst [c] x) for { for _i0 := 0; _i0 <= 1; _i0, v_0, v_1 = _i0+1, v_1, v_0 { x := v_0 if v_1.Op != Op386MOVLconst { continue } c := auxIntToInt32(v_1.AuxInt) v.reset(Op386MULLconst) v.AuxInt = int32ToAuxInt(c) v.AddArg(x) return true } break } // match: (MULL x l:(MOVLload [off] {sym} ptr mem)) // cond: canMergeLoadClobber(v, l, x) && clobber(l) // result: (MULLload x [off] {sym} ptr mem) for { for _i0 := 0; _i0 <= 1; _i0, v_0, v_1 = _i0+1, v_1, v_0 { x := v_0 l := v_1 if l.Op != Op386MOVLload { continue } off := auxIntToInt32(l.AuxInt) sym := auxToSym(l.Aux) mem := l.Args[1] ptr := l.Args[0] if !(canMergeLoadClobber(v, l, x) && clobber(l)) { continue } v.reset(Op386MULLload) v.AuxInt = int32ToAuxInt(off) v.Aux = symToAux(sym) v.AddArg3(x, ptr, mem) return true } break } return false } func rewriteValue386_Op386MULLconst(v *Value) bool { v_0 := v.Args[0] b := v.Block // match: (MULLconst [c] (MULLconst [d] x)) // result: (MULLconst [c * d] x) for { c := auxIntToInt32(v.AuxInt) if v_0.Op != Op386MULLconst { break } d := auxIntToInt32(v_0.AuxInt) x := v_0.Args[0] v.reset(Op386MULLconst) v.AuxInt = int32ToAuxInt(c * d) v.AddArg(x) return true } // match: (MULLconst [-9] x) // result: (NEGL (LEAL8 x x)) for { if auxIntToInt32(v.AuxInt) != -9 { break } x := v_0 v.reset(Op386NEGL) v0 := b.NewValue0(v.Pos, Op386LEAL8, v.Type) v0.AddArg2(x, x) v.AddArg(v0) return true } // match: (MULLconst [-5] x) // result: (NEGL (LEAL4 x x)) for { if auxIntToInt32(v.AuxInt) != -5 { break } x := v_0 v.reset(Op386NEGL) v0 := b.NewValue0(v.Pos, Op386LEAL4, v.Type) v0.AddArg2(x, x) v.AddArg(v0) return true } // match: (MULLconst [-3] x) // result: (NEGL (LEAL2 x x)) for { if auxIntToInt32(v.AuxInt) != -3 { break } x := v_0 v.reset(Op386NEGL) v0 := b.NewValue0(v.Pos, Op386LEAL2, v.Type) v0.AddArg2(x, x) v.AddArg(v0) return true } // match: (MULLconst [-1] x) // result: (NEGL x) for { if auxIntToInt32(v.AuxInt) != -1 { break } x := v_0 v.reset(Op386NEGL) v.AddArg(x) return true } // match: (MULLconst [0] _) // result: (MOVLconst [0]) for { if auxIntToInt32(v.AuxInt) != 0 { break } v.reset(Op386MOVLconst) v.AuxInt = int32ToAuxInt(0) return true } // match: (MULLconst [1] x) // result: x for { if auxIntToInt32(v.AuxInt) != 1 { break } x := v_0 v.copyOf(x) return true } // match: (MULLconst [3] x) // result: (LEAL2 x x) for { if auxIntToInt32(v.AuxInt) != 3 { break } x := v_0 v.reset(Op386LEAL2) v.AddArg2(x, x) return true } // match: (MULLconst [5] x) // result: (LEAL4 x x) for { if auxIntToInt32(v.AuxInt) != 5 { break } x := v_0 v.reset(Op386LEAL4) v.AddArg2(x, x) return true } // match: (MULLconst [7] x) // result: (LEAL2 x (LEAL2 x x)) for { if auxIntToInt32(v.AuxInt) != 7 { break } x := v_0 v.reset(Op386LEAL2) v0 := b.NewValue0(v.Pos, Op386LEAL2, v.Type) v0.AddArg2(x, x) v.AddArg2(x, v0) return true } // match: (MULLconst [9] x) // result: (LEAL8 x x) for { if auxIntToInt32(v.AuxInt) != 9 { break } x := v_0 v.reset(Op386LEAL8) v.AddArg2(x, x) return true } // match: (MULLconst [11] x) // result: (LEAL2 x (LEAL4 x x)) for { if auxIntToInt32(v.AuxInt) != 11 { break } x := v_0 v.reset(Op386LEAL2) v0 := b.NewValue0(v.Pos, Op386LEAL4, v.Type) v0.AddArg2(x, x) v.AddArg2(x, v0) return true } // match: (MULLconst [13] x) // result: (LEAL4 x (LEAL2 x x)) for { if auxIntToInt32(v.AuxInt) != 13 { break } x := v_0 v.reset(Op386LEAL4) v0 := b.NewValue0(v.Pos, Op386LEAL2, v.Type) v0.AddArg2(x, x) v.AddArg2(x, v0) return true } // match: (MULLconst [19] x) // result: (LEAL2 x (LEAL8 x x)) for { if auxIntToInt32(v.AuxInt) != 19 { break } x := v_0 v.reset(Op386LEAL2) v0 := b.NewValue0(v.Pos, Op386LEAL8, v.Type) v0.AddArg2(x, x) v.AddArg2(x, v0) return true } // match: (MULLconst [21] x) // result: (LEAL4 x (LEAL4 x x)) for { if auxIntToInt32(v.AuxInt) != 21 { break } x := v_0 v.reset(Op386LEAL4) v0 := b.NewValue0(v.Pos, Op386LEAL4, v.Type) v0.AddArg2(x, x) v.AddArg2(x, v0) return true } // match: (MULLconst [25] x) // result: (LEAL8 x (LEAL2 x x)) for { if auxIntToInt32(v.AuxInt) != 25 { break } x := v_0 v.reset(Op386LEAL8) v0 := b.NewValue0(v.Pos, Op386LEAL2, v.Type) v0.AddArg2(x, x) v.AddArg2(x, v0) return true } // match: (MULLconst [27] x) // result: (LEAL8 (LEAL2 x x) (LEAL2 x x)) for { if auxIntToInt32(v.AuxInt) != 27 { break } x := v_0 v.reset(Op386LEAL8) v0 := b.NewValue0(v.Pos, Op386LEAL2, v.Type) v0.AddArg2(x, x) v.AddArg2(v0, v0) return true } // match: (MULLconst [37] x) // result: (LEAL4 x (LEAL8 x x)) for { if auxIntToInt32(v.AuxInt) != 37 { break } x := v_0 v.reset(Op386LEAL4) v0 := b.NewValue0(v.Pos, Op386LEAL8, v.Type) v0.AddArg2(x, x) v.AddArg2(x, v0) return true } // match: (MULLconst [41] x) // result: (LEAL8 x (LEAL4 x x)) for { if auxIntToInt32(v.AuxInt) != 41 { break } x := v_0 v.reset(Op386LEAL8) v0 := b.NewValue0(v.Pos, Op386LEAL4, v.Type) v0.AddArg2(x, x) v.AddArg2(x, v0) return true } // match: (MULLconst [45] x) // result: (LEAL8 (LEAL4 x x) (LEAL4 x x)) for { if auxIntToInt32(v.AuxInt) != 45 { break } x := v_0 v.reset(Op386LEAL8) v0 := b.NewValue0(v.Pos, Op386LEAL4, v.Type) v0.AddArg2(x, x) v.AddArg2(v0, v0) return true } // match: (MULLconst [73] x) // result: (LEAL8 x (LEAL8 x x)) for { if auxIntToInt32(v.AuxInt) != 73 { break } x := v_0 v.reset(Op386LEAL8) v0 := b.NewValue0(v.Pos, Op386LEAL8, v.Type) v0.AddArg2(x, x) v.AddArg2(x, v0) return true } // match: (MULLconst [81] x) // result: (LEAL8 (LEAL8 x x) (LEAL8 x x)) for { if auxIntToInt32(v.AuxInt) != 81 { break } x := v_0 v.reset(Op386LEAL8) v0 := b.NewValue0(v.Pos, Op386LEAL8, v.Type) v0.AddArg2(x, x) v.AddArg2(v0, v0) return true } // match: (MULLconst [c] x) // cond: isPowerOfTwo32(c+1) && c >= 15 // result: (SUBL (SHLLconst [int32(log32(c+1))] x) x) for { c := auxIntToInt32(v.AuxInt) x := v_0 if !(isPowerOfTwo32(c+1) && c >= 15) { break } v.reset(Op386SUBL) v0 := b.NewValue0(v.Pos, Op386SHLLconst, v.Type) v0.AuxInt = int32ToAuxInt(int32(log32(c + 1))) v0.AddArg(x) v.AddArg2(v0, x) return true } // match: (MULLconst [c] x) // cond: isPowerOfTwo32(c-1) && c >= 17 // result: (LEAL1 (SHLLconst [int32(log32(c-1))] x) x) for { c := auxIntToInt32(v.AuxInt) x := v_0 if !(isPowerOfTwo32(c-1) && c >= 17) { break } v.reset(Op386LEAL1) v0 := b.NewValue0(v.Pos, Op386SHLLconst, v.Type) v0.AuxInt = int32ToAuxInt(int32(log32(c - 1))) v0.AddArg(x) v.AddArg2(v0, x) return true } // match: (MULLconst [c] x) // cond: isPowerOfTwo32(c-2) && c >= 34 // result: (LEAL2 (SHLLconst [int32(log32(c-2))] x) x) for { c := auxIntToInt32(v.AuxInt) x := v_0 if !(isPowerOfTwo32(c-2) && c >= 34) { break } v.reset(Op386LEAL2) v0 := b.NewValue0(v.Pos, Op386SHLLconst, v.Type) v0.AuxInt = int32ToAuxInt(int32(log32(c - 2))) v0.AddArg(x) v.AddArg2(v0, x) return true } // match: (MULLconst [c] x) // cond: isPowerOfTwo32(c-4) && c >= 68 // result: (LEAL4 (SHLLconst [int32(log32(c-4))] x) x) for { c := auxIntToInt32(v.AuxInt) x := v_0 if !(isPowerOfTwo32(c-4) && c >= 68) { break } v.reset(Op386LEAL4) v0 := b.NewValue0(v.Pos, Op386SHLLconst, v.Type) v0.AuxInt = int32ToAuxInt(int32(log32(c - 4))) v0.AddArg(x) v.AddArg2(v0, x) return true } // match: (MULLconst [c] x) // cond: isPowerOfTwo32(c-8) && c >= 136 // result: (LEAL8 (SHLLconst [int32(log32(c-8))] x) x) for { c := auxIntToInt32(v.AuxInt) x := v_0 if !(isPowerOfTwo32(c-8) && c >= 136) { break } v.reset(Op386LEAL8) v0 := b.NewValue0(v.Pos, Op386SHLLconst, v.Type) v0.AuxInt = int32ToAuxInt(int32(log32(c - 8))) v0.AddArg(x) v.AddArg2(v0, x) return true } // match: (MULLconst [c] x) // cond: c%3 == 0 && isPowerOfTwo32(c/3) // result: (SHLLconst [int32(log32(c/3))] (LEAL2 x x)) for { c := auxIntToInt32(v.AuxInt) x := v_0 if !(c%3 == 0 && isPowerOfTwo32(c/3)) { break } v.reset(Op386SHLLconst) v.AuxInt = int32ToAuxInt(int32(log32(c / 3))) v0 := b.NewValue0(v.Pos, Op386LEAL2, v.Type) v0.AddArg2(x, x) v.AddArg(v0) return true } // match: (MULLconst [c] x) // cond: c%5 == 0 && isPowerOfTwo32(c/5) // result: (SHLLconst [int32(log32(c/5))] (LEAL4 x x)) for { c := auxIntToInt32(v.AuxInt) x := v_0 if !(c%5 == 0 && isPowerOfTwo32(c/5)) { break } v.reset(Op386SHLLconst) v.AuxInt = int32ToAuxInt(int32(log32(c / 5))) v0 := b.NewValue0(v.Pos, Op386LEAL4, v.Type) v0.AddArg2(x, x) v.AddArg(v0) return true } // match: (MULLconst [c] x) // cond: c%9 == 0 && isPowerOfTwo32(c/9) // result: (SHLLconst [int32(log32(c/9))] (LEAL8 x x)) for { c := auxIntToInt32(v.AuxInt) x := v_0 if !(c%9 == 0 && isPowerOfTwo32(c/9)) { break } v.reset(Op386SHLLconst) v.AuxInt = int32ToAuxInt(int32(log32(c / 9))) v0 := b.NewValue0(v.Pos, Op386LEAL8, v.Type) v0.AddArg2(x, x) v.AddArg(v0) return true } // match: (MULLconst [c] (MOVLconst [d])) // result: (MOVLconst [c*d]) for { c := auxIntToInt32(v.AuxInt) if v_0.Op != Op386MOVLconst { break } d := auxIntToInt32(v_0.AuxInt) v.reset(Op386MOVLconst) v.AuxInt = int32ToAuxInt(c * d) return true } return false } func rewriteValue386_Op386MULLload(v *Value) bool { v_2 := v.Args[2] v_1 := v.Args[1] v_0 := v.Args[0] b := v.Block config := b.Func.Config // match: (MULLload [off1] {sym} val (ADDLconst [off2] base) mem) // cond: is32Bit(int64(off1)+int64(off2)) // result: (MULLload [off1+off2] {sym} val base mem) for { off1 := auxIntToInt32(v.AuxInt) sym := auxToSym(v.Aux) val := v_0 if v_1.Op != Op386ADDLconst { break } off2 := auxIntToInt32(v_1.AuxInt) base := v_1.Args[0] mem := v_2 if !(is32Bit(int64(off1) + int64(off2))) { break } v.reset(Op386MULLload) v.AuxInt = int32ToAuxInt(off1 + off2) v.Aux = symToAux(sym) v.AddArg3(val, base, mem) return true } // match: (MULLload [off1] {sym1} val (LEAL [off2] {sym2} base) mem) // cond: is32Bit(int64(off1)+int64(off2)) && canMergeSym(sym1, sym2) && (base.Op != OpSB || !config.ctxt.Flag_shared) // result: (MULLload [off1+off2] {mergeSym(sym1,sym2)} val base mem) for { off1 := auxIntToInt32(v.AuxInt) sym1 := auxToSym(v.Aux) val := v_0 if v_1.Op != Op386LEAL { break } off2 := auxIntToInt32(v_1.AuxInt) sym2 := auxToSym(v_1.Aux) base := v_1.Args[0] mem := v_2 if !(is32Bit(int64(off1)+int64(off2)) && canMergeSym(sym1, sym2) && (base.Op != OpSB || !config.ctxt.Flag_shared)) { break } v.reset(Op386MULLload) v.AuxInt = int32ToAuxInt(off1 + off2) v.Aux = symToAux(mergeSym(sym1, sym2)) v.AddArg3(val, base, mem) return true } return false } func rewriteValue386_Op386MULSD(v *Value) bool { v_1 := v.Args[1] v_0 := v.Args[0] // match: (MULSD x l:(MOVSDload [off] {sym} ptr mem)) // cond: canMergeLoadClobber(v, l, x) && clobber(l) // result: (MULSDload x [off] {sym} ptr mem) for { for _i0 := 0; _i0 <= 1; _i0, v_0, v_1 = _i0+1, v_1, v_0 { x := v_0 l := v_1 if l.Op != Op386MOVSDload { continue } off := auxIntToInt32(l.AuxInt) sym := auxToSym(l.Aux) mem := l.Args[1] ptr := l.Args[0] if !(canMergeLoadClobber(v, l, x) && clobber(l)) { continue } v.reset(Op386MULSDload) v.AuxInt = int32ToAuxInt(off) v.Aux = symToAux(sym) v.AddArg3(x, ptr, mem) return true } break } return false } func rewriteValue386_Op386MULSDload(v *Value) bool { v_2 := v.Args[2] v_1 := v.Args[1] v_0 := v.Args[0] b := v.Block config := b.Func.Config // match: (MULSDload [off1] {sym} val (ADDLconst [off2] base) mem) // cond: is32Bit(int64(off1)+int64(off2)) // result: (MULSDload [off1+off2] {sym} val base mem) for { off1 := auxIntToInt32(v.AuxInt) sym := auxToSym(v.Aux) val := v_0 if v_1.Op != Op386ADDLconst { break } off2 := auxIntToInt32(v_1.AuxInt) base := v_1.Args[0] mem := v_2 if !(is32Bit(int64(off1) + int64(off2))) { break } v.reset(Op386MULSDload) v.AuxInt = int32ToAuxInt(off1 + off2) v.Aux = symToAux(sym) v.AddArg3(val, base, mem) return true } // match: (MULSDload [off1] {sym1} val (LEAL [off2] {sym2} base) mem) // cond: is32Bit(int64(off1)+int64(off2)) && canMergeSym(sym1, sym2) && (base.Op != OpSB || !config.ctxt.Flag_shared) // result: (MULSDload [off1+off2] {mergeSym(sym1,sym2)} val base mem) for { off1 := auxIntToInt32(v.AuxInt) sym1 := auxToSym(v.Aux) val := v_0 if v_1.Op != Op386LEAL { break } off2 := auxIntToInt32(v_1.AuxInt) sym2 := auxToSym(v_1.Aux) base := v_1.Args[0] mem := v_2 if !(is32Bit(int64(off1)+int64(off2)) && canMergeSym(sym1, sym2) && (base.Op != OpSB || !config.ctxt.Flag_shared)) { break } v.reset(Op386MULSDload) v.AuxInt = int32ToAuxInt(off1 + off2) v.Aux = symToAux(mergeSym(sym1, sym2)) v.AddArg3(val, base, mem) return true } return false } func rewriteValue386_Op386MULSS(v *Value) bool { v_1 := v.Args[1] v_0 := v.Args[0] // match: (MULSS x l:(MOVSSload [off] {sym} ptr mem)) // cond: canMergeLoadClobber(v, l, x) && clobber(l) // result: (MULSSload x [off] {sym} ptr mem) for { for _i0 := 0; _i0 <= 1; _i0, v_0, v_1 = _i0+1, v_1, v_0 { x := v_0 l := v_1 if l.Op != Op386MOVSSload { continue } off := auxIntToInt32(l.AuxInt) sym := auxToSym(l.Aux) mem := l.Args[1] ptr := l.Args[0] if !(canMergeLoadClobber(v, l, x) && clobber(l)) { continue } v.reset(Op386MULSSload) v.AuxInt = int32ToAuxInt(off) v.Aux = symToAux(sym) v.AddArg3(x, ptr, mem) return true } break } return false } func rewriteValue386_Op386MULSSload(v *Value) bool { v_2 := v.Args[2] v_1 := v.Args[1] v_0 := v.Args[0] b := v.Block config := b.Func.Config // match: (MULSSload [off1] {sym} val (ADDLconst [off2] base) mem) // cond: is32Bit(int64(off1)+int64(off2)) // result: (MULSSload [off1+off2] {sym} val base mem) for { off1 := auxIntToInt32(v.AuxInt) sym := auxToSym(v.Aux) val := v_0 if v_1.Op != Op386ADDLconst { break } off2 := auxIntToInt32(v_1.AuxInt) base := v_1.Args[0] mem := v_2 if !(is32Bit(int64(off1) + int64(off2))) { break } v.reset(Op386MULSSload) v.AuxInt = int32ToAuxInt(off1 + off2) v.Aux = symToAux(sym) v.AddArg3(val, base, mem) return true } // match: (MULSSload [off1] {sym1} val (LEAL [off2] {sym2} base) mem) // cond: is32Bit(int64(off1)+int64(off2)) && canMergeSym(sym1, sym2) && (base.Op != OpSB || !config.ctxt.Flag_shared) // result: (MULSSload [off1+off2] {mergeSym(sym1,sym2)} val base mem) for { off1 := auxIntToInt32(v.AuxInt) sym1 := auxToSym(v.Aux) val := v_0 if v_1.Op != Op386LEAL { break } off2 := auxIntToInt32(v_1.AuxInt) sym2 := auxToSym(v_1.Aux) base := v_1.Args[0] mem := v_2 if !(is32Bit(int64(off1)+int64(off2)) && canMergeSym(sym1, sym2) && (base.Op != OpSB || !config.ctxt.Flag_shared)) { break } v.reset(Op386MULSSload) v.AuxInt = int32ToAuxInt(off1 + off2) v.Aux = symToAux(mergeSym(sym1, sym2)) v.AddArg3(val, base, mem) return true } return false } func rewriteValue386_Op386NEGL(v *Value) bool { v_0 := v.Args[0] // match: (NEGL (MOVLconst [c])) // result: (MOVLconst [-c]) for { if v_0.Op != Op386MOVLconst { break } c := auxIntToInt32(v_0.AuxInt) v.reset(Op386MOVLconst) v.AuxInt = int32ToAuxInt(-c) return true } return false } func rewriteValue386_Op386NOTL(v *Value) bool { v_0 := v.Args[0] // match: (NOTL (MOVLconst [c])) // result: (MOVLconst [^c]) for { if v_0.Op != Op386MOVLconst { break } c := auxIntToInt32(v_0.AuxInt) v.reset(Op386MOVLconst) v.AuxInt = int32ToAuxInt(^c) return true } return false } func rewriteValue386_Op386ORL(v *Value) bool { v_1 := v.Args[1] v_0 := v.Args[0] b := v.Block typ := &b.Func.Config.Types // match: (ORL x (MOVLconst [c])) // result: (ORLconst [c] x) for { for _i0 := 0; _i0 <= 1; _i0, v_0, v_1 = _i0+1, v_1, v_0 { x := v_0 if v_1.Op != Op386MOVLconst { continue } c := auxIntToInt32(v_1.AuxInt) v.reset(Op386ORLconst) v.AuxInt = int32ToAuxInt(c) v.AddArg(x) return true } break } // match: (ORL x l:(MOVLload [off] {sym} ptr mem)) // cond: canMergeLoadClobber(v, l, x) && clobber(l) // result: (ORLload x [off] {sym} ptr mem) for { for _i0 := 0; _i0 <= 1; _i0, v_0, v_1 = _i0+1, v_1, v_0 { x := v_0 l := v_1 if l.Op != Op386MOVLload { continue } off := auxIntToInt32(l.AuxInt) sym := auxToSym(l.Aux) mem := l.Args[1] ptr := l.Args[0] if !(canMergeLoadClobber(v, l, x) && clobber(l)) { continue } v.reset(Op386ORLload) v.AuxInt = int32ToAuxInt(off) v.Aux = symToAux(sym) v.AddArg3(x, ptr, mem) return true } break } // match: (ORL x x) // result: x for { x := v_0 if x != v_1 { break } v.copyOf(x) return true } // match: (ORL x0:(MOVBload [i0] {s} p mem) s0:(SHLLconst [8] x1:(MOVBload [i1] {s} p mem))) // cond: i1 == i0+1 && x0.Uses == 1 && x1.Uses == 1 && s0.Uses == 1 && mergePoint(b,x0,x1) != nil && clobber(x0, x1, s0) // result: @mergePoint(b,x0,x1) (MOVWload [i0] {s} p mem) for { for _i0 := 0; _i0 <= 1; _i0, v_0, v_1 = _i0+1, v_1, v_0 { x0 := v_0 if x0.Op != Op386MOVBload { continue } i0 := auxIntToInt32(x0.AuxInt) s := auxToSym(x0.Aux) mem := x0.Args[1] p := x0.Args[0] s0 := v_1 if s0.Op != Op386SHLLconst || auxIntToInt32(s0.AuxInt) != 8 { continue } x1 := s0.Args[0] if x1.Op != Op386MOVBload { continue } i1 := auxIntToInt32(x1.AuxInt) if auxToSym(x1.Aux) != s { continue } _ = x1.Args[1] if p != x1.Args[0] || mem != x1.Args[1] || !(i1 == i0+1 && x0.Uses == 1 && x1.Uses == 1 && s0.Uses == 1 && mergePoint(b, x0, x1) != nil && clobber(x0, x1, s0)) { continue } b = mergePoint(b, x0, x1) v0 := b.NewValue0(x1.Pos, Op386MOVWload, typ.UInt16) v.copyOf(v0) v0.AuxInt = int32ToAuxInt(i0) v0.Aux = symToAux(s) v0.AddArg2(p, mem) return true } break } // match: (ORL x0:(MOVBload [i] {s} p0 mem) s0:(SHLLconst [8] x1:(MOVBload [i] {s} p1 mem))) // cond: x0.Uses == 1 && x1.Uses == 1 && s0.Uses == 1 && sequentialAddresses(p0, p1, 1) && mergePoint(b,x0,x1) != nil && clobber(x0, x1, s0) // result: @mergePoint(b,x0,x1) (MOVWload [i] {s} p0 mem) for { for _i0 := 0; _i0 <= 1; _i0, v_0, v_1 = _i0+1, v_1, v_0 { x0 := v_0 if x0.Op != Op386MOVBload { continue } i := auxIntToInt32(x0.AuxInt) s := auxToSym(x0.Aux) mem := x0.Args[1] p0 := x0.Args[0] s0 := v_1 if s0.Op != Op386SHLLconst || auxIntToInt32(s0.AuxInt) != 8 { continue } x1 := s0.Args[0] if x1.Op != Op386MOVBload || auxIntToInt32(x1.AuxInt) != i || auxToSym(x1.Aux) != s { continue } _ = x1.Args[1] p1 := x1.Args[0] if mem != x1.Args[1] || !(x0.Uses == 1 && x1.Uses == 1 && s0.Uses == 1 && sequentialAddresses(p0, p1, 1) && mergePoint(b, x0, x1) != nil && clobber(x0, x1, s0)) { continue } b = mergePoint(b, x0, x1) v0 := b.NewValue0(x1.Pos, Op386MOVWload, typ.UInt16) v.copyOf(v0) v0.AuxInt = int32ToAuxInt(i) v0.Aux = symToAux(s) v0.AddArg2(p0, mem) return true } break } // match: (ORL o0:(ORL x0:(MOVWload [i0] {s} p mem) s0:(SHLLconst [16] x1:(MOVBload [i2] {s} p mem))) s1:(SHLLconst [24] x2:(MOVBload [i3] {s} p mem))) // cond: i2 == i0+2 && i3 == i0+3 && x0.Uses == 1 && x1.Uses == 1 && x2.Uses == 1 && s0.Uses == 1 && s1.Uses == 1 && o0.Uses == 1 && mergePoint(b,x0,x1,x2) != nil && clobber(x0, x1, x2, s0, s1, o0) // result: @mergePoint(b,x0,x1,x2) (MOVLload [i0] {s} p mem) for { for _i0 := 0; _i0 <= 1; _i0, v_0, v_1 = _i0+1, v_1, v_0 { o0 := v_0 if o0.Op != Op386ORL { continue } _ = o0.Args[1] o0_0 := o0.Args[0] o0_1 := o0.Args[1] for _i1 := 0; _i1 <= 1; _i1, o0_0, o0_1 = _i1+1, o0_1, o0_0 { x0 := o0_0 if x0.Op != Op386MOVWload { continue } i0 := auxIntToInt32(x0.AuxInt) s := auxToSym(x0.Aux) mem := x0.Args[1] p := x0.Args[0] s0 := o0_1 if s0.Op != Op386SHLLconst || auxIntToInt32(s0.AuxInt) != 16 { continue } x1 := s0.Args[0] if x1.Op != Op386MOVBload { continue } i2 := auxIntToInt32(x1.AuxInt) if auxToSym(x1.Aux) != s { continue } _ = x1.Args[1] if p != x1.Args[0] || mem != x1.Args[1] { continue } s1 := v_1 if s1.Op != Op386SHLLconst || auxIntToInt32(s1.AuxInt) != 24 { continue } x2 := s1.Args[0] if x2.Op != Op386MOVBload { continue } i3 := auxIntToInt32(x2.AuxInt) if auxToSym(x2.Aux) != s { continue } _ = x2.Args[1] if p != x2.Args[0] || mem != x2.Args[1] || !(i2 == i0+2 && i3 == i0+3 && x0.Uses == 1 && x1.Uses == 1 && x2.Uses == 1 && s0.Uses == 1 && s1.Uses == 1 && o0.Uses == 1 && mergePoint(b, x0, x1, x2) != nil && clobber(x0, x1, x2, s0, s1, o0)) { continue } b = mergePoint(b, x0, x1, x2) v0 := b.NewValue0(x2.Pos, Op386MOVLload, typ.UInt32) v.copyOf(v0) v0.AuxInt = int32ToAuxInt(i0) v0.Aux = symToAux(s) v0.AddArg2(p, mem) return true } } break } // match: (ORL o0:(ORL x0:(MOVWload [i] {s} p0 mem) s0:(SHLLconst [16] x1:(MOVBload [i] {s} p1 mem))) s1:(SHLLconst [24] x2:(MOVBload [i] {s} p2 mem))) // cond: x0.Uses == 1 && x1.Uses == 1 && x2.Uses == 1 && s0.Uses == 1 && s1.Uses == 1 && o0.Uses == 1 && sequentialAddresses(p0, p1, 2) && sequentialAddresses(p1, p2, 1) && mergePoint(b,x0,x1,x2) != nil && clobber(x0, x1, x2, s0, s1, o0) // result: @mergePoint(b,x0,x1,x2) (MOVLload [i] {s} p0 mem) for { for _i0 := 0; _i0 <= 1; _i0, v_0, v_1 = _i0+1, v_1, v_0 { o0 := v_0 if o0.Op != Op386ORL { continue } _ = o0.Args[1] o0_0 := o0.Args[0] o0_1 := o0.Args[1] for _i1 := 0; _i1 <= 1; _i1, o0_0, o0_1 = _i1+1, o0_1, o0_0 { x0 := o0_0 if x0.Op != Op386MOVWload { continue } i := auxIntToInt32(x0.AuxInt) s := auxToSym(x0.Aux) mem := x0.Args[1] p0 := x0.Args[0] s0 := o0_1 if s0.Op != Op386SHLLconst || auxIntToInt32(s0.AuxInt) != 16 { continue } x1 := s0.Args[0] if x1.Op != Op386MOVBload || auxIntToInt32(x1.AuxInt) != i || auxToSym(x1.Aux) != s { continue } _ = x1.Args[1] p1 := x1.Args[0] if mem != x1.Args[1] { continue } s1 := v_1 if s1.Op != Op386SHLLconst || auxIntToInt32(s1.AuxInt) != 24 { continue } x2 := s1.Args[0] if x2.Op != Op386MOVBload || auxIntToInt32(x2.AuxInt) != i || auxToSym(x2.Aux) != s { continue } _ = x2.Args[1] p2 := x2.Args[0] if mem != x2.Args[1] || !(x0.Uses == 1 && x1.Uses == 1 && x2.Uses == 1 && s0.Uses == 1 && s1.Uses == 1 && o0.Uses == 1 && sequentialAddresses(p0, p1, 2) && sequentialAddresses(p1, p2, 1) && mergePoint(b, x0, x1, x2) != nil && clobber(x0, x1, x2, s0, s1, o0)) { continue } b = mergePoint(b, x0, x1, x2) v0 := b.NewValue0(x2.Pos, Op386MOVLload, typ.UInt32) v.copyOf(v0) v0.AuxInt = int32ToAuxInt(i) v0.Aux = symToAux(s) v0.AddArg2(p0, mem) return true } } break } return false } func rewriteValue386_Op386ORLconst(v *Value) bool { v_0 := v.Args[0] // match: (ORLconst [c] x) // cond: c==0 // result: x for { c := auxIntToInt32(v.AuxInt) x := v_0 if !(c == 0) { break } v.copyOf(x) return true } // match: (ORLconst [c] _) // cond: c==-1 // result: (MOVLconst [-1]) for { c := auxIntToInt32(v.AuxInt) if !(c == -1) { break } v.reset(Op386MOVLconst) v.AuxInt = int32ToAuxInt(-1) return true } // match: (ORLconst [c] (MOVLconst [d])) // result: (MOVLconst [c|d]) for { c := auxIntToInt32(v.AuxInt) if v_0.Op != Op386MOVLconst { break } d := auxIntToInt32(v_0.AuxInt) v.reset(Op386MOVLconst) v.AuxInt = int32ToAuxInt(c | d) return true } return false } func rewriteValue386_Op386ORLconstmodify(v *Value) bool { v_1 := v.Args[1] v_0 := v.Args[0] b := v.Block config := b.Func.Config // match: (ORLconstmodify [valoff1] {sym} (ADDLconst [off2] base) mem) // cond: valoff1.canAdd32(off2) // result: (ORLconstmodify [valoff1.addOffset32(off2)] {sym} base mem) for { valoff1 := auxIntToValAndOff(v.AuxInt) sym := auxToSym(v.Aux) if v_0.Op != Op386ADDLconst { break } off2 := auxIntToInt32(v_0.AuxInt) base := v_0.Args[0] mem := v_1 if !(valoff1.canAdd32(off2)) { break } v.reset(Op386ORLconstmodify) v.AuxInt = valAndOffToAuxInt(valoff1.addOffset32(off2)) v.Aux = symToAux(sym) v.AddArg2(base, mem) return true } // match: (ORLconstmodify [valoff1] {sym1} (LEAL [off2] {sym2} base) mem) // cond: valoff1.canAdd32(off2) && canMergeSym(sym1, sym2) && (base.Op != OpSB || !config.ctxt.Flag_shared) // result: (ORLconstmodify [valoff1.addOffset32(off2)] {mergeSym(sym1,sym2)} base mem) for { valoff1 := auxIntToValAndOff(v.AuxInt) sym1 := auxToSym(v.Aux) if v_0.Op != Op386LEAL { break } off2 := auxIntToInt32(v_0.AuxInt) sym2 := auxToSym(v_0.Aux) base := v_0.Args[0] mem := v_1 if !(valoff1.canAdd32(off2) && canMergeSym(sym1, sym2) && (base.Op != OpSB || !config.ctxt.Flag_shared)) { break } v.reset(Op386ORLconstmodify) v.AuxInt = valAndOffToAuxInt(valoff1.addOffset32(off2)) v.Aux = symToAux(mergeSym(sym1, sym2)) v.AddArg2(base, mem) return true } return false } func rewriteValue386_Op386ORLload(v *Value) bool { v_2 := v.Args[2] v_1 := v.Args[1] v_0 := v.Args[0] b := v.Block config := b.Func.Config // match: (ORLload [off1] {sym} val (ADDLconst [off2] base) mem) // cond: is32Bit(int64(off1)+int64(off2)) // result: (ORLload [off1+off2] {sym} val base mem) for { off1 := auxIntToInt32(v.AuxInt) sym := auxToSym(v.Aux) val := v_0 if v_1.Op != Op386ADDLconst { break } off2 := auxIntToInt32(v_1.AuxInt) base := v_1.Args[0] mem := v_2 if !(is32Bit(int64(off1) + int64(off2))) { break } v.reset(Op386ORLload) v.AuxInt = int32ToAuxInt(off1 + off2) v.Aux = symToAux(sym) v.AddArg3(val, base, mem) return true } // match: (ORLload [off1] {sym1} val (LEAL [off2] {sym2} base) mem) // cond: is32Bit(int64(off1)+int64(off2)) && canMergeSym(sym1, sym2) && (base.Op != OpSB || !config.ctxt.Flag_shared) // result: (ORLload [off1+off2] {mergeSym(sym1,sym2)} val base mem) for { off1 := auxIntToInt32(v.AuxInt) sym1 := auxToSym(v.Aux) val := v_0 if v_1.Op != Op386LEAL { break } off2 := auxIntToInt32(v_1.AuxInt) sym2 := auxToSym(v_1.Aux) base := v_1.Args[0] mem := v_2 if !(is32Bit(int64(off1)+int64(off2)) && canMergeSym(sym1, sym2) && (base.Op != OpSB || !config.ctxt.Flag_shared)) { break } v.reset(Op386ORLload) v.AuxInt = int32ToAuxInt(off1 + off2) v.Aux = symToAux(mergeSym(sym1, sym2)) v.AddArg3(val, base, mem) return true } return false } func rewriteValue386_Op386ORLmodify(v *Value) bool { v_2 := v.Args[2] v_1 := v.Args[1] v_0 := v.Args[0] b := v.Block config := b.Func.Config // match: (ORLmodify [off1] {sym} (ADDLconst [off2] base) val mem) // cond: is32Bit(int64(off1)+int64(off2)) // result: (ORLmodify [off1+off2] {sym} base val mem) for { off1 := auxIntToInt32(v.AuxInt) sym := auxToSym(v.Aux) if v_0.Op != Op386ADDLconst { break } off2 := auxIntToInt32(v_0.AuxInt) base := v_0.Args[0] val := v_1 mem := v_2 if !(is32Bit(int64(off1) + int64(off2))) { break } v.reset(Op386ORLmodify) v.AuxInt = int32ToAuxInt(off1 + off2) v.Aux = symToAux(sym) v.AddArg3(base, val, mem) return true } // match: (ORLmodify [off1] {sym1} (LEAL [off2] {sym2} base) val mem) // cond: is32Bit(int64(off1)+int64(off2)) && canMergeSym(sym1, sym2) && (base.Op != OpSB || !config.ctxt.Flag_shared) // result: (ORLmodify [off1+off2] {mergeSym(sym1,sym2)} base val mem) for { off1 := auxIntToInt32(v.AuxInt) sym1 := auxToSym(v.Aux) if v_0.Op != Op386LEAL { break } off2 := auxIntToInt32(v_0.AuxInt) sym2 := auxToSym(v_0.Aux) base := v_0.Args[0] val := v_1 mem := v_2 if !(is32Bit(int64(off1)+int64(off2)) && canMergeSym(sym1, sym2) && (base.Op != OpSB || !config.ctxt.Flag_shared)) { break } v.reset(Op386ORLmodify) v.AuxInt = int32ToAuxInt(off1 + off2) v.Aux = symToAux(mergeSym(sym1, sym2)) v.AddArg3(base, val, mem) return true } return false } func rewriteValue386_Op386ROLB(v *Value) bool { v_1 := v.Args[1] v_0 := v.Args[0] // match: (ROLB x (MOVLconst [c])) // result: (ROLBconst [int8(c&7)] x) for { x := v_0 if v_1.Op != Op386MOVLconst { break } c := auxIntToInt32(v_1.AuxInt) v.reset(Op386ROLBconst) v.AuxInt = int8ToAuxInt(int8(c & 7)) v.AddArg(x) return true } return false } func rewriteValue386_Op386ROLBconst(v *Value) bool { v_0 := v.Args[0] // match: (ROLBconst [0] x) // result: x for { if auxIntToInt8(v.AuxInt) != 0 { break } x := v_0 v.copyOf(x) return true } return false } func rewriteValue386_Op386ROLL(v *Value) bool { v_1 := v.Args[1] v_0 := v.Args[0] // match: (ROLL x (MOVLconst [c])) // result: (ROLLconst [c&31] x) for { x := v_0 if v_1.Op != Op386MOVLconst { break } c := auxIntToInt32(v_1.AuxInt) v.reset(Op386ROLLconst) v.AuxInt = int32ToAuxInt(c & 31) v.AddArg(x) return true } return false } func rewriteValue386_Op386ROLLconst(v *Value) bool { v_0 := v.Args[0] // match: (ROLLconst [0] x) // result: x for { if auxIntToInt32(v.AuxInt) != 0 { break } x := v_0 v.copyOf(x) return true } return false } func rewriteValue386_Op386ROLW(v *Value) bool { v_1 := v.Args[1] v_0 := v.Args[0] // match: (ROLW x (MOVLconst [c])) // result: (ROLWconst [int16(c&15)] x) for { x := v_0 if v_1.Op != Op386MOVLconst { break } c := auxIntToInt32(v_1.AuxInt) v.reset(Op386ROLWconst) v.AuxInt = int16ToAuxInt(int16(c & 15)) v.AddArg(x) return true } return false } func rewriteValue386_Op386ROLWconst(v *Value) bool { v_0 := v.Args[0] // match: (ROLWconst [0] x) // result: x for { if auxIntToInt16(v.AuxInt) != 0 { break } x := v_0 v.copyOf(x) return true } return false } func rewriteValue386_Op386SARB(v *Value) bool { v_1 := v.Args[1] v_0 := v.Args[0] // match: (SARB x (MOVLconst [c])) // result: (SARBconst [int8(min(int64(c&31),7))] x) for { x := v_0 if v_1.Op != Op386MOVLconst { break } c := auxIntToInt32(v_1.AuxInt) v.reset(Op386SARBconst) v.AuxInt = int8ToAuxInt(int8(min(int64(c&31), 7))) v.AddArg(x) return true } return false } func rewriteValue386_Op386SARBconst(v *Value) bool { v_0 := v.Args[0] // match: (SARBconst x [0]) // result: x for { if auxIntToInt8(v.AuxInt) != 0 { break } x := v_0 v.copyOf(x) return true } // match: (SARBconst [c] (MOVLconst [d])) // result: (MOVLconst [d>>uint64(c)]) for { c := auxIntToInt8(v.AuxInt) if v_0.Op != Op386MOVLconst { break } d := auxIntToInt32(v_0.AuxInt) v.reset(Op386MOVLconst) v.AuxInt = int32ToAuxInt(d >> uint64(c)) return true } return false } func rewriteValue386_Op386SARL(v *Value) bool { v_1 := v.Args[1] v_0 := v.Args[0] // match: (SARL x (MOVLconst [c])) // result: (SARLconst [c&31] x) for { x := v_0 if v_1.Op != Op386MOVLconst { break } c := auxIntToInt32(v_1.AuxInt) v.reset(Op386SARLconst) v.AuxInt = int32ToAuxInt(c & 31) v.AddArg(x) return true } // match: (SARL x (ANDLconst [31] y)) // result: (SARL x y) for { x := v_0 if v_1.Op != Op386ANDLconst || auxIntToInt32(v_1.AuxInt) != 31 { break } y := v_1.Args[0] v.reset(Op386SARL) v.AddArg2(x, y) return true } return false } func rewriteValue386_Op386SARLconst(v *Value) bool { v_0 := v.Args[0] // match: (SARLconst x [0]) // result: x for { if auxIntToInt32(v.AuxInt) != 0 { break } x := v_0 v.copyOf(x) return true } // match: (SARLconst [c] (MOVLconst [d])) // result: (MOVLconst [d>>uint64(c)]) for { c := auxIntToInt32(v.AuxInt) if v_0.Op != Op386MOVLconst { break } d := auxIntToInt32(v_0.AuxInt) v.reset(Op386MOVLconst) v.AuxInt = int32ToAuxInt(d >> uint64(c)) return true } return false } func rewriteValue386_Op386SARW(v *Value) bool { v_1 := v.Args[1] v_0 := v.Args[0] // match: (SARW x (MOVLconst [c])) // result: (SARWconst [int16(min(int64(c&31),15))] x) for { x := v_0 if v_1.Op != Op386MOVLconst { break } c := auxIntToInt32(v_1.AuxInt) v.reset(Op386SARWconst) v.AuxInt = int16ToAuxInt(int16(min(int64(c&31), 15))) v.AddArg(x) return true } return false } func rewriteValue386_Op386SARWconst(v *Value) bool { v_0 := v.Args[0] // match: (SARWconst x [0]) // result: x for { if auxIntToInt16(v.AuxInt) != 0 { break } x := v_0 v.copyOf(x) return true } // match: (SARWconst [c] (MOVLconst [d])) // result: (MOVLconst [d>>uint64(c)]) for { c := auxIntToInt16(v.AuxInt) if v_0.Op != Op386MOVLconst { break } d := auxIntToInt32(v_0.AuxInt) v.reset(Op386MOVLconst) v.AuxInt = int32ToAuxInt(d >> uint64(c)) return true } return false } func rewriteValue386_Op386SBBL(v *Value) bool { v_2 := v.Args[2] v_1 := v.Args[1] v_0 := v.Args[0] // match: (SBBL x (MOVLconst [c]) f) // result: (SBBLconst [c] x f) for { x := v_0 if v_1.Op != Op386MOVLconst { break } c := auxIntToInt32(v_1.AuxInt) f := v_2 v.reset(Op386SBBLconst) v.AuxInt = int32ToAuxInt(c) v.AddArg2(x, f) return true } return false } func rewriteValue386_Op386SBBLcarrymask(v *Value) bool { v_0 := v.Args[0] // match: (SBBLcarrymask (FlagEQ)) // result: (MOVLconst [0]) for { if v_0.Op != Op386FlagEQ { break } v.reset(Op386MOVLconst) v.AuxInt = int32ToAuxInt(0) return true } // match: (SBBLcarrymask (FlagLT_ULT)) // result: (MOVLconst [-1]) for { if v_0.Op != Op386FlagLT_ULT { break } v.reset(Op386MOVLconst) v.AuxInt = int32ToAuxInt(-1) return true } // match: (SBBLcarrymask (FlagLT_UGT)) // result: (MOVLconst [0]) for { if v_0.Op != Op386FlagLT_UGT { break } v.reset(Op386MOVLconst) v.AuxInt = int32ToAuxInt(0) return true } // match: (SBBLcarrymask (FlagGT_ULT)) // result: (MOVLconst [-1]) for { if v_0.Op != Op386FlagGT_ULT { break } v.reset(Op386MOVLconst) v.AuxInt = int32ToAuxInt(-1) return true } // match: (SBBLcarrymask (FlagGT_UGT)) // result: (MOVLconst [0]) for { if v_0.Op != Op386FlagGT_UGT { break } v.reset(Op386MOVLconst) v.AuxInt = int32ToAuxInt(0) return true } return false } func rewriteValue386_Op386SETA(v *Value) bool { v_0 := v.Args[0] // match: (SETA (InvertFlags x)) // result: (SETB x) for { if v_0.Op != Op386InvertFlags { break } x := v_0.Args[0] v.reset(Op386SETB) v.AddArg(x) return true } // match: (SETA (FlagEQ)) // result: (MOVLconst [0]) for { if v_0.Op != Op386FlagEQ { break } v.reset(Op386MOVLconst) v.AuxInt = int32ToAuxInt(0) return true } // match: (SETA (FlagLT_ULT)) // result: (MOVLconst [0]) for { if v_0.Op != Op386FlagLT_ULT { break } v.reset(Op386MOVLconst) v.AuxInt = int32ToAuxInt(0) return true } // match: (SETA (FlagLT_UGT)) // result: (MOVLconst [1]) for { if v_0.Op != Op386FlagLT_UGT { break } v.reset(Op386MOVLconst) v.AuxInt = int32ToAuxInt(1) return true } // match: (SETA (FlagGT_ULT)) // result: (MOVLconst [0]) for { if v_0.Op != Op386FlagGT_ULT { break } v.reset(Op386MOVLconst) v.AuxInt = int32ToAuxInt(0) return true } // match: (SETA (FlagGT_UGT)) // result: (MOVLconst [1]) for { if v_0.Op != Op386FlagGT_UGT { break } v.reset(Op386MOVLconst) v.AuxInt = int32ToAuxInt(1) return true } return false } func rewriteValue386_Op386SETAE(v *Value) bool { v_0 := v.Args[0] // match: (SETAE (InvertFlags x)) // result: (SETBE x) for { if v_0.Op != Op386InvertFlags { break } x := v_0.Args[0] v.reset(Op386SETBE) v.AddArg(x) return true } // match: (SETAE (FlagEQ)) // result: (MOVLconst [1]) for { if v_0.Op != Op386FlagEQ { break } v.reset(Op386MOVLconst) v.AuxInt = int32ToAuxInt(1) return true } // match: (SETAE (FlagLT_ULT)) // result: (MOVLconst [0]) for { if v_0.Op != Op386FlagLT_ULT { break } v.reset(Op386MOVLconst) v.AuxInt = int32ToAuxInt(0) return true } // match: (SETAE (FlagLT_UGT)) // result: (MOVLconst [1]) for { if v_0.Op != Op386FlagLT_UGT { break } v.reset(Op386MOVLconst) v.AuxInt = int32ToAuxInt(1) return true } // match: (SETAE (FlagGT_ULT)) // result: (MOVLconst [0]) for { if v_0.Op != Op386FlagGT_ULT { break } v.reset(Op386MOVLconst) v.AuxInt = int32ToAuxInt(0) return true } // match: (SETAE (FlagGT_UGT)) // result: (MOVLconst [1]) for { if v_0.Op != Op386FlagGT_UGT { break } v.reset(Op386MOVLconst) v.AuxInt = int32ToAuxInt(1) return true } return false } func rewriteValue386_Op386SETB(v *Value) bool { v_0 := v.Args[0] // match: (SETB (InvertFlags x)) // result: (SETA x) for { if v_0.Op != Op386InvertFlags { break } x := v_0.Args[0] v.reset(Op386SETA) v.AddArg(x) return true } // match: (SETB (FlagEQ)) // result: (MOVLconst [0]) for { if v_0.Op != Op386FlagEQ { break } v.reset(Op386MOVLconst) v.AuxInt = int32ToAuxInt(0) return true } // match: (SETB (FlagLT_ULT)) // result: (MOVLconst [1]) for { if v_0.Op != Op386FlagLT_ULT { break } v.reset(Op386MOVLconst) v.AuxInt = int32ToAuxInt(1) return true } // match: (SETB (FlagLT_UGT)) // result: (MOVLconst [0]) for { if v_0.Op != Op386FlagLT_UGT { break } v.reset(Op386MOVLconst) v.AuxInt = int32ToAuxInt(0) return true } // match: (SETB (FlagGT_ULT)) // result: (MOVLconst [1]) for { if v_0.Op != Op386FlagGT_ULT { break } v.reset(Op386MOVLconst) v.AuxInt = int32ToAuxInt(1) return true } // match: (SETB (FlagGT_UGT)) // result: (MOVLconst [0]) for { if v_0.Op != Op386FlagGT_UGT { break } v.reset(Op386MOVLconst) v.AuxInt = int32ToAuxInt(0) return true } return false } func rewriteValue386_Op386SETBE(v *Value) bool { v_0 := v.Args[0] // match: (SETBE (InvertFlags x)) // result: (SETAE x) for { if v_0.Op != Op386InvertFlags { break } x := v_0.Args[0] v.reset(Op386SETAE) v.AddArg(x) return true } // match: (SETBE (FlagEQ)) // result: (MOVLconst [1]) for { if v_0.Op != Op386FlagEQ { break } v.reset(Op386MOVLconst) v.AuxInt = int32ToAuxInt(1) return true } // match: (SETBE (FlagLT_ULT)) // result: (MOVLconst [1]) for { if v_0.Op != Op386FlagLT_ULT { break } v.reset(Op386MOVLconst) v.AuxInt = int32ToAuxInt(1) return true } // match: (SETBE (FlagLT_UGT)) // result: (MOVLconst [0]) for { if v_0.Op != Op386FlagLT_UGT { break } v.reset(Op386MOVLconst) v.AuxInt = int32ToAuxInt(0) return true } // match: (SETBE (FlagGT_ULT)) // result: (MOVLconst [1]) for { if v_0.Op != Op386FlagGT_ULT { break } v.reset(Op386MOVLconst) v.AuxInt = int32ToAuxInt(1) return true } // match: (SETBE (FlagGT_UGT)) // result: (MOVLconst [0]) for { if v_0.Op != Op386FlagGT_UGT { break } v.reset(Op386MOVLconst) v.AuxInt = int32ToAuxInt(0) return true } return false } func rewriteValue386_Op386SETEQ(v *Value) bool { v_0 := v.Args[0] // match: (SETEQ (InvertFlags x)) // result: (SETEQ x) for { if v_0.Op != Op386InvertFlags { break } x := v_0.Args[0] v.reset(Op386SETEQ) v.AddArg(x) return true } // match: (SETEQ (FlagEQ)) // result: (MOVLconst [1]) for { if v_0.Op != Op386FlagEQ { break } v.reset(Op386MOVLconst) v.AuxInt = int32ToAuxInt(1) return true } // match: (SETEQ (FlagLT_ULT)) // result: (MOVLconst [0]) for { if v_0.Op != Op386FlagLT_ULT { break } v.reset(Op386MOVLconst) v.AuxInt = int32ToAuxInt(0) return true } // match: (SETEQ (FlagLT_UGT)) // result: (MOVLconst [0]) for { if v_0.Op != Op386FlagLT_UGT { break } v.reset(Op386MOVLconst) v.AuxInt = int32ToAuxInt(0) return true } // match: (SETEQ (FlagGT_ULT)) // result: (MOVLconst [0]) for { if v_0.Op != Op386FlagGT_ULT { break } v.reset(Op386MOVLconst) v.AuxInt = int32ToAuxInt(0) return true } // match: (SETEQ (FlagGT_UGT)) // result: (MOVLconst [0]) for { if v_0.Op != Op386FlagGT_UGT { break } v.reset(Op386MOVLconst) v.AuxInt = int32ToAuxInt(0) return true } return false } func rewriteValue386_Op386SETG(v *Value) bool { v_0 := v.Args[0] // match: (SETG (InvertFlags x)) // result: (SETL x) for { if v_0.Op != Op386InvertFlags { break } x := v_0.Args[0] v.reset(Op386SETL) v.AddArg(x) return true } // match: (SETG (FlagEQ)) // result: (MOVLconst [0]) for { if v_0.Op != Op386FlagEQ { break } v.reset(Op386MOVLconst) v.AuxInt = int32ToAuxInt(0) return true } // match: (SETG (FlagLT_ULT)) // result: (MOVLconst [0]) for { if v_0.Op != Op386FlagLT_ULT { break } v.reset(Op386MOVLconst) v.AuxInt = int32ToAuxInt(0) return true } // match: (SETG (FlagLT_UGT)) // result: (MOVLconst [0]) for { if v_0.Op != Op386FlagLT_UGT { break } v.reset(Op386MOVLconst) v.AuxInt = int32ToAuxInt(0) return true } // match: (SETG (FlagGT_ULT)) // result: (MOVLconst [1]) for { if v_0.Op != Op386FlagGT_ULT { break } v.reset(Op386MOVLconst) v.AuxInt = int32ToAuxInt(1) return true } // match: (SETG (FlagGT_UGT)) // result: (MOVLconst [1]) for { if v_0.Op != Op386FlagGT_UGT { break } v.reset(Op386MOVLconst) v.AuxInt = int32ToAuxInt(1) return true } return false } func rewriteValue386_Op386SETGE(v *Value) bool { v_0 := v.Args[0] // match: (SETGE (InvertFlags x)) // result: (SETLE x) for { if v_0.Op != Op386InvertFlags { break } x := v_0.Args[0] v.reset(Op386SETLE) v.AddArg(x) return true } // match: (SETGE (FlagEQ)) // result: (MOVLconst [1]) for { if v_0.Op != Op386FlagEQ { break } v.reset(Op386MOVLconst) v.AuxInt = int32ToAuxInt(1) return true } // match: (SETGE (FlagLT_ULT)) // result: (MOVLconst [0]) for { if v_0.Op != Op386FlagLT_ULT { break } v.reset(Op386MOVLconst) v.AuxInt = int32ToAuxInt(0) return true } // match: (SETGE (FlagLT_UGT)) // result: (MOVLconst [0]) for { if v_0.Op != Op386FlagLT_UGT { break } v.reset(Op386MOVLconst) v.AuxInt = int32ToAuxInt(0) return true } // match: (SETGE (FlagGT_ULT)) // result: (MOVLconst [1]) for { if v_0.Op != Op386FlagGT_ULT { break } v.reset(Op386MOVLconst) v.AuxInt = int32ToAuxInt(1) return true } // match: (SETGE (FlagGT_UGT)) // result: (MOVLconst [1]) for { if v_0.Op != Op386FlagGT_UGT { break } v.reset(Op386MOVLconst) v.AuxInt = int32ToAuxInt(1) return true } return false } func rewriteValue386_Op386SETL(v *Value) bool { v_0 := v.Args[0] // match: (SETL (InvertFlags x)) // result: (SETG x) for { if v_0.Op != Op386InvertFlags { break } x := v_0.Args[0] v.reset(Op386SETG) v.AddArg(x) return true } // match: (SETL (FlagEQ)) // result: (MOVLconst [0]) for { if v_0.Op != Op386FlagEQ { break } v.reset(Op386MOVLconst) v.AuxInt = int32ToAuxInt(0) return true } // match: (SETL (FlagLT_ULT)) // result: (MOVLconst [1]) for { if v_0.Op != Op386FlagLT_ULT { break } v.reset(Op386MOVLconst) v.AuxInt = int32ToAuxInt(1) return true } // match: (SETL (FlagLT_UGT)) // result: (MOVLconst [1]) for { if v_0.Op != Op386FlagLT_UGT { break } v.reset(Op386MOVLconst) v.AuxInt = int32ToAuxInt(1) return true } // match: (SETL (FlagGT_ULT)) // result: (MOVLconst [0]) for { if v_0.Op != Op386FlagGT_ULT { break } v.reset(Op386MOVLconst) v.AuxInt = int32ToAuxInt(0) return true } // match: (SETL (FlagGT_UGT)) // result: (MOVLconst [0]) for { if v_0.Op != Op386FlagGT_UGT { break } v.reset(Op386MOVLconst) v.AuxInt = int32ToAuxInt(0) return true } return false } func rewriteValue386_Op386SETLE(v *Value) bool { v_0 := v.Args[0] // match: (SETLE (InvertFlags x)) // result: (SETGE x) for { if v_0.Op != Op386InvertFlags { break } x := v_0.Args[0] v.reset(Op386SETGE) v.AddArg(x) return true } // match: (SETLE (FlagEQ)) // result: (MOVLconst [1]) for { if v_0.Op != Op386FlagEQ { break } v.reset(Op386MOVLconst) v.AuxInt = int32ToAuxInt(1) return true } // match: (SETLE (FlagLT_ULT)) // result: (MOVLconst [1]) for { if v_0.Op != Op386FlagLT_ULT { break } v.reset(Op386MOVLconst) v.AuxInt = int32ToAuxInt(1) return true } // match: (SETLE (FlagLT_UGT)) // result: (MOVLconst [1]) for { if v_0.Op != Op386FlagLT_UGT { break } v.reset(Op386MOVLconst) v.AuxInt = int32ToAuxInt(1) return true } // match: (SETLE (FlagGT_ULT)) // result: (MOVLconst [0]) for { if v_0.Op != Op386FlagGT_ULT { break } v.reset(Op386MOVLconst) v.AuxInt = int32ToAuxInt(0) return true } // match: (SETLE (FlagGT_UGT)) // result: (MOVLconst [0]) for { if v_0.Op != Op386FlagGT_UGT { break } v.reset(Op386MOVLconst) v.AuxInt = int32ToAuxInt(0) return true } return false } func rewriteValue386_Op386SETNE(v *Value) bool { v_0 := v.Args[0] // match: (SETNE (InvertFlags x)) // result: (SETNE x) for { if v_0.Op != Op386InvertFlags { break } x := v_0.Args[0] v.reset(Op386SETNE) v.AddArg(x) return true } // match: (SETNE (FlagEQ)) // result: (MOVLconst [0]) for { if v_0.Op != Op386FlagEQ { break } v.reset(Op386MOVLconst) v.AuxInt = int32ToAuxInt(0) return true } // match: (SETNE (FlagLT_ULT)) // result: (MOVLconst [1]) for { if v_0.Op != Op386FlagLT_ULT { break } v.reset(Op386MOVLconst) v.AuxInt = int32ToAuxInt(1) return true } // match: (SETNE (FlagLT_UGT)) // result: (MOVLconst [1]) for { if v_0.Op != Op386FlagLT_UGT { break } v.reset(Op386MOVLconst) v.AuxInt = int32ToAuxInt(1) return true } // match: (SETNE (FlagGT_ULT)) // result: (MOVLconst [1]) for { if v_0.Op != Op386FlagGT_ULT { break } v.reset(Op386MOVLconst) v.AuxInt = int32ToAuxInt(1) return true } // match: (SETNE (FlagGT_UGT)) // result: (MOVLconst [1]) for { if v_0.Op != Op386FlagGT_UGT { break } v.reset(Op386MOVLconst) v.AuxInt = int32ToAuxInt(1) return true } return false } func rewriteValue386_Op386SHLL(v *Value) bool { v_1 := v.Args[1] v_0 := v.Args[0] // match: (SHLL x (MOVLconst [c])) // result: (SHLLconst [c&31] x) for { x := v_0 if v_1.Op != Op386MOVLconst { break } c := auxIntToInt32(v_1.AuxInt) v.reset(Op386SHLLconst) v.AuxInt = int32ToAuxInt(c & 31) v.AddArg(x) return true } // match: (SHLL x (ANDLconst [31] y)) // result: (SHLL x y) for { x := v_0 if v_1.Op != Op386ANDLconst || auxIntToInt32(v_1.AuxInt) != 31 { break } y := v_1.Args[0] v.reset(Op386SHLL) v.AddArg2(x, y) return true } return false } func rewriteValue386_Op386SHLLconst(v *Value) bool { v_0 := v.Args[0] // match: (SHLLconst x [0]) // result: x for { if auxIntToInt32(v.AuxInt) != 0 { break } x := v_0 v.copyOf(x) return true } return false } func rewriteValue386_Op386SHRB(v *Value) bool { v_1 := v.Args[1] v_0 := v.Args[0] // match: (SHRB x (MOVLconst [c])) // cond: c&31 < 8 // result: (SHRBconst [int8(c&31)] x) for { x := v_0 if v_1.Op != Op386MOVLconst { break } c := auxIntToInt32(v_1.AuxInt) if !(c&31 < 8) { break } v.reset(Op386SHRBconst) v.AuxInt = int8ToAuxInt(int8(c & 31)) v.AddArg(x) return true } // match: (SHRB _ (MOVLconst [c])) // cond: c&31 >= 8 // result: (MOVLconst [0]) for { if v_1.Op != Op386MOVLconst { break } c := auxIntToInt32(v_1.AuxInt) if !(c&31 >= 8) { break } v.reset(Op386MOVLconst) v.AuxInt = int32ToAuxInt(0) return true } return false } func rewriteValue386_Op386SHRBconst(v *Value) bool { v_0 := v.Args[0] // match: (SHRBconst x [0]) // result: x for { if auxIntToInt8(v.AuxInt) != 0 { break } x := v_0 v.copyOf(x) return true } return false } func rewriteValue386_Op386SHRL(v *Value) bool { v_1 := v.Args[1] v_0 := v.Args[0] // match: (SHRL x (MOVLconst [c])) // result: (SHRLconst [c&31] x) for { x := v_0 if v_1.Op != Op386MOVLconst { break } c := auxIntToInt32(v_1.AuxInt) v.reset(Op386SHRLconst) v.AuxInt = int32ToAuxInt(c & 31) v.AddArg(x) return true } // match: (SHRL x (ANDLconst [31] y)) // result: (SHRL x y) for { x := v_0 if v_1.Op != Op386ANDLconst || auxIntToInt32(v_1.AuxInt) != 31 { break } y := v_1.Args[0] v.reset(Op386SHRL) v.AddArg2(x, y) return true } return false } func rewriteValue386_Op386SHRLconst(v *Value) bool { v_0 := v.Args[0] // match: (SHRLconst x [0]) // result: x for { if auxIntToInt32(v.AuxInt) != 0 { break } x := v_0 v.copyOf(x) return true } return false } func rewriteValue386_Op386SHRW(v *Value) bool { v_1 := v.Args[1] v_0 := v.Args[0] // match: (SHRW x (MOVLconst [c])) // cond: c&31 < 16 // result: (SHRWconst [int16(c&31)] x) for { x := v_0 if v_1.Op != Op386MOVLconst { break } c := auxIntToInt32(v_1.AuxInt) if !(c&31 < 16) { break } v.reset(Op386SHRWconst) v.AuxInt = int16ToAuxInt(int16(c & 31)) v.AddArg(x) return true } // match: (SHRW _ (MOVLconst [c])) // cond: c&31 >= 16 // result: (MOVLconst [0]) for { if v_1.Op != Op386MOVLconst { break } c := auxIntToInt32(v_1.AuxInt) if !(c&31 >= 16) { break } v.reset(Op386MOVLconst) v.AuxInt = int32ToAuxInt(0) return true } return false } func rewriteValue386_Op386SHRWconst(v *Value) bool { v_0 := v.Args[0] // match: (SHRWconst x [0]) // result: x for { if auxIntToInt16(v.AuxInt) != 0 { break } x := v_0 v.copyOf(x) return true } return false } func rewriteValue386_Op386SUBL(v *Value) bool { v_1 := v.Args[1] v_0 := v.Args[0] b := v.Block // match: (SUBL x (MOVLconst [c])) // result: (SUBLconst x [c]) for { x := v_0 if v_1.Op != Op386MOVLconst { break } c := auxIntToInt32(v_1.AuxInt) v.reset(Op386SUBLconst) v.AuxInt = int32ToAuxInt(c) v.AddArg(x) return true } // match: (SUBL (MOVLconst [c]) x) // result: (NEGL (SUBLconst x [c])) for { if v_0.Op != Op386MOVLconst { break } c := auxIntToInt32(v_0.AuxInt) x := v_1 v.reset(Op386NEGL) v0 := b.NewValue0(v.Pos, Op386SUBLconst, v.Type) v0.AuxInt = int32ToAuxInt(c) v0.AddArg(x) v.AddArg(v0) return true } // match: (SUBL x l:(MOVLload [off] {sym} ptr mem)) // cond: canMergeLoadClobber(v, l, x) && clobber(l) // result: (SUBLload x [off] {sym} ptr mem) for { x := v_0 l := v_1 if l.Op != Op386MOVLload { break } off := auxIntToInt32(l.AuxInt) sym := auxToSym(l.Aux) mem := l.Args[1] ptr := l.Args[0] if !(canMergeLoadClobber(v, l, x) && clobber(l)) { break } v.reset(Op386SUBLload) v.AuxInt = int32ToAuxInt(off) v.Aux = symToAux(sym) v.AddArg3(x, ptr, mem) return true } // match: (SUBL x x) // result: (MOVLconst [0]) for { x := v_0 if x != v_1 { break } v.reset(Op386MOVLconst) v.AuxInt = int32ToAuxInt(0) return true } return false } func rewriteValue386_Op386SUBLcarry(v *Value) bool { v_1 := v.Args[1] v_0 := v.Args[0] // match: (SUBLcarry x (MOVLconst [c])) // result: (SUBLconstcarry [c] x) for { x := v_0 if v_1.Op != Op386MOVLconst { break } c := auxIntToInt32(v_1.AuxInt) v.reset(Op386SUBLconstcarry) v.AuxInt = int32ToAuxInt(c) v.AddArg(x) return true } return false } func rewriteValue386_Op386SUBLconst(v *Value) bool { v_0 := v.Args[0] // match: (SUBLconst [c] x) // cond: c==0 // result: x for { c := auxIntToInt32(v.AuxInt) x := v_0 if !(c == 0) { break } v.copyOf(x) return true } // match: (SUBLconst [c] x) // result: (ADDLconst [-c] x) for { c := auxIntToInt32(v.AuxInt) x := v_0 v.reset(Op386ADDLconst) v.AuxInt = int32ToAuxInt(-c) v.AddArg(x) return true } } func rewriteValue386_Op386SUBLload(v *Value) bool { v_2 := v.Args[2] v_1 := v.Args[1] v_0 := v.Args[0] b := v.Block config := b.Func.Config // match: (SUBLload [off1] {sym} val (ADDLconst [off2] base) mem) // cond: is32Bit(int64(off1)+int64(off2)) // result: (SUBLload [off1+off2] {sym} val base mem) for { off1 := auxIntToInt32(v.AuxInt) sym := auxToSym(v.Aux) val := v_0 if v_1.Op != Op386ADDLconst { break } off2 := auxIntToInt32(v_1.AuxInt) base := v_1.Args[0] mem := v_2 if !(is32Bit(int64(off1) + int64(off2))) { break } v.reset(Op386SUBLload) v.AuxInt = int32ToAuxInt(off1 + off2) v.Aux = symToAux(sym) v.AddArg3(val, base, mem) return true } // match: (SUBLload [off1] {sym1} val (LEAL [off2] {sym2} base) mem) // cond: is32Bit(int64(off1)+int64(off2)) && canMergeSym(sym1, sym2) && (base.Op != OpSB || !config.ctxt.Flag_shared) // result: (SUBLload [off1+off2] {mergeSym(sym1,sym2)} val base mem) for { off1 := auxIntToInt32(v.AuxInt) sym1 := auxToSym(v.Aux) val := v_0 if v_1.Op != Op386LEAL { break } off2 := auxIntToInt32(v_1.AuxInt) sym2 := auxToSym(v_1.Aux) base := v_1.Args[0] mem := v_2 if !(is32Bit(int64(off1)+int64(off2)) && canMergeSym(sym1, sym2) && (base.Op != OpSB || !config.ctxt.Flag_shared)) { break } v.reset(Op386SUBLload) v.AuxInt = int32ToAuxInt(off1 + off2) v.Aux = symToAux(mergeSym(sym1, sym2)) v.AddArg3(val, base, mem) return true } return false } func rewriteValue386_Op386SUBLmodify(v *Value) bool { v_2 := v.Args[2] v_1 := v.Args[1] v_0 := v.Args[0] b := v.Block config := b.Func.Config // match: (SUBLmodify [off1] {sym} (ADDLconst [off2] base) val mem) // cond: is32Bit(int64(off1)+int64(off2)) // result: (SUBLmodify [off1+off2] {sym} base val mem) for { off1 := auxIntToInt32(v.AuxInt) sym := auxToSym(v.Aux) if v_0.Op != Op386ADDLconst { break } off2 := auxIntToInt32(v_0.AuxInt) base := v_0.Args[0] val := v_1 mem := v_2 if !(is32Bit(int64(off1) + int64(off2))) { break } v.reset(Op386SUBLmodify) v.AuxInt = int32ToAuxInt(off1 + off2) v.Aux = symToAux(sym) v.AddArg3(base, val, mem) return true } // match: (SUBLmodify [off1] {sym1} (LEAL [off2] {sym2} base) val mem) // cond: is32Bit(int64(off1)+int64(off2)) && canMergeSym(sym1, sym2) && (base.Op != OpSB || !config.ctxt.Flag_shared) // result: (SUBLmodify [off1+off2] {mergeSym(sym1,sym2)} base val mem) for { off1 := auxIntToInt32(v.AuxInt) sym1 := auxToSym(v.Aux) if v_0.Op != Op386LEAL { break } off2 := auxIntToInt32(v_0.AuxInt) sym2 := auxToSym(v_0.Aux) base := v_0.Args[0] val := v_1 mem := v_2 if !(is32Bit(int64(off1)+int64(off2)) && canMergeSym(sym1, sym2) && (base.Op != OpSB || !config.ctxt.Flag_shared)) { break } v.reset(Op386SUBLmodify) v.AuxInt = int32ToAuxInt(off1 + off2) v.Aux = symToAux(mergeSym(sym1, sym2)) v.AddArg3(base, val, mem) return true } return false } func rewriteValue386_Op386SUBSD(v *Value) bool { v_1 := v.Args[1] v_0 := v.Args[0] // match: (SUBSD x l:(MOVSDload [off] {sym} ptr mem)) // cond: canMergeLoadClobber(v, l, x) && clobber(l) // result: (SUBSDload x [off] {sym} ptr mem) for { x := v_0 l := v_1 if l.Op != Op386MOVSDload { break } off := auxIntToInt32(l.AuxInt) sym := auxToSym(l.Aux) mem := l.Args[1] ptr := l.Args[0] if !(canMergeLoadClobber(v, l, x) && clobber(l)) { break } v.reset(Op386SUBSDload) v.AuxInt = int32ToAuxInt(off) v.Aux = symToAux(sym) v.AddArg3(x, ptr, mem) return true } return false } func rewriteValue386_Op386SUBSDload(v *Value) bool { v_2 := v.Args[2] v_1 := v.Args[1] v_0 := v.Args[0] b := v.Block config := b.Func.Config // match: (SUBSDload [off1] {sym} val (ADDLconst [off2] base) mem) // cond: is32Bit(int64(off1)+int64(off2)) // result: (SUBSDload [off1+off2] {sym} val base mem) for { off1 := auxIntToInt32(v.AuxInt) sym := auxToSym(v.Aux) val := v_0 if v_1.Op != Op386ADDLconst { break } off2 := auxIntToInt32(v_1.AuxInt) base := v_1.Args[0] mem := v_2 if !(is32Bit(int64(off1) + int64(off2))) { break } v.reset(Op386SUBSDload) v.AuxInt = int32ToAuxInt(off1 + off2) v.Aux = symToAux(sym) v.AddArg3(val, base, mem) return true } // match: (SUBSDload [off1] {sym1} val (LEAL [off2] {sym2} base) mem) // cond: is32Bit(int64(off1)+int64(off2)) && canMergeSym(sym1, sym2) && (base.Op != OpSB || !config.ctxt.Flag_shared) // result: (SUBSDload [off1+off2] {mergeSym(sym1,sym2)} val base mem) for { off1 := auxIntToInt32(v.AuxInt) sym1 := auxToSym(v.Aux) val := v_0 if v_1.Op != Op386LEAL { break } off2 := auxIntToInt32(v_1.AuxInt) sym2 := auxToSym(v_1.Aux) base := v_1.Args[0] mem := v_2 if !(is32Bit(int64(off1)+int64(off2)) && canMergeSym(sym1, sym2) && (base.Op != OpSB || !config.ctxt.Flag_shared)) { break } v.reset(Op386SUBSDload) v.AuxInt = int32ToAuxInt(off1 + off2) v.Aux = symToAux(mergeSym(sym1, sym2)) v.AddArg3(val, base, mem) return true } return false } func rewriteValue386_Op386SUBSS(v *Value) bool { v_1 := v.Args[1] v_0 := v.Args[0] // match: (SUBSS x l:(MOVSSload [off] {sym} ptr mem)) // cond: canMergeLoadClobber(v, l, x) && clobber(l) // result: (SUBSSload x [off] {sym} ptr mem) for { x := v_0 l := v_1 if l.Op != Op386MOVSSload { break } off := auxIntToInt32(l.AuxInt) sym := auxToSym(l.Aux) mem := l.Args[1] ptr := l.Args[0] if !(canMergeLoadClobber(v, l, x) && clobber(l)) { break } v.reset(Op386SUBSSload) v.AuxInt = int32ToAuxInt(off) v.Aux = symToAux(sym) v.AddArg3(x, ptr, mem) return true } return false } func rewriteValue386_Op386SUBSSload(v *Value) bool { v_2 := v.Args[2] v_1 := v.Args[1] v_0 := v.Args[0] b := v.Block config := b.Func.Config // match: (SUBSSload [off1] {sym} val (ADDLconst [off2] base) mem) // cond: is32Bit(int64(off1)+int64(off2)) // result: (SUBSSload [off1+off2] {sym} val base mem) for { off1 := auxIntToInt32(v.AuxInt) sym := auxToSym(v.Aux) val := v_0 if v_1.Op != Op386ADDLconst { break } off2 := auxIntToInt32(v_1.AuxInt) base := v_1.Args[0] mem := v_2 if !(is32Bit(int64(off1) + int64(off2))) { break } v.reset(Op386SUBSSload) v.AuxInt = int32ToAuxInt(off1 + off2) v.Aux = symToAux(sym) v.AddArg3(val, base, mem) return true } // match: (SUBSSload [off1] {sym1} val (LEAL [off2] {sym2} base) mem) // cond: is32Bit(int64(off1)+int64(off2)) && canMergeSym(sym1, sym2) && (base.Op != OpSB || !config.ctxt.Flag_shared) // result: (SUBSSload [off1+off2] {mergeSym(sym1,sym2)} val base mem) for { off1 := auxIntToInt32(v.AuxInt) sym1 := auxToSym(v.Aux) val := v_0 if v_1.Op != Op386LEAL { break } off2 := auxIntToInt32(v_1.AuxInt) sym2 := auxToSym(v_1.Aux) base := v_1.Args[0] mem := v_2 if !(is32Bit(int64(off1)+int64(off2)) && canMergeSym(sym1, sym2) && (base.Op != OpSB || !config.ctxt.Flag_shared)) { break } v.reset(Op386SUBSSload) v.AuxInt = int32ToAuxInt(off1 + off2) v.Aux = symToAux(mergeSym(sym1, sym2)) v.AddArg3(val, base, mem) return true } return false } func rewriteValue386_Op386XORL(v *Value) bool { v_1 := v.Args[1] v_0 := v.Args[0] // match: (XORL x (MOVLconst [c])) // result: (XORLconst [c] x) for { for _i0 := 0; _i0 <= 1; _i0, v_0, v_1 = _i0+1, v_1, v_0 { x := v_0 if v_1.Op != Op386MOVLconst { continue } c := auxIntToInt32(v_1.AuxInt) v.reset(Op386XORLconst) v.AuxInt = int32ToAuxInt(c) v.AddArg(x) return true } break } // match: (XORL x l:(MOVLload [off] {sym} ptr mem)) // cond: canMergeLoadClobber(v, l, x) && clobber(l) // result: (XORLload x [off] {sym} ptr mem) for { for _i0 := 0; _i0 <= 1; _i0, v_0, v_1 = _i0+1, v_1, v_0 { x := v_0 l := v_1 if l.Op != Op386MOVLload { continue } off := auxIntToInt32(l.AuxInt) sym := auxToSym(l.Aux) mem := l.Args[1] ptr := l.Args[0] if !(canMergeLoadClobber(v, l, x) && clobber(l)) { continue } v.reset(Op386XORLload) v.AuxInt = int32ToAuxInt(off) v.Aux = symToAux(sym) v.AddArg3(x, ptr, mem) return true } break } // match: (XORL x x) // result: (MOVLconst [0]) for { x := v_0 if x != v_1 { break } v.reset(Op386MOVLconst) v.AuxInt = int32ToAuxInt(0) return true } return false } func rewriteValue386_Op386XORLconst(v *Value) bool { v_0 := v.Args[0] // match: (XORLconst [c] (XORLconst [d] x)) // result: (XORLconst [c ^ d] x) for { c := auxIntToInt32(v.AuxInt) if v_0.Op != Op386XORLconst { break } d := auxIntToInt32(v_0.AuxInt) x := v_0.Args[0] v.reset(Op386XORLconst) v.AuxInt = int32ToAuxInt(c ^ d) v.AddArg(x) return true } // match: (XORLconst [c] x) // cond: c==0 // result: x for { c := auxIntToInt32(v.AuxInt) x := v_0 if !(c == 0) { break } v.copyOf(x) return true } // match: (XORLconst [c] (MOVLconst [d])) // result: (MOVLconst [c^d]) for { c := auxIntToInt32(v.AuxInt) if v_0.Op != Op386MOVLconst { break } d := auxIntToInt32(v_0.AuxInt) v.reset(Op386MOVLconst) v.AuxInt = int32ToAuxInt(c ^ d) return true } return false } func rewriteValue386_Op386XORLconstmodify(v *Value) bool { v_1 := v.Args[1] v_0 := v.Args[0] b := v.Block config := b.Func.Config // match: (XORLconstmodify [valoff1] {sym} (ADDLconst [off2] base) mem) // cond: valoff1.canAdd32(off2) // result: (XORLconstmodify [valoff1.addOffset32(off2)] {sym} base mem) for { valoff1 := auxIntToValAndOff(v.AuxInt) sym := auxToSym(v.Aux) if v_0.Op != Op386ADDLconst { break } off2 := auxIntToInt32(v_0.AuxInt) base := v_0.Args[0] mem := v_1 if !(valoff1.canAdd32(off2)) { break } v.reset(Op386XORLconstmodify) v.AuxInt = valAndOffToAuxInt(valoff1.addOffset32(off2)) v.Aux = symToAux(sym) v.AddArg2(base, mem) return true } // match: (XORLconstmodify [valoff1] {sym1} (LEAL [off2] {sym2} base) mem) // cond: valoff1.canAdd32(off2) && canMergeSym(sym1, sym2) && (base.Op != OpSB || !config.ctxt.Flag_shared) // result: (XORLconstmodify [valoff1.addOffset32(off2)] {mergeSym(sym1,sym2)} base mem) for { valoff1 := auxIntToValAndOff(v.AuxInt) sym1 := auxToSym(v.Aux) if v_0.Op != Op386LEAL { break } off2 := auxIntToInt32(v_0.AuxInt) sym2 := auxToSym(v_0.Aux) base := v_0.Args[0] mem := v_1 if !(valoff1.canAdd32(off2) && canMergeSym(sym1, sym2) && (base.Op != OpSB || !config.ctxt.Flag_shared)) { break } v.reset(Op386XORLconstmodify) v.AuxInt = valAndOffToAuxInt(valoff1.addOffset32(off2)) v.Aux = symToAux(mergeSym(sym1, sym2)) v.AddArg2(base, mem) return true } return false } func rewriteValue386_Op386XORLload(v *Value) bool { v_2 := v.Args[2] v_1 := v.Args[1] v_0 := v.Args[0] b := v.Block config := b.Func.Config // match: (XORLload [off1] {sym} val (ADDLconst [off2] base) mem) // cond: is32Bit(int64(off1)+int64(off2)) // result: (XORLload [off1+off2] {sym} val base mem) for { off1 := auxIntToInt32(v.AuxInt) sym := auxToSym(v.Aux) val := v_0 if v_1.Op != Op386ADDLconst { break } off2 := auxIntToInt32(v_1.AuxInt) base := v_1.Args[0] mem := v_2 if !(is32Bit(int64(off1) + int64(off2))) { break } v.reset(Op386XORLload) v.AuxInt = int32ToAuxInt(off1 + off2) v.Aux = symToAux(sym) v.AddArg3(val, base, mem) return true } // match: (XORLload [off1] {sym1} val (LEAL [off2] {sym2} base) mem) // cond: is32Bit(int64(off1)+int64(off2)) && canMergeSym(sym1, sym2) && (base.Op != OpSB || !config.ctxt.Flag_shared) // result: (XORLload [off1+off2] {mergeSym(sym1,sym2)} val base mem) for { off1 := auxIntToInt32(v.AuxInt) sym1 := auxToSym(v.Aux) val := v_0 if v_1.Op != Op386LEAL { break } off2 := auxIntToInt32(v_1.AuxInt) sym2 := auxToSym(v_1.Aux) base := v_1.Args[0] mem := v_2 if !(is32Bit(int64(off1)+int64(off2)) && canMergeSym(sym1, sym2) && (base.Op != OpSB || !config.ctxt.Flag_shared)) { break } v.reset(Op386XORLload) v.AuxInt = int32ToAuxInt(off1 + off2) v.Aux = symToAux(mergeSym(sym1, sym2)) v.AddArg3(val, base, mem) return true } return false } func rewriteValue386_Op386XORLmodify(v *Value) bool { v_2 := v.Args[2] v_1 := v.Args[1] v_0 := v.Args[0] b := v.Block config := b.Func.Config // match: (XORLmodify [off1] {sym} (ADDLconst [off2] base) val mem) // cond: is32Bit(int64(off1)+int64(off2)) // result: (XORLmodify [off1+off2] {sym} base val mem) for { off1 := auxIntToInt32(v.AuxInt) sym := auxToSym(v.Aux) if v_0.Op != Op386ADDLconst { break } off2 := auxIntToInt32(v_0.AuxInt) base := v_0.Args[0] val := v_1 mem := v_2 if !(is32Bit(int64(off1) + int64(off2))) { break } v.reset(Op386XORLmodify) v.AuxInt = int32ToAuxInt(off1 + off2) v.Aux = symToAux(sym) v.AddArg3(base, val, mem) return true } // match: (XORLmodify [off1] {sym1} (LEAL [off2] {sym2} base) val mem) // cond: is32Bit(int64(off1)+int64(off2)) && canMergeSym(sym1, sym2) && (base.Op != OpSB || !config.ctxt.Flag_shared) // result: (XORLmodify [off1+off2] {mergeSym(sym1,sym2)} base val mem) for { off1 := auxIntToInt32(v.AuxInt) sym1 := auxToSym(v.Aux) if v_0.Op != Op386LEAL { break } off2 := auxIntToInt32(v_0.AuxInt) sym2 := auxToSym(v_0.Aux) base := v_0.Args[0] val := v_1 mem := v_2 if !(is32Bit(int64(off1)+int64(off2)) && canMergeSym(sym1, sym2) && (base.Op != OpSB || !config.ctxt.Flag_shared)) { break } v.reset(Op386XORLmodify) v.AuxInt = int32ToAuxInt(off1 + off2) v.Aux = symToAux(mergeSym(sym1, sym2)) v.AddArg3(base, val, mem) return true } return false } func rewriteValue386_OpAddr(v *Value) bool { v_0 := v.Args[0] // match: (Addr {sym} base) // result: (LEAL {sym} base) for { sym := auxToSym(v.Aux) base := v_0 v.reset(Op386LEAL) v.Aux = symToAux(sym) v.AddArg(base) return true } } func rewriteValue386_OpConst16(v *Value) bool { // match: (Const16 [c]) // result: (MOVLconst [int32(c)]) for { c := auxIntToInt16(v.AuxInt) v.reset(Op386MOVLconst) v.AuxInt = int32ToAuxInt(int32(c)) return true } } func rewriteValue386_OpConst8(v *Value) bool { // match: (Const8 [c]) // result: (MOVLconst [int32(c)]) for { c := auxIntToInt8(v.AuxInt) v.reset(Op386MOVLconst) v.AuxInt = int32ToAuxInt(int32(c)) return true } } func rewriteValue386_OpConstBool(v *Value) bool { // match: (ConstBool [c]) // result: (MOVLconst [b2i32(c)]) for { c := auxIntToBool(v.AuxInt) v.reset(Op386MOVLconst) v.AuxInt = int32ToAuxInt(b2i32(c)) return true } } func rewriteValue386_OpConstNil(v *Value) bool { // match: (ConstNil) // result: (MOVLconst [0]) for { v.reset(Op386MOVLconst) v.AuxInt = int32ToAuxInt(0) return true } } func rewriteValue386_OpCtz16(v *Value) bool { v_0 := v.Args[0] b := v.Block typ := &b.Func.Config.Types // match: (Ctz16 x) // result: (BSFL (ORLconst [0x10000] x)) for { x := v_0 v.reset(Op386BSFL) v0 := b.NewValue0(v.Pos, Op386ORLconst, typ.UInt32) v0.AuxInt = int32ToAuxInt(0x10000) v0.AddArg(x) v.AddArg(v0) return true } } func rewriteValue386_OpDiv8(v *Value) bool { v_1 := v.Args[1] v_0 := v.Args[0] b := v.Block typ := &b.Func.Config.Types // match: (Div8 x y) // result: (DIVW (SignExt8to16 x) (SignExt8to16 y)) for { x := v_0 y := v_1 v.reset(Op386DIVW) v0 := b.NewValue0(v.Pos, OpSignExt8to16, typ.Int16) v0.AddArg(x) v1 := b.NewValue0(v.Pos, OpSignExt8to16, typ.Int16) v1.AddArg(y) v.AddArg2(v0, v1) return true } } func rewriteValue386_OpDiv8u(v *Value) bool { v_1 := v.Args[1] v_0 := v.Args[0] b := v.Block typ := &b.Func.Config.Types // match: (Div8u x y) // result: (DIVWU (ZeroExt8to16 x) (ZeroExt8to16 y)) for { x := v_0 y := v_1 v.reset(Op386DIVWU) v0 := b.NewValue0(v.Pos, OpZeroExt8to16, typ.UInt16) v0.AddArg(x) v1 := b.NewValue0(v.Pos, OpZeroExt8to16, typ.UInt16) v1.AddArg(y) v.AddArg2(v0, v1) return true } } func rewriteValue386_OpEq16(v *Value) bool { v_1 := v.Args[1] v_0 := v.Args[0] b := v.Block // match: (Eq16 x y) // result: (SETEQ (CMPW x y)) for { x := v_0 y := v_1 v.reset(Op386SETEQ) v0 := b.NewValue0(v.Pos, Op386CMPW, types.TypeFlags) v0.AddArg2(x, y) v.AddArg(v0) return true } } func rewriteValue386_OpEq32(v *Value) bool { v_1 := v.Args[1] v_0 := v.Args[0] b := v.Block // match: (Eq32 x y) // result: (SETEQ (CMPL x y)) for { x := v_0 y := v_1 v.reset(Op386SETEQ) v0 := b.NewValue0(v.Pos, Op386CMPL, types.TypeFlags) v0.AddArg2(x, y) v.AddArg(v0) return true } } func rewriteValue386_OpEq32F(v *Value) bool { v_1 := v.Args[1] v_0 := v.Args[0] b := v.Block // match: (Eq32F x y) // result: (SETEQF (UCOMISS x y)) for { x := v_0 y := v_1 v.reset(Op386SETEQF) v0 := b.NewValue0(v.Pos, Op386UCOMISS, types.TypeFlags) v0.AddArg2(x, y) v.AddArg(v0) return true } } func rewriteValue386_OpEq64F(v *Value) bool { v_1 := v.Args[1] v_0 := v.Args[0] b := v.Block // match: (Eq64F x y) // result: (SETEQF (UCOMISD x y)) for { x := v_0 y := v_1 v.reset(Op386SETEQF) v0 := b.NewValue0(v.Pos, Op386UCOMISD, types.TypeFlags) v0.AddArg2(x, y) v.AddArg(v0) return true } } func rewriteValue386_OpEq8(v *Value) bool { v_1 := v.Args[1] v_0 := v.Args[0] b := v.Block // match: (Eq8 x y) // result: (SETEQ (CMPB x y)) for { x := v_0 y := v_1 v.reset(Op386SETEQ) v0 := b.NewValue0(v.Pos, Op386CMPB, types.TypeFlags) v0.AddArg2(x, y) v.AddArg(v0) return true } } func rewriteValue386_OpEqB(v *Value) bool { v_1 := v.Args[1] v_0 := v.Args[0] b := v.Block // match: (EqB x y) // result: (SETEQ (CMPB x y)) for { x := v_0 y := v_1 v.reset(Op386SETEQ) v0 := b.NewValue0(v.Pos, Op386CMPB, types.TypeFlags) v0.AddArg2(x, y) v.AddArg(v0) return true } } func rewriteValue386_OpEqPtr(v *Value) bool { v_1 := v.Args[1] v_0 := v.Args[0] b := v.Block // match: (EqPtr x y) // result: (SETEQ (CMPL x y)) for { x := v_0 y := v_1 v.reset(Op386SETEQ) v0 := b.NewValue0(v.Pos, Op386CMPL, types.TypeFlags) v0.AddArg2(x, y) v.AddArg(v0) return true } } func rewriteValue386_OpIsInBounds(v *Value) bool { v_1 := v.Args[1] v_0 := v.Args[0] b := v.Block // match: (IsInBounds idx len) // result: (SETB (CMPL idx len)) for { idx := v_0 len := v_1 v.reset(Op386SETB) v0 := b.NewValue0(v.Pos, Op386CMPL, types.TypeFlags) v0.AddArg2(idx, len) v.AddArg(v0) return true } } func rewriteValue386_OpIsNonNil(v *Value) bool { v_0 := v.Args[0] b := v.Block // match: (IsNonNil p) // result: (SETNE (TESTL p p)) for { p := v_0 v.reset(Op386SETNE) v0 := b.NewValue0(v.Pos, Op386TESTL, types.TypeFlags) v0.AddArg2(p, p) v.AddArg(v0) return true } } func rewriteValue386_OpIsSliceInBounds(v *Value) bool { v_1 := v.Args[1] v_0 := v.Args[0] b := v.Block // match: (IsSliceInBounds idx len) // result: (SETBE (CMPL idx len)) for { idx := v_0 len := v_1 v.reset(Op386SETBE) v0 := b.NewValue0(v.Pos, Op386CMPL, types.TypeFlags) v0.AddArg2(idx, len) v.AddArg(v0) return true } } func rewriteValue386_OpLeq16(v *Value) bool { v_1 := v.Args[1] v_0 := v.Args[0] b := v.Block // match: (Leq16 x y) // result: (SETLE (CMPW x y)) for { x := v_0 y := v_1 v.reset(Op386SETLE) v0 := b.NewValue0(v.Pos, Op386CMPW, types.TypeFlags) v0.AddArg2(x, y) v.AddArg(v0) return true } } func rewriteValue386_OpLeq16U(v *Value) bool { v_1 := v.Args[1] v_0 := v.Args[0] b := v.Block // match: (Leq16U x y) // result: (SETBE (CMPW x y)) for { x := v_0 y := v_1 v.reset(Op386SETBE) v0 := b.NewValue0(v.Pos, Op386CMPW, types.TypeFlags) v0.AddArg2(x, y) v.AddArg(v0) return true } } func rewriteValue386_OpLeq32(v *Value) bool { v_1 := v.Args[1] v_0 := v.Args[0] b := v.Block // match: (Leq32 x y) // result: (SETLE (CMPL x y)) for { x := v_0 y := v_1 v.reset(Op386SETLE) v0 := b.NewValue0(v.Pos, Op386CMPL, types.TypeFlags) v0.AddArg2(x, y) v.AddArg(v0) return true } } func rewriteValue386_OpLeq32F(v *Value) bool { v_1 := v.Args[1] v_0 := v.Args[0] b := v.Block // match: (Leq32F x y) // result: (SETGEF (UCOMISS y x)) for { x := v_0 y := v_1 v.reset(Op386SETGEF) v0 := b.NewValue0(v.Pos, Op386UCOMISS, types.TypeFlags) v0.AddArg2(y, x) v.AddArg(v0) return true } } func rewriteValue386_OpLeq32U(v *Value) bool { v_1 := v.Args[1] v_0 := v.Args[0] b := v.Block // match: (Leq32U x y) // result: (SETBE (CMPL x y)) for { x := v_0 y := v_1 v.reset(Op386SETBE) v0 := b.NewValue0(v.Pos, Op386CMPL, types.TypeFlags) v0.AddArg2(x, y) v.AddArg(v0) return true } } func rewriteValue386_OpLeq64F(v *Value) bool { v_1 := v.Args[1] v_0 := v.Args[0] b := v.Block // match: (Leq64F x y) // result: (SETGEF (UCOMISD y x)) for { x := v_0 y := v_1 v.reset(Op386SETGEF) v0 := b.NewValue0(v.Pos, Op386UCOMISD, types.TypeFlags) v0.AddArg2(y, x) v.AddArg(v0) return true } } func rewriteValue386_OpLeq8(v *Value) bool { v_1 := v.Args[1] v_0 := v.Args[0] b := v.Block // match: (Leq8 x y) // result: (SETLE (CMPB x y)) for { x := v_0 y := v_1 v.reset(Op386SETLE) v0 := b.NewValue0(v.Pos, Op386CMPB, types.TypeFlags) v0.AddArg2(x, y) v.AddArg(v0) return true } } func rewriteValue386_OpLeq8U(v *Value) bool { v_1 := v.Args[1] v_0 := v.Args[0] b := v.Block // match: (Leq8U x y) // result: (SETBE (CMPB x y)) for { x := v_0 y := v_1 v.reset(Op386SETBE) v0 := b.NewValue0(v.Pos, Op386CMPB, types.TypeFlags) v0.AddArg2(x, y) v.AddArg(v0) return true } } func rewriteValue386_OpLess16(v *Value) bool { v_1 := v.Args[1] v_0 := v.Args[0] b := v.Block // match: (Less16 x y) // result: (SETL (CMPW x y)) for { x := v_0 y := v_1 v.reset(Op386SETL) v0 := b.NewValue0(v.Pos, Op386CMPW, types.TypeFlags) v0.AddArg2(x, y) v.AddArg(v0) return true } } func rewriteValue386_OpLess16U(v *Value) bool { v_1 := v.Args[1] v_0 := v.Args[0] b := v.Block // match: (Less16U x y) // result: (SETB (CMPW x y)) for { x := v_0 y := v_1 v.reset(Op386SETB) v0 := b.NewValue0(v.Pos, Op386CMPW, types.TypeFlags) v0.AddArg2(x, y) v.AddArg(v0) return true } } func rewriteValue386_OpLess32(v *Value) bool { v_1 := v.Args[1] v_0 := v.Args[0] b := v.Block // match: (Less32 x y) // result: (SETL (CMPL x y)) for { x := v_0 y := v_1 v.reset(Op386SETL) v0 := b.NewValue0(v.Pos, Op386CMPL, types.TypeFlags) v0.AddArg2(x, y) v.AddArg(v0) return true } } func rewriteValue386_OpLess32F(v *Value) bool { v_1 := v.Args[1] v_0 := v.Args[0] b := v.Block // match: (Less32F x y) // result: (SETGF (UCOMISS y x)) for { x := v_0 y := v_1 v.reset(Op386SETGF) v0 := b.NewValue0(v.Pos, Op386UCOMISS, types.TypeFlags) v0.AddArg2(y, x) v.AddArg(v0) return true } } func rewriteValue386_OpLess32U(v *Value) bool { v_1 := v.Args[1] v_0 := v.Args[0] b := v.Block // match: (Less32U x y) // result: (SETB (CMPL x y)) for { x := v_0 y := v_1 v.reset(Op386SETB) v0 := b.NewValue0(v.Pos, Op386CMPL, types.TypeFlags) v0.AddArg2(x, y) v.AddArg(v0) return true } } func rewriteValue386_OpLess64F(v *Value) bool { v_1 := v.Args[1] v_0 := v.Args[0] b := v.Block // match: (Less64F x y) // result: (SETGF (UCOMISD y x)) for { x := v_0 y := v_1 v.reset(Op386SETGF) v0 := b.NewValue0(v.Pos, Op386UCOMISD, types.TypeFlags) v0.AddArg2(y, x) v.AddArg(v0) return true } } func rewriteValue386_OpLess8(v *Value) bool { v_1 := v.Args[1] v_0 := v.Args[0] b := v.Block // match: (Less8 x y) // result: (SETL (CMPB x y)) for { x := v_0 y := v_1 v.reset(Op386SETL) v0 := b.NewValue0(v.Pos, Op386CMPB, types.TypeFlags) v0.AddArg2(x, y) v.AddArg(v0) return true } } func rewriteValue386_OpLess8U(v *Value) bool { v_1 := v.Args[1] v_0 := v.Args[0] b := v.Block // match: (Less8U x y) // result: (SETB (CMPB x y)) for { x := v_0 y := v_1 v.reset(Op386SETB) v0 := b.NewValue0(v.Pos, Op386CMPB, types.TypeFlags) v0.AddArg2(x, y) v.AddArg(v0) return true } } func rewriteValue386_OpLoad(v *Value) bool { v_1 := v.Args[1] v_0 := v.Args[0] // match: (Load ptr mem) // cond: (is32BitInt(t) || isPtr(t)) // result: (MOVLload ptr mem) for { t := v.Type ptr := v_0 mem := v_1 if !(is32BitInt(t) || isPtr(t)) { break } v.reset(Op386MOVLload) v.AddArg2(ptr, mem) return true } // match: (Load ptr mem) // cond: is16BitInt(t) // result: (MOVWload ptr mem) for { t := v.Type ptr := v_0 mem := v_1 if !(is16BitInt(t)) { break } v.reset(Op386MOVWload) v.AddArg2(ptr, mem) return true } // match: (Load ptr mem) // cond: (t.IsBoolean() || is8BitInt(t)) // result: (MOVBload ptr mem) for { t := v.Type ptr := v_0 mem := v_1 if !(t.IsBoolean() || is8BitInt(t)) { break } v.reset(Op386MOVBload) v.AddArg2(ptr, mem) return true } // match: (Load ptr mem) // cond: is32BitFloat(t) // result: (MOVSSload ptr mem) for { t := v.Type ptr := v_0 mem := v_1 if !(is32BitFloat(t)) { break } v.reset(Op386MOVSSload) v.AddArg2(ptr, mem) return true } // match: (Load ptr mem) // cond: is64BitFloat(t) // result: (MOVSDload ptr mem) for { t := v.Type ptr := v_0 mem := v_1 if !(is64BitFloat(t)) { break } v.reset(Op386MOVSDload) v.AddArg2(ptr, mem) return true } return false } func rewriteValue386_OpLocalAddr(v *Value) bool { v_0 := v.Args[0] // match: (LocalAddr {sym} base _) // result: (LEAL {sym} base) for { sym := auxToSym(v.Aux) base := v_0 v.reset(Op386LEAL) v.Aux = symToAux(sym) v.AddArg(base) return true } } func rewriteValue386_OpLsh16x16(v *Value) bool { v_1 := v.Args[1] v_0 := v.Args[0] b := v.Block // match: (Lsh16x16 x y) // cond: !shiftIsBounded(v) // result: (ANDL (SHLL x y) (SBBLcarrymask (CMPWconst y [32]))) for { t := v.Type x := v_0 y := v_1 if !(!shiftIsBounded(v)) { break } v.reset(Op386ANDL) v0 := b.NewValue0(v.Pos, Op386SHLL, t) v0.AddArg2(x, y) v1 := b.NewValue0(v.Pos, Op386SBBLcarrymask, t) v2 := b.NewValue0(v.Pos, Op386CMPWconst, types.TypeFlags) v2.AuxInt = int16ToAuxInt(32) v2.AddArg(y) v1.AddArg(v2) v.AddArg2(v0, v1) return true } // match: (Lsh16x16 x y) // cond: shiftIsBounded(v) // result: (SHLL x y) for { t := v.Type x := v_0 y := v_1 if !(shiftIsBounded(v)) { break } v.reset(Op386SHLL) v.Type = t v.AddArg2(x, y) return true } return false } func rewriteValue386_OpLsh16x32(v *Value) bool { v_1 := v.Args[1] v_0 := v.Args[0] b := v.Block // match: (Lsh16x32 x y) // cond: !shiftIsBounded(v) // result: (ANDL (SHLL x y) (SBBLcarrymask (CMPLconst y [32]))) for { t := v.Type x := v_0 y := v_1 if !(!shiftIsBounded(v)) { break } v.reset(Op386ANDL) v0 := b.NewValue0(v.Pos, Op386SHLL, t) v0.AddArg2(x, y) v1 := b.NewValue0(v.Pos, Op386SBBLcarrymask, t) v2 := b.NewValue0(v.Pos, Op386CMPLconst, types.TypeFlags) v2.AuxInt = int32ToAuxInt(32) v2.AddArg(y) v1.AddArg(v2) v.AddArg2(v0, v1) return true } // match: (Lsh16x32 x y) // cond: shiftIsBounded(v) // result: (SHLL x y) for { t := v.Type x := v_0 y := v_1 if !(shiftIsBounded(v)) { break } v.reset(Op386SHLL) v.Type = t v.AddArg2(x, y) return true } return false } func rewriteValue386_OpLsh16x64(v *Value) bool { v_1 := v.Args[1] v_0 := v.Args[0] // match: (Lsh16x64 x (Const64 [c])) // cond: uint64(c) < 16 // result: (SHLLconst x [int32(c)]) for { x := v_0 if v_1.Op != OpConst64 { break } c := auxIntToInt64(v_1.AuxInt) if !(uint64(c) < 16) { break } v.reset(Op386SHLLconst) v.AuxInt = int32ToAuxInt(int32(c)) v.AddArg(x) return true } // match: (Lsh16x64 _ (Const64 [c])) // cond: uint64(c) >= 16 // result: (Const16 [0]) for { if v_1.Op != OpConst64 { break } c := auxIntToInt64(v_1.AuxInt) if !(uint64(c) >= 16) { break } v.reset(OpConst16) v.AuxInt = int16ToAuxInt(0) return true } return false } func rewriteValue386_OpLsh16x8(v *Value) bool { v_1 := v.Args[1] v_0 := v.Args[0] b := v.Block // match: (Lsh16x8 x y) // cond: !shiftIsBounded(v) // result: (ANDL (SHLL x y) (SBBLcarrymask (CMPBconst y [32]))) for { t := v.Type x := v_0 y := v_1 if !(!shiftIsBounded(v)) { break } v.reset(Op386ANDL) v0 := b.NewValue0(v.Pos, Op386SHLL, t) v0.AddArg2(x, y) v1 := b.NewValue0(v.Pos, Op386SBBLcarrymask, t) v2 := b.NewValue0(v.Pos, Op386CMPBconst, types.TypeFlags) v2.AuxInt = int8ToAuxInt(32) v2.AddArg(y) v1.AddArg(v2) v.AddArg2(v0, v1) return true } // match: (Lsh16x8 x y) // cond: shiftIsBounded(v) // result: (SHLL x y) for { t := v.Type x := v_0 y := v_1 if !(shiftIsBounded(v)) { break } v.reset(Op386SHLL) v.Type = t v.AddArg2(x, y) return true } return false } func rewriteValue386_OpLsh32x16(v *Value) bool { v_1 := v.Args[1] v_0 := v.Args[0] b := v.Block // match: (Lsh32x16 x y) // cond: !shiftIsBounded(v) // result: (ANDL (SHLL x y) (SBBLcarrymask (CMPWconst y [32]))) for { t := v.Type x := v_0 y := v_1 if !(!shiftIsBounded(v)) { break } v.reset(Op386ANDL) v0 := b.NewValue0(v.Pos, Op386SHLL, t) v0.AddArg2(x, y) v1 := b.NewValue0(v.Pos, Op386SBBLcarrymask, t) v2 := b.NewValue0(v.Pos, Op386CMPWconst, types.TypeFlags) v2.AuxInt = int16ToAuxInt(32) v2.AddArg(y) v1.AddArg(v2) v.AddArg2(v0, v1) return true } // match: (Lsh32x16 x y) // cond: shiftIsBounded(v) // result: (SHLL x y) for { t := v.Type x := v_0 y := v_1 if !(shiftIsBounded(v)) { break } v.reset(Op386SHLL) v.Type = t v.AddArg2(x, y) return true } return false } func rewriteValue386_OpLsh32x32(v *Value) bool { v_1 := v.Args[1] v_0 := v.Args[0] b := v.Block // match: (Lsh32x32 x y) // cond: !shiftIsBounded(v) // result: (ANDL (SHLL x y) (SBBLcarrymask (CMPLconst y [32]))) for { t := v.Type x := v_0 y := v_1 if !(!shiftIsBounded(v)) { break } v.reset(Op386ANDL) v0 := b.NewValue0(v.Pos, Op386SHLL, t) v0.AddArg2(x, y) v1 := b.NewValue0(v.Pos, Op386SBBLcarrymask, t) v2 := b.NewValue0(v.Pos, Op386CMPLconst, types.TypeFlags) v2.AuxInt = int32ToAuxInt(32) v2.AddArg(y) v1.AddArg(v2) v.AddArg2(v0, v1) return true } // match: (Lsh32x32 x y) // cond: shiftIsBounded(v) // result: (SHLL x y) for { t := v.Type x := v_0 y := v_1 if !(shiftIsBounded(v)) { break } v.reset(Op386SHLL) v.Type = t v.AddArg2(x, y) return true } return false } func rewriteValue386_OpLsh32x64(v *Value) bool { v_1 := v.Args[1] v_0 := v.Args[0] // match: (Lsh32x64 x (Const64 [c])) // cond: uint64(c) < 32 // result: (SHLLconst x [int32(c)]) for { x := v_0 if v_1.Op != OpConst64 { break } c := auxIntToInt64(v_1.AuxInt) if !(uint64(c) < 32) { break } v.reset(Op386SHLLconst) v.AuxInt = int32ToAuxInt(int32(c)) v.AddArg(x) return true } // match: (Lsh32x64 _ (Const64 [c])) // cond: uint64(c) >= 32 // result: (Const32 [0]) for { if v_1.Op != OpConst64 { break } c := auxIntToInt64(v_1.AuxInt) if !(uint64(c) >= 32) { break } v.reset(OpConst32) v.AuxInt = int32ToAuxInt(0) return true } return false } func rewriteValue386_OpLsh32x8(v *Value) bool { v_1 := v.Args[1] v_0 := v.Args[0] b := v.Block // match: (Lsh32x8 x y) // cond: !shiftIsBounded(v) // result: (ANDL (SHLL x y) (SBBLcarrymask (CMPBconst y [32]))) for { t := v.Type x := v_0 y := v_1 if !(!shiftIsBounded(v)) { break } v.reset(Op386ANDL) v0 := b.NewValue0(v.Pos, Op386SHLL, t) v0.AddArg2(x, y) v1 := b.NewValue0(v.Pos, Op386SBBLcarrymask, t) v2 := b.NewValue0(v.Pos, Op386CMPBconst, types.TypeFlags) v2.AuxInt = int8ToAuxInt(32) v2.AddArg(y) v1.AddArg(v2) v.AddArg2(v0, v1) return true } // match: (Lsh32x8 x y) // cond: shiftIsBounded(v) // result: (SHLL x y) for { t := v.Type x := v_0 y := v_1 if !(shiftIsBounded(v)) { break } v.reset(Op386SHLL) v.Type = t v.AddArg2(x, y) return true } return false } func rewriteValue386_OpLsh8x16(v *Value) bool { v_1 := v.Args[1] v_0 := v.Args[0] b := v.Block // match: (Lsh8x16 x y) // cond: !shiftIsBounded(v) // result: (ANDL (SHLL x y) (SBBLcarrymask (CMPWconst y [32]))) for { t := v.Type x := v_0 y := v_1 if !(!shiftIsBounded(v)) { break } v.reset(Op386ANDL) v0 := b.NewValue0(v.Pos, Op386SHLL, t) v0.AddArg2(x, y) v1 := b.NewValue0(v.Pos, Op386SBBLcarrymask, t) v2 := b.NewValue0(v.Pos, Op386CMPWconst, types.TypeFlags) v2.AuxInt = int16ToAuxInt(32) v2.AddArg(y) v1.AddArg(v2) v.AddArg2(v0, v1) return true } // match: (Lsh8x16 x y) // cond: shiftIsBounded(v) // result: (SHLL x y) for { t := v.Type x := v_0 y := v_1 if !(shiftIsBounded(v)) { break } v.reset(Op386SHLL) v.Type = t v.AddArg2(x, y) return true } return false } func rewriteValue386_OpLsh8x32(v *Value) bool { v_1 := v.Args[1] v_0 := v.Args[0] b := v.Block // match: (Lsh8x32 x y) // cond: !shiftIsBounded(v) // result: (ANDL (SHLL x y) (SBBLcarrymask (CMPLconst y [32]))) for { t := v.Type x := v_0 y := v_1 if !(!shiftIsBounded(v)) { break } v.reset(Op386ANDL) v0 := b.NewValue0(v.Pos, Op386SHLL, t) v0.AddArg2(x, y) v1 := b.NewValue0(v.Pos, Op386SBBLcarrymask, t) v2 := b.NewValue0(v.Pos, Op386CMPLconst, types.TypeFlags) v2.AuxInt = int32ToAuxInt(32) v2.AddArg(y) v1.AddArg(v2) v.AddArg2(v0, v1) return true } // match: (Lsh8x32 x y) // cond: shiftIsBounded(v) // result: (SHLL x y) for { t := v.Type x := v_0 y := v_1 if !(shiftIsBounded(v)) { break } v.reset(Op386SHLL) v.Type = t v.AddArg2(x, y) return true } return false } func rewriteValue386_OpLsh8x64(v *Value) bool { v_1 := v.Args[1] v_0 := v.Args[0] // match: (Lsh8x64 x (Const64 [c])) // cond: uint64(c) < 8 // result: (SHLLconst x [int32(c)]) for { x := v_0 if v_1.Op != OpConst64 { break } c := auxIntToInt64(v_1.AuxInt) if !(uint64(c) < 8) { break } v.reset(Op386SHLLconst) v.AuxInt = int32ToAuxInt(int32(c)) v.AddArg(x) return true } // match: (Lsh8x64 _ (Const64 [c])) // cond: uint64(c) >= 8 // result: (Const8 [0]) for { if v_1.Op != OpConst64 { break } c := auxIntToInt64(v_1.AuxInt) if !(uint64(c) >= 8) { break } v.reset(OpConst8) v.AuxInt = int8ToAuxInt(0) return true } return false } func rewriteValue386_OpLsh8x8(v *Value) bool { v_1 := v.Args[1] v_0 := v.Args[0] b := v.Block // match: (Lsh8x8 x y) // cond: !shiftIsBounded(v) // result: (ANDL (SHLL x y) (SBBLcarrymask (CMPBconst y [32]))) for { t := v.Type x := v_0 y := v_1 if !(!shiftIsBounded(v)) { break } v.reset(Op386ANDL) v0 := b.NewValue0(v.Pos, Op386SHLL, t) v0.AddArg2(x, y) v1 := b.NewValue0(v.Pos, Op386SBBLcarrymask, t) v2 := b.NewValue0(v.Pos, Op386CMPBconst, types.TypeFlags) v2.AuxInt = int8ToAuxInt(32) v2.AddArg(y) v1.AddArg(v2) v.AddArg2(v0, v1) return true } // match: (Lsh8x8 x y) // cond: shiftIsBounded(v) // result: (SHLL x y) for { t := v.Type x := v_0 y := v_1 if !(shiftIsBounded(v)) { break } v.reset(Op386SHLL) v.Type = t v.AddArg2(x, y) return true } return false } func rewriteValue386_OpMod8(v *Value) bool { v_1 := v.Args[1] v_0 := v.Args[0] b := v.Block typ := &b.Func.Config.Types // match: (Mod8 x y) // result: (MODW (SignExt8to16 x) (SignExt8to16 y)) for { x := v_0 y := v_1 v.reset(Op386MODW) v0 := b.NewValue0(v.Pos, OpSignExt8to16, typ.Int16) v0.AddArg(x) v1 := b.NewValue0(v.Pos, OpSignExt8to16, typ.Int16) v1.AddArg(y) v.AddArg2(v0, v1) return true } } func rewriteValue386_OpMod8u(v *Value) bool { v_1 := v.Args[1] v_0 := v.Args[0] b := v.Block typ := &b.Func.Config.Types // match: (Mod8u x y) // result: (MODWU (ZeroExt8to16 x) (ZeroExt8to16 y)) for { x := v_0 y := v_1 v.reset(Op386MODWU) v0 := b.NewValue0(v.Pos, OpZeroExt8to16, typ.UInt16) v0.AddArg(x) v1 := b.NewValue0(v.Pos, OpZeroExt8to16, typ.UInt16) v1.AddArg(y) v.AddArg2(v0, v1) return true } } func rewriteValue386_OpMove(v *Value) bool { v_2 := v.Args[2] v_1 := v.Args[1] v_0 := v.Args[0] b := v.Block config := b.Func.Config typ := &b.Func.Config.Types // match: (Move [0] _ _ mem) // result: mem for { if auxIntToInt64(v.AuxInt) != 0 { break } mem := v_2 v.copyOf(mem) return true } // match: (Move [1] dst src mem) // result: (MOVBstore dst (MOVBload src mem) mem) for { if auxIntToInt64(v.AuxInt) != 1 { break } dst := v_0 src := v_1 mem := v_2 v.reset(Op386MOVBstore) v0 := b.NewValue0(v.Pos, Op386MOVBload, typ.UInt8) v0.AddArg2(src, mem) v.AddArg3(dst, v0, mem) return true } // match: (Move [2] dst src mem) // result: (MOVWstore dst (MOVWload src mem) mem) for { if auxIntToInt64(v.AuxInt) != 2 { break } dst := v_0 src := v_1 mem := v_2 v.reset(Op386MOVWstore) v0 := b.NewValue0(v.Pos, Op386MOVWload, typ.UInt16) v0.AddArg2(src, mem) v.AddArg3(dst, v0, mem) return true } // match: (Move [4] dst src mem) // result: (MOVLstore dst (MOVLload src mem) mem) for { if auxIntToInt64(v.AuxInt) != 4 { break } dst := v_0 src := v_1 mem := v_2 v.reset(Op386MOVLstore) v0 := b.NewValue0(v.Pos, Op386MOVLload, typ.UInt32) v0.AddArg2(src, mem) v.AddArg3(dst, v0, mem) return true } // match: (Move [3] dst src mem) // result: (MOVBstore [2] dst (MOVBload [2] src mem) (MOVWstore dst (MOVWload src mem) mem)) for { if auxIntToInt64(v.AuxInt) != 3 { break } dst := v_0 src := v_1 mem := v_2 v.reset(Op386MOVBstore) v.AuxInt = int32ToAuxInt(2) v0 := b.NewValue0(v.Pos, Op386MOVBload, typ.UInt8) v0.AuxInt = int32ToAuxInt(2) v0.AddArg2(src, mem) v1 := b.NewValue0(v.Pos, Op386MOVWstore, types.TypeMem) v2 := b.NewValue0(v.Pos, Op386MOVWload, typ.UInt16) v2.AddArg2(src, mem) v1.AddArg3(dst, v2, mem) v.AddArg3(dst, v0, v1) return true } // match: (Move [5] dst src mem) // result: (MOVBstore [4] dst (MOVBload [4] src mem) (MOVLstore dst (MOVLload src mem) mem)) for { if auxIntToInt64(v.AuxInt) != 5 { break } dst := v_0 src := v_1 mem := v_2 v.reset(Op386MOVBstore) v.AuxInt = int32ToAuxInt(4) v0 := b.NewValue0(v.Pos, Op386MOVBload, typ.UInt8) v0.AuxInt = int32ToAuxInt(4) v0.AddArg2(src, mem) v1 := b.NewValue0(v.Pos, Op386MOVLstore, types.TypeMem) v2 := b.NewValue0(v.Pos, Op386MOVLload, typ.UInt32) v2.AddArg2(src, mem) v1.AddArg3(dst, v2, mem) v.AddArg3(dst, v0, v1) return true } // match: (Move [6] dst src mem) // result: (MOVWstore [4] dst (MOVWload [4] src mem) (MOVLstore dst (MOVLload src mem) mem)) for { if auxIntToInt64(v.AuxInt) != 6 { break } dst := v_0 src := v_1 mem := v_2 v.reset(Op386MOVWstore) v.AuxInt = int32ToAuxInt(4) v0 := b.NewValue0(v.Pos, Op386MOVWload, typ.UInt16) v0.AuxInt = int32ToAuxInt(4) v0.AddArg2(src, mem) v1 := b.NewValue0(v.Pos, Op386MOVLstore, types.TypeMem) v2 := b.NewValue0(v.Pos, Op386MOVLload, typ.UInt32) v2.AddArg2(src, mem) v1.AddArg3(dst, v2, mem) v.AddArg3(dst, v0, v1) return true } // match: (Move [7] dst src mem) // result: (MOVLstore [3] dst (MOVLload [3] src mem) (MOVLstore dst (MOVLload src mem) mem)) for { if auxIntToInt64(v.AuxInt) != 7 { break } dst := v_0 src := v_1 mem := v_2 v.reset(Op386MOVLstore) v.AuxInt = int32ToAuxInt(3) v0 := b.NewValue0(v.Pos, Op386MOVLload, typ.UInt32) v0.AuxInt = int32ToAuxInt(3) v0.AddArg2(src, mem) v1 := b.NewValue0(v.Pos, Op386MOVLstore, types.TypeMem) v2 := b.NewValue0(v.Pos, Op386MOVLload, typ.UInt32) v2.AddArg2(src, mem) v1.AddArg3(dst, v2, mem) v.AddArg3(dst, v0, v1) return true } // match: (Move [8] dst src mem) // result: (MOVLstore [4] dst (MOVLload [4] src mem) (MOVLstore dst (MOVLload src mem) mem)) for { if auxIntToInt64(v.AuxInt) != 8 { break } dst := v_0 src := v_1 mem := v_2 v.reset(Op386MOVLstore) v.AuxInt = int32ToAuxInt(4) v0 := b.NewValue0(v.Pos, Op386MOVLload, typ.UInt32) v0.AuxInt = int32ToAuxInt(4) v0.AddArg2(src, mem) v1 := b.NewValue0(v.Pos, Op386MOVLstore, types.TypeMem) v2 := b.NewValue0(v.Pos, Op386MOVLload, typ.UInt32) v2.AddArg2(src, mem) v1.AddArg3(dst, v2, mem) v.AddArg3(dst, v0, v1) return true } // match: (Move [s] dst src mem) // cond: s > 8 && s%4 != 0 // result: (Move [s-s%4] (ADDLconst dst [int32(s%4)]) (ADDLconst src [int32(s%4)]) (MOVLstore dst (MOVLload src mem) mem)) for { s := auxIntToInt64(v.AuxInt) dst := v_0 src := v_1 mem := v_2 if !(s > 8 && s%4 != 0) { break } v.reset(OpMove) v.AuxInt = int64ToAuxInt(s - s%4) v0 := b.NewValue0(v.Pos, Op386ADDLconst, dst.Type) v0.AuxInt = int32ToAuxInt(int32(s % 4)) v0.AddArg(dst) v1 := b.NewValue0(v.Pos, Op386ADDLconst, src.Type) v1.AuxInt = int32ToAuxInt(int32(s % 4)) v1.AddArg(src) v2 := b.NewValue0(v.Pos, Op386MOVLstore, types.TypeMem) v3 := b.NewValue0(v.Pos, Op386MOVLload, typ.UInt32) v3.AddArg2(src, mem) v2.AddArg3(dst, v3, mem) v.AddArg3(v0, v1, v2) return true } // match: (Move [s] dst src mem) // cond: s > 8 && s <= 4*128 && s%4 == 0 && !config.noDuffDevice && logLargeCopy(v, s) // result: (DUFFCOPY [10*(128-s/4)] dst src mem) for { s := auxIntToInt64(v.AuxInt) dst := v_0 src := v_1 mem := v_2 if !(s > 8 && s <= 4*128 && s%4 == 0 && !config.noDuffDevice && logLargeCopy(v, s)) { break } v.reset(Op386DUFFCOPY) v.AuxInt = int64ToAuxInt(10 * (128 - s/4)) v.AddArg3(dst, src, mem) return true } // match: (Move [s] dst src mem) // cond: (s > 4*128 || config.noDuffDevice) && s%4 == 0 && logLargeCopy(v, s) // result: (REPMOVSL dst src (MOVLconst [int32(s/4)]) mem) for { s := auxIntToInt64(v.AuxInt) dst := v_0 src := v_1 mem := v_2 if !((s > 4*128 || config.noDuffDevice) && s%4 == 0 && logLargeCopy(v, s)) { break } v.reset(Op386REPMOVSL) v0 := b.NewValue0(v.Pos, Op386MOVLconst, typ.UInt32) v0.AuxInt = int32ToAuxInt(int32(s / 4)) v.AddArg4(dst, src, v0, mem) return true } return false } func rewriteValue386_OpNeg32F(v *Value) bool { v_0 := v.Args[0] b := v.Block typ := &b.Func.Config.Types // match: (Neg32F x) // result: (PXOR x (MOVSSconst [float32(math.Copysign(0, -1))])) for { x := v_0 v.reset(Op386PXOR) v0 := b.NewValue0(v.Pos, Op386MOVSSconst, typ.Float32) v0.AuxInt = float32ToAuxInt(float32(math.Copysign(0, -1))) v.AddArg2(x, v0) return true } } func rewriteValue386_OpNeg64F(v *Value) bool { v_0 := v.Args[0] b := v.Block typ := &b.Func.Config.Types // match: (Neg64F x) // result: (PXOR x (MOVSDconst [math.Copysign(0, -1)])) for { x := v_0 v.reset(Op386PXOR) v0 := b.NewValue0(v.Pos, Op386MOVSDconst, typ.Float64) v0.AuxInt = float64ToAuxInt(math.Copysign(0, -1)) v.AddArg2(x, v0) return true } } func rewriteValue386_OpNeq16(v *Value) bool { v_1 := v.Args[1] v_0 := v.Args[0] b := v.Block // match: (Neq16 x y) // result: (SETNE (CMPW x y)) for { x := v_0 y := v_1 v.reset(Op386SETNE) v0 := b.NewValue0(v.Pos, Op386CMPW, types.TypeFlags) v0.AddArg2(x, y) v.AddArg(v0) return true } } func rewriteValue386_OpNeq32(v *Value) bool { v_1 := v.Args[1] v_0 := v.Args[0] b := v.Block // match: (Neq32 x y) // result: (SETNE (CMPL x y)) for { x := v_0 y := v_1 v.reset(Op386SETNE) v0 := b.NewValue0(v.Pos, Op386CMPL, types.TypeFlags) v0.AddArg2(x, y) v.AddArg(v0) return true } } func rewriteValue386_OpNeq32F(v *Value) bool { v_1 := v.Args[1] v_0 := v.Args[0] b := v.Block // match: (Neq32F x y) // result: (SETNEF (UCOMISS x y)) for { x := v_0 y := v_1 v.reset(Op386SETNEF) v0 := b.NewValue0(v.Pos, Op386UCOMISS, types.TypeFlags) v0.AddArg2(x, y) v.AddArg(v0) return true } } func rewriteValue386_OpNeq64F(v *Value) bool { v_1 := v.Args[1] v_0 := v.Args[0] b := v.Block // match: (Neq64F x y) // result: (SETNEF (UCOMISD x y)) for { x := v_0 y := v_1 v.reset(Op386SETNEF) v0 := b.NewValue0(v.Pos, Op386UCOMISD, types.TypeFlags) v0.AddArg2(x, y) v.AddArg(v0) return true } } func rewriteValue386_OpNeq8(v *Value) bool { v_1 := v.Args[1] v_0 := v.Args[0] b := v.Block // match: (Neq8 x y) // result: (SETNE (CMPB x y)) for { x := v_0 y := v_1 v.reset(Op386SETNE) v0 := b.NewValue0(v.Pos, Op386CMPB, types.TypeFlags) v0.AddArg2(x, y) v.AddArg(v0) return true } } func rewriteValue386_OpNeqB(v *Value) bool { v_1 := v.Args[1] v_0 := v.Args[0] b := v.Block // match: (NeqB x y) // result: (SETNE (CMPB x y)) for { x := v_0 y := v_1 v.reset(Op386SETNE) v0 := b.NewValue0(v.Pos, Op386CMPB, types.TypeFlags) v0.AddArg2(x, y) v.AddArg(v0) return true } } func rewriteValue386_OpNeqPtr(v *Value) bool { v_1 := v.Args[1] v_0 := v.Args[0] b := v.Block // match: (NeqPtr x y) // result: (SETNE (CMPL x y)) for { x := v_0 y := v_1 v.reset(Op386SETNE) v0 := b.NewValue0(v.Pos, Op386CMPL, types.TypeFlags) v0.AddArg2(x, y) v.AddArg(v0) return true } } func rewriteValue386_OpNot(v *Value) bool { v_0 := v.Args[0] // match: (Not x) // result: (XORLconst [1] x) for { x := v_0 v.reset(Op386XORLconst) v.AuxInt = int32ToAuxInt(1) v.AddArg(x) return true } } func rewriteValue386_OpOffPtr(v *Value) bool { v_0 := v.Args[0] // match: (OffPtr [off] ptr) // result: (ADDLconst [int32(off)] ptr) for { off := auxIntToInt64(v.AuxInt) ptr := v_0 v.reset(Op386ADDLconst) v.AuxInt = int32ToAuxInt(int32(off)) v.AddArg(ptr) return true } } func rewriteValue386_OpPanicBounds(v *Value) bool { v_2 := v.Args[2] v_1 := v.Args[1] v_0 := v.Args[0] // match: (PanicBounds [kind] x y mem) // cond: boundsABI(kind) == 0 // result: (LoweredPanicBoundsA [kind] x y mem) for { kind := auxIntToInt64(v.AuxInt) x := v_0 y := v_1 mem := v_2 if !(boundsABI(kind) == 0) { break } v.reset(Op386LoweredPanicBoundsA) v.AuxInt = int64ToAuxInt(kind) v.AddArg3(x, y, mem) return true } // match: (PanicBounds [kind] x y mem) // cond: boundsABI(kind) == 1 // result: (LoweredPanicBoundsB [kind] x y mem) for { kind := auxIntToInt64(v.AuxInt) x := v_0 y := v_1 mem := v_2 if !(boundsABI(kind) == 1) { break } v.reset(Op386LoweredPanicBoundsB) v.AuxInt = int64ToAuxInt(kind) v.AddArg3(x, y, mem) return true } // match: (PanicBounds [kind] x y mem) // cond: boundsABI(kind) == 2 // result: (LoweredPanicBoundsC [kind] x y mem) for { kind := auxIntToInt64(v.AuxInt) x := v_0 y := v_1 mem := v_2 if !(boundsABI(kind) == 2) { break } v.reset(Op386LoweredPanicBoundsC) v.AuxInt = int64ToAuxInt(kind) v.AddArg3(x, y, mem) return true } return false } func rewriteValue386_OpPanicExtend(v *Value) bool { v_3 := v.Args[3] v_2 := v.Args[2] v_1 := v.Args[1] v_0 := v.Args[0] // match: (PanicExtend [kind] hi lo y mem) // cond: boundsABI(kind) == 0 // result: (LoweredPanicExtendA [kind] hi lo y mem) for { kind := auxIntToInt64(v.AuxInt) hi := v_0 lo := v_1 y := v_2 mem := v_3 if !(boundsABI(kind) == 0) { break } v.reset(Op386LoweredPanicExtendA) v.AuxInt = int64ToAuxInt(kind) v.AddArg4(hi, lo, y, mem) return true } // match: (PanicExtend [kind] hi lo y mem) // cond: boundsABI(kind) == 1 // result: (LoweredPanicExtendB [kind] hi lo y mem) for { kind := auxIntToInt64(v.AuxInt) hi := v_0 lo := v_1 y := v_2 mem := v_3 if !(boundsABI(kind) == 1) { break } v.reset(Op386LoweredPanicExtendB) v.AuxInt = int64ToAuxInt(kind) v.AddArg4(hi, lo, y, mem) return true } // match: (PanicExtend [kind] hi lo y mem) // cond: boundsABI(kind) == 2 // result: (LoweredPanicExtendC [kind] hi lo y mem) for { kind := auxIntToInt64(v.AuxInt) hi := v_0 lo := v_1 y := v_2 mem := v_3 if !(boundsABI(kind) == 2) { break } v.reset(Op386LoweredPanicExtendC) v.AuxInt = int64ToAuxInt(kind) v.AddArg4(hi, lo, y, mem) return true } return false } func rewriteValue386_OpRsh16Ux16(v *Value) bool { v_1 := v.Args[1] v_0 := v.Args[0] b := v.Block // match: (Rsh16Ux16 x y) // cond: !shiftIsBounded(v) // result: (ANDL (SHRW x y) (SBBLcarrymask (CMPWconst y [16]))) for { t := v.Type x := v_0 y := v_1 if !(!shiftIsBounded(v)) { break } v.reset(Op386ANDL) v0 := b.NewValue0(v.Pos, Op386SHRW, t) v0.AddArg2(x, y) v1 := b.NewValue0(v.Pos, Op386SBBLcarrymask, t) v2 := b.NewValue0(v.Pos, Op386CMPWconst, types.TypeFlags) v2.AuxInt = int16ToAuxInt(16) v2.AddArg(y) v1.AddArg(v2) v.AddArg2(v0, v1) return true } // match: (Rsh16Ux16 x y) // cond: shiftIsBounded(v) // result: (SHRW x y) for { t := v.Type x := v_0 y := v_1 if !(shiftIsBounded(v)) { break } v.reset(Op386SHRW) v.Type = t v.AddArg2(x, y) return true } return false } func rewriteValue386_OpRsh16Ux32(v *Value) bool { v_1 := v.Args[1] v_0 := v.Args[0] b := v.Block // match: (Rsh16Ux32 x y) // cond: !shiftIsBounded(v) // result: (ANDL (SHRW x y) (SBBLcarrymask (CMPLconst y [16]))) for { t := v.Type x := v_0 y := v_1 if !(!shiftIsBounded(v)) { break } v.reset(Op386ANDL) v0 := b.NewValue0(v.Pos, Op386SHRW, t) v0.AddArg2(x, y) v1 := b.NewValue0(v.Pos, Op386SBBLcarrymask, t) v2 := b.NewValue0(v.Pos, Op386CMPLconst, types.TypeFlags) v2.AuxInt = int32ToAuxInt(16) v2.AddArg(y) v1.AddArg(v2) v.AddArg2(v0, v1) return true } // match: (Rsh16Ux32 x y) // cond: shiftIsBounded(v) // result: (SHRW x y) for { t := v.Type x := v_0 y := v_1 if !(shiftIsBounded(v)) { break } v.reset(Op386SHRW) v.Type = t v.AddArg2(x, y) return true } return false } func rewriteValue386_OpRsh16Ux64(v *Value) bool { v_1 := v.Args[1] v_0 := v.Args[0] // match: (Rsh16Ux64 x (Const64 [c])) // cond: uint64(c) < 16 // result: (SHRWconst x [int16(c)]) for { x := v_0 if v_1.Op != OpConst64 { break } c := auxIntToInt64(v_1.AuxInt) if !(uint64(c) < 16) { break } v.reset(Op386SHRWconst) v.AuxInt = int16ToAuxInt(int16(c)) v.AddArg(x) return true } // match: (Rsh16Ux64 _ (Const64 [c])) // cond: uint64(c) >= 16 // result: (Const16 [0]) for { if v_1.Op != OpConst64 { break } c := auxIntToInt64(v_1.AuxInt) if !(uint64(c) >= 16) { break } v.reset(OpConst16) v.AuxInt = int16ToAuxInt(0) return true } return false } func rewriteValue386_OpRsh16Ux8(v *Value) bool { v_1 := v.Args[1] v_0 := v.Args[0] b := v.Block // match: (Rsh16Ux8 x y) // cond: !shiftIsBounded(v) // result: (ANDL (SHRW x y) (SBBLcarrymask (CMPBconst y [16]))) for { t := v.Type x := v_0 y := v_1 if !(!shiftIsBounded(v)) { break } v.reset(Op386ANDL) v0 := b.NewValue0(v.Pos, Op386SHRW, t) v0.AddArg2(x, y) v1 := b.NewValue0(v.Pos, Op386SBBLcarrymask, t) v2 := b.NewValue0(v.Pos, Op386CMPBconst, types.TypeFlags) v2.AuxInt = int8ToAuxInt(16) v2.AddArg(y) v1.AddArg(v2) v.AddArg2(v0, v1) return true } // match: (Rsh16Ux8 x y) // cond: shiftIsBounded(v) // result: (SHRW x y) for { t := v.Type x := v_0 y := v_1 if !(shiftIsBounded(v)) { break } v.reset(Op386SHRW) v.Type = t v.AddArg2(x, y) return true } return false } func rewriteValue386_OpRsh16x16(v *Value) bool { v_1 := v.Args[1] v_0 := v.Args[0] b := v.Block // match: (Rsh16x16 x y) // cond: !shiftIsBounded(v) // result: (SARW x (ORL y (NOTL (SBBLcarrymask (CMPWconst y [16]))))) for { t := v.Type x := v_0 y := v_1 if !(!shiftIsBounded(v)) { break } v.reset(Op386SARW) v.Type = t v0 := b.NewValue0(v.Pos, Op386ORL, y.Type) v1 := b.NewValue0(v.Pos, Op386NOTL, y.Type) v2 := b.NewValue0(v.Pos, Op386SBBLcarrymask, y.Type) v3 := b.NewValue0(v.Pos, Op386CMPWconst, types.TypeFlags) v3.AuxInt = int16ToAuxInt(16) v3.AddArg(y) v2.AddArg(v3) v1.AddArg(v2) v0.AddArg2(y, v1) v.AddArg2(x, v0) return true } // match: (Rsh16x16 x y) // cond: shiftIsBounded(v) // result: (SARW x y) for { x := v_0 y := v_1 if !(shiftIsBounded(v)) { break } v.reset(Op386SARW) v.AddArg2(x, y) return true } return false } func rewriteValue386_OpRsh16x32(v *Value) bool { v_1 := v.Args[1] v_0 := v.Args[0] b := v.Block // match: (Rsh16x32 x y) // cond: !shiftIsBounded(v) // result: (SARW x (ORL y (NOTL (SBBLcarrymask (CMPLconst y [16]))))) for { t := v.Type x := v_0 y := v_1 if !(!shiftIsBounded(v)) { break } v.reset(Op386SARW) v.Type = t v0 := b.NewValue0(v.Pos, Op386ORL, y.Type) v1 := b.NewValue0(v.Pos, Op386NOTL, y.Type) v2 := b.NewValue0(v.Pos, Op386SBBLcarrymask, y.Type) v3 := b.NewValue0(v.Pos, Op386CMPLconst, types.TypeFlags) v3.AuxInt = int32ToAuxInt(16) v3.AddArg(y) v2.AddArg(v3) v1.AddArg(v2) v0.AddArg2(y, v1) v.AddArg2(x, v0) return true } // match: (Rsh16x32 x y) // cond: shiftIsBounded(v) // result: (SARW x y) for { x := v_0 y := v_1 if !(shiftIsBounded(v)) { break } v.reset(Op386SARW) v.AddArg2(x, y) return true } return false } func rewriteValue386_OpRsh16x64(v *Value) bool { v_1 := v.Args[1] v_0 := v.Args[0] // match: (Rsh16x64 x (Const64 [c])) // cond: uint64(c) < 16 // result: (SARWconst x [int16(c)]) for { x := v_0 if v_1.Op != OpConst64 { break } c := auxIntToInt64(v_1.AuxInt) if !(uint64(c) < 16) { break } v.reset(Op386SARWconst) v.AuxInt = int16ToAuxInt(int16(c)) v.AddArg(x) return true } // match: (Rsh16x64 x (Const64 [c])) // cond: uint64(c) >= 16 // result: (SARWconst x [15]) for { x := v_0 if v_1.Op != OpConst64 { break } c := auxIntToInt64(v_1.AuxInt) if !(uint64(c) >= 16) { break } v.reset(Op386SARWconst) v.AuxInt = int16ToAuxInt(15) v.AddArg(x) return true } return false } func rewriteValue386_OpRsh16x8(v *Value) bool { v_1 := v.Args[1] v_0 := v.Args[0] b := v.Block // match: (Rsh16x8 x y) // cond: !shiftIsBounded(v) // result: (SARW x (ORL y (NOTL (SBBLcarrymask (CMPBconst y [16]))))) for { t := v.Type x := v_0 y := v_1 if !(!shiftIsBounded(v)) { break } v.reset(Op386SARW) v.Type = t v0 := b.NewValue0(v.Pos, Op386ORL, y.Type) v1 := b.NewValue0(v.Pos, Op386NOTL, y.Type) v2 := b.NewValue0(v.Pos, Op386SBBLcarrymask, y.Type) v3 := b.NewValue0(v.Pos, Op386CMPBconst, types.TypeFlags) v3.AuxInt = int8ToAuxInt(16) v3.AddArg(y) v2.AddArg(v3) v1.AddArg(v2) v0.AddArg2(y, v1) v.AddArg2(x, v0) return true } // match: (Rsh16x8 x y) // cond: shiftIsBounded(v) // result: (SARW x y) for { x := v_0 y := v_1 if !(shiftIsBounded(v)) { break } v.reset(Op386SARW) v.AddArg2(x, y) return true } return false } func rewriteValue386_OpRsh32Ux16(v *Value) bool { v_1 := v.Args[1] v_0 := v.Args[0] b := v.Block // match: (Rsh32Ux16 x y) // cond: !shiftIsBounded(v) // result: (ANDL (SHRL x y) (SBBLcarrymask (CMPWconst y [32]))) for { t := v.Type x := v_0 y := v_1 if !(!shiftIsBounded(v)) { break } v.reset(Op386ANDL) v0 := b.NewValue0(v.Pos, Op386SHRL, t) v0.AddArg2(x, y) v1 := b.NewValue0(v.Pos, Op386SBBLcarrymask, t) v2 := b.NewValue0(v.Pos, Op386CMPWconst, types.TypeFlags) v2.AuxInt = int16ToAuxInt(32) v2.AddArg(y) v1.AddArg(v2) v.AddArg2(v0, v1) return true } // match: (Rsh32Ux16 x y) // cond: shiftIsBounded(v) // result: (SHRL x y) for { t := v.Type x := v_0 y := v_1 if !(shiftIsBounded(v)) { break } v.reset(Op386SHRL) v.Type = t v.AddArg2(x, y) return true } return false } func rewriteValue386_OpRsh32Ux32(v *Value) bool { v_1 := v.Args[1] v_0 := v.Args[0] b := v.Block // match: (Rsh32Ux32 x y) // cond: !shiftIsBounded(v) // result: (ANDL (SHRL x y) (SBBLcarrymask (CMPLconst y [32]))) for { t := v.Type x := v_0 y := v_1 if !(!shiftIsBounded(v)) { break } v.reset(Op386ANDL) v0 := b.NewValue0(v.Pos, Op386SHRL, t) v0.AddArg2(x, y) v1 := b.NewValue0(v.Pos, Op386SBBLcarrymask, t) v2 := b.NewValue0(v.Pos, Op386CMPLconst, types.TypeFlags) v2.AuxInt = int32ToAuxInt(32) v2.AddArg(y) v1.AddArg(v2) v.AddArg2(v0, v1) return true } // match: (Rsh32Ux32 x y) // cond: shiftIsBounded(v) // result: (SHRL x y) for { t := v.Type x := v_0 y := v_1 if !(shiftIsBounded(v)) { break } v.reset(Op386SHRL) v.Type = t v.AddArg2(x, y) return true } return false } func rewriteValue386_OpRsh32Ux64(v *Value) bool { v_1 := v.Args[1] v_0 := v.Args[0] // match: (Rsh32Ux64 x (Const64 [c])) // cond: uint64(c) < 32 // result: (SHRLconst x [int32(c)]) for { x := v_0 if v_1.Op != OpConst64 { break } c := auxIntToInt64(v_1.AuxInt) if !(uint64(c) < 32) { break } v.reset(Op386SHRLconst) v.AuxInt = int32ToAuxInt(int32(c)) v.AddArg(x) return true } // match: (Rsh32Ux64 _ (Const64 [c])) // cond: uint64(c) >= 32 // result: (Const32 [0]) for { if v_1.Op != OpConst64 { break } c := auxIntToInt64(v_1.AuxInt) if !(uint64(c) >= 32) { break } v.reset(OpConst32) v.AuxInt = int32ToAuxInt(0) return true } return false } func rewriteValue386_OpRsh32Ux8(v *Value) bool { v_1 := v.Args[1] v_0 := v.Args[0] b := v.Block // match: (Rsh32Ux8 x y) // cond: !shiftIsBounded(v) // result: (ANDL (SHRL x y) (SBBLcarrymask (CMPBconst y [32]))) for { t := v.Type x := v_0 y := v_1 if !(!shiftIsBounded(v)) { break } v.reset(Op386ANDL) v0 := b.NewValue0(v.Pos, Op386SHRL, t) v0.AddArg2(x, y) v1 := b.NewValue0(v.Pos, Op386SBBLcarrymask, t) v2 := b.NewValue0(v.Pos, Op386CMPBconst, types.TypeFlags) v2.AuxInt = int8ToAuxInt(32) v2.AddArg(y) v1.AddArg(v2) v.AddArg2(v0, v1) return true } // match: (Rsh32Ux8 x y) // cond: shiftIsBounded(v) // result: (SHRL x y) for { t := v.Type x := v_0 y := v_1 if !(shiftIsBounded(v)) { break } v.reset(Op386SHRL) v.Type = t v.AddArg2(x, y) return true } return false } func rewriteValue386_OpRsh32x16(v *Value) bool { v_1 := v.Args[1] v_0 := v.Args[0] b := v.Block // match: (Rsh32x16 x y) // cond: !shiftIsBounded(v) // result: (SARL x (ORL y (NOTL (SBBLcarrymask (CMPWconst y [32]))))) for { t := v.Type x := v_0 y := v_1 if !(!shiftIsBounded(v)) { break } v.reset(Op386SARL) v.Type = t v0 := b.NewValue0(v.Pos, Op386ORL, y.Type) v1 := b.NewValue0(v.Pos, Op386NOTL, y.Type) v2 := b.NewValue0(v.Pos, Op386SBBLcarrymask, y.Type) v3 := b.NewValue0(v.Pos, Op386CMPWconst, types.TypeFlags) v3.AuxInt = int16ToAuxInt(32) v3.AddArg(y) v2.AddArg(v3) v1.AddArg(v2) v0.AddArg2(y, v1) v.AddArg2(x, v0) return true } // match: (Rsh32x16 x y) // cond: shiftIsBounded(v) // result: (SARL x y) for { x := v_0 y := v_1 if !(shiftIsBounded(v)) { break } v.reset(Op386SARL) v.AddArg2(x, y) return true } return false } func rewriteValue386_OpRsh32x32(v *Value) bool { v_1 := v.Args[1] v_0 := v.Args[0] b := v.Block // match: (Rsh32x32 x y) // cond: !shiftIsBounded(v) // result: (SARL x (ORL y (NOTL (SBBLcarrymask (CMPLconst y [32]))))) for { t := v.Type x := v_0 y := v_1 if !(!shiftIsBounded(v)) { break } v.reset(Op386SARL) v.Type = t v0 := b.NewValue0(v.Pos, Op386ORL, y.Type) v1 := b.NewValue0(v.Pos, Op386NOTL, y.Type) v2 := b.NewValue0(v.Pos, Op386SBBLcarrymask, y.Type) v3 := b.NewValue0(v.Pos, Op386CMPLconst, types.TypeFlags) v3.AuxInt = int32ToAuxInt(32) v3.AddArg(y) v2.AddArg(v3) v1.AddArg(v2) v0.AddArg2(y, v1) v.AddArg2(x, v0) return true } // match: (Rsh32x32 x y) // cond: shiftIsBounded(v) // result: (SARL x y) for { x := v_0 y := v_1 if !(shiftIsBounded(v)) { break } v.reset(Op386SARL) v.AddArg2(x, y) return true } return false } func rewriteValue386_OpRsh32x64(v *Value) bool { v_1 := v.Args[1] v_0 := v.Args[0] // match: (Rsh32x64 x (Const64 [c])) // cond: uint64(c) < 32 // result: (SARLconst x [int32(c)]) for { x := v_0 if v_1.Op != OpConst64 { break } c := auxIntToInt64(v_1.AuxInt) if !(uint64(c) < 32) { break } v.reset(Op386SARLconst) v.AuxInt = int32ToAuxInt(int32(c)) v.AddArg(x) return true } // match: (Rsh32x64 x (Const64 [c])) // cond: uint64(c) >= 32 // result: (SARLconst x [31]) for { x := v_0 if v_1.Op != OpConst64 { break } c := auxIntToInt64(v_1.AuxInt) if !(uint64(c) >= 32) { break } v.reset(Op386SARLconst) v.AuxInt = int32ToAuxInt(31) v.AddArg(x) return true } return false } func rewriteValue386_OpRsh32x8(v *Value) bool { v_1 := v.Args[1] v_0 := v.Args[0] b := v.Block // match: (Rsh32x8 x y) // cond: !shiftIsBounded(v) // result: (SARL x (ORL y (NOTL (SBBLcarrymask (CMPBconst y [32]))))) for { t := v.Type x := v_0 y := v_1 if !(!shiftIsBounded(v)) { break } v.reset(Op386SARL) v.Type = t v0 := b.NewValue0(v.Pos, Op386ORL, y.Type) v1 := b.NewValue0(v.Pos, Op386NOTL, y.Type) v2 := b.NewValue0(v.Pos, Op386SBBLcarrymask, y.Type) v3 := b.NewValue0(v.Pos, Op386CMPBconst, types.TypeFlags) v3.AuxInt = int8ToAuxInt(32) v3.AddArg(y) v2.AddArg(v3) v1.AddArg(v2) v0.AddArg2(y, v1) v.AddArg2(x, v0) return true } // match: (Rsh32x8 x y) // cond: shiftIsBounded(v) // result: (SARL x y) for { x := v_0 y := v_1 if !(shiftIsBounded(v)) { break } v.reset(Op386SARL) v.AddArg2(x, y) return true } return false } func rewriteValue386_OpRsh8Ux16(v *Value) bool { v_1 := v.Args[1] v_0 := v.Args[0] b := v.Block // match: (Rsh8Ux16 x y) // cond: !shiftIsBounded(v) // result: (ANDL (SHRB x y) (SBBLcarrymask (CMPWconst y [8]))) for { t := v.Type x := v_0 y := v_1 if !(!shiftIsBounded(v)) { break } v.reset(Op386ANDL) v0 := b.NewValue0(v.Pos, Op386SHRB, t) v0.AddArg2(x, y) v1 := b.NewValue0(v.Pos, Op386SBBLcarrymask, t) v2 := b.NewValue0(v.Pos, Op386CMPWconst, types.TypeFlags) v2.AuxInt = int16ToAuxInt(8) v2.AddArg(y) v1.AddArg(v2) v.AddArg2(v0, v1) return true } // match: (Rsh8Ux16 x y) // cond: shiftIsBounded(v) // result: (SHRB x y) for { t := v.Type x := v_0 y := v_1 if !(shiftIsBounded(v)) { break } v.reset(Op386SHRB) v.Type = t v.AddArg2(x, y) return true } return false } func rewriteValue386_OpRsh8Ux32(v *Value) bool { v_1 := v.Args[1] v_0 := v.Args[0] b := v.Block // match: (Rsh8Ux32 x y) // cond: !shiftIsBounded(v) // result: (ANDL (SHRB x y) (SBBLcarrymask (CMPLconst y [8]))) for { t := v.Type x := v_0 y := v_1 if !(!shiftIsBounded(v)) { break } v.reset(Op386ANDL) v0 := b.NewValue0(v.Pos, Op386SHRB, t) v0.AddArg2(x, y) v1 := b.NewValue0(v.Pos, Op386SBBLcarrymask, t) v2 := b.NewValue0(v.Pos, Op386CMPLconst, types.TypeFlags) v2.AuxInt = int32ToAuxInt(8) v2.AddArg(y) v1.AddArg(v2) v.AddArg2(v0, v1) return true } // match: (Rsh8Ux32 x y) // cond: shiftIsBounded(v) // result: (SHRB x y) for { t := v.Type x := v_0 y := v_1 if !(shiftIsBounded(v)) { break } v.reset(Op386SHRB) v.Type = t v.AddArg2(x, y) return true } return false } func rewriteValue386_OpRsh8Ux64(v *Value) bool { v_1 := v.Args[1] v_0 := v.Args[0] // match: (Rsh8Ux64 x (Const64 [c])) // cond: uint64(c) < 8 // result: (SHRBconst x [int8(c)]) for { x := v_0 if v_1.Op != OpConst64 { break } c := auxIntToInt64(v_1.AuxInt) if !(uint64(c) < 8) { break } v.reset(Op386SHRBconst) v.AuxInt = int8ToAuxInt(int8(c)) v.AddArg(x) return true } // match: (Rsh8Ux64 _ (Const64 [c])) // cond: uint64(c) >= 8 // result: (Const8 [0]) for { if v_1.Op != OpConst64 { break } c := auxIntToInt64(v_1.AuxInt) if !(uint64(c) >= 8) { break } v.reset(OpConst8) v.AuxInt = int8ToAuxInt(0) return true } return false } func rewriteValue386_OpRsh8Ux8(v *Value) bool { v_1 := v.Args[1] v_0 := v.Args[0] b := v.Block // match: (Rsh8Ux8 x y) // cond: !shiftIsBounded(v) // result: (ANDL (SHRB x y) (SBBLcarrymask (CMPBconst y [8]))) for { t := v.Type x := v_0 y := v_1 if !(!shiftIsBounded(v)) { break } v.reset(Op386ANDL) v0 := b.NewValue0(v.Pos, Op386SHRB, t) v0.AddArg2(x, y) v1 := b.NewValue0(v.Pos, Op386SBBLcarrymask, t) v2 := b.NewValue0(v.Pos, Op386CMPBconst, types.TypeFlags) v2.AuxInt = int8ToAuxInt(8) v2.AddArg(y) v1.AddArg(v2) v.AddArg2(v0, v1) return true } // match: (Rsh8Ux8 x y) // cond: shiftIsBounded(v) // result: (SHRB x y) for { t := v.Type x := v_0 y := v_1 if !(shiftIsBounded(v)) { break } v.reset(Op386SHRB) v.Type = t v.AddArg2(x, y) return true } return false } func rewriteValue386_OpRsh8x16(v *Value) bool { v_1 := v.Args[1] v_0 := v.Args[0] b := v.Block // match: (Rsh8x16 x y) // cond: !shiftIsBounded(v) // result: (SARB x (ORL y (NOTL (SBBLcarrymask (CMPWconst y [8]))))) for { t := v.Type x := v_0 y := v_1 if !(!shiftIsBounded(v)) { break } v.reset(Op386SARB) v.Type = t v0 := b.NewValue0(v.Pos, Op386ORL, y.Type) v1 := b.NewValue0(v.Pos, Op386NOTL, y.Type) v2 := b.NewValue0(v.Pos, Op386SBBLcarrymask, y.Type) v3 := b.NewValue0(v.Pos, Op386CMPWconst, types.TypeFlags) v3.AuxInt = int16ToAuxInt(8) v3.AddArg(y) v2.AddArg(v3) v1.AddArg(v2) v0.AddArg2(y, v1) v.AddArg2(x, v0) return true } // match: (Rsh8x16 x y) // cond: shiftIsBounded(v) // result: (SARB x y) for { x := v_0 y := v_1 if !(shiftIsBounded(v)) { break } v.reset(Op386SARB) v.AddArg2(x, y) return true } return false } func rewriteValue386_OpRsh8x32(v *Value) bool { v_1 := v.Args[1] v_0 := v.Args[0] b := v.Block // match: (Rsh8x32 x y) // cond: !shiftIsBounded(v) // result: (SARB x (ORL y (NOTL (SBBLcarrymask (CMPLconst y [8]))))) for { t := v.Type x := v_0 y := v_1 if !(!shiftIsBounded(v)) { break } v.reset(Op386SARB) v.Type = t v0 := b.NewValue0(v.Pos, Op386ORL, y.Type) v1 := b.NewValue0(v.Pos, Op386NOTL, y.Type) v2 := b.NewValue0(v.Pos, Op386SBBLcarrymask, y.Type) v3 := b.NewValue0(v.Pos, Op386CMPLconst, types.TypeFlags) v3.AuxInt = int32ToAuxInt(8) v3.AddArg(y) v2.AddArg(v3) v1.AddArg(v2) v0.AddArg2(y, v1) v.AddArg2(x, v0) return true } // match: (Rsh8x32 x y) // cond: shiftIsBounded(v) // result: (SARB x y) for { x := v_0 y := v_1 if !(shiftIsBounded(v)) { break } v.reset(Op386SARB) v.AddArg2(x, y) return true } return false } func rewriteValue386_OpRsh8x64(v *Value) bool { v_1 := v.Args[1] v_0 := v.Args[0] // match: (Rsh8x64 x (Const64 [c])) // cond: uint64(c) < 8 // result: (SARBconst x [int8(c)]) for { x := v_0 if v_1.Op != OpConst64 { break } c := auxIntToInt64(v_1.AuxInt) if !(uint64(c) < 8) { break } v.reset(Op386SARBconst) v.AuxInt = int8ToAuxInt(int8(c)) v.AddArg(x) return true } // match: (Rsh8x64 x (Const64 [c])) // cond: uint64(c) >= 8 // result: (SARBconst x [7]) for { x := v_0 if v_1.Op != OpConst64 { break } c := auxIntToInt64(v_1.AuxInt) if !(uint64(c) >= 8) { break } v.reset(Op386SARBconst) v.AuxInt = int8ToAuxInt(7) v.AddArg(x) return true } return false } func rewriteValue386_OpRsh8x8(v *Value) bool { v_1 := v.Args[1] v_0 := v.Args[0] b := v.Block // match: (Rsh8x8 x y) // cond: !shiftIsBounded(v) // result: (SARB x (ORL y (NOTL (SBBLcarrymask (CMPBconst y [8]))))) for { t := v.Type x := v_0 y := v_1 if !(!shiftIsBounded(v)) { break } v.reset(Op386SARB) v.Type = t v0 := b.NewValue0(v.Pos, Op386ORL, y.Type) v1 := b.NewValue0(v.Pos, Op386NOTL, y.Type) v2 := b.NewValue0(v.Pos, Op386SBBLcarrymask, y.Type) v3 := b.NewValue0(v.Pos, Op386CMPBconst, types.TypeFlags) v3.AuxInt = int8ToAuxInt(8) v3.AddArg(y) v2.AddArg(v3) v1.AddArg(v2) v0.AddArg2(y, v1) v.AddArg2(x, v0) return true } // match: (Rsh8x8 x y) // cond: shiftIsBounded(v) // result: (SARB x y) for { x := v_0 y := v_1 if !(shiftIsBounded(v)) { break } v.reset(Op386SARB) v.AddArg2(x, y) return true } return false } func rewriteValue386_OpSelect0(v *Value) bool { v_0 := v.Args[0] b := v.Block typ := &b.Func.Config.Types // match: (Select0 (Mul32uover x y)) // result: (Select0 (MULLU x y)) for { if v_0.Op != OpMul32uover { break } y := v_0.Args[1] x := v_0.Args[0] v.reset(OpSelect0) v.Type = typ.UInt32 v0 := b.NewValue0(v.Pos, Op386MULLU, types.NewTuple(typ.UInt32, types.TypeFlags)) v0.AddArg2(x, y) v.AddArg(v0) return true } return false } func rewriteValue386_OpSelect1(v *Value) bool { v_0 := v.Args[0] b := v.Block typ := &b.Func.Config.Types // match: (Select1 (Mul32uover x y)) // result: (SETO (Select1 (MULLU x y))) for { if v_0.Op != OpMul32uover { break } y := v_0.Args[1] x := v_0.Args[0] v.reset(Op386SETO) v0 := b.NewValue0(v.Pos, OpSelect1, types.TypeFlags) v1 := b.NewValue0(v.Pos, Op386MULLU, types.NewTuple(typ.UInt32, types.TypeFlags)) v1.AddArg2(x, y) v0.AddArg(v1) v.AddArg(v0) return true } return false } func rewriteValue386_OpSignmask(v *Value) bool { v_0 := v.Args[0] // match: (Signmask x) // result: (SARLconst x [31]) for { x := v_0 v.reset(Op386SARLconst) v.AuxInt = int32ToAuxInt(31) v.AddArg(x) return true } } func rewriteValue386_OpSlicemask(v *Value) bool { v_0 := v.Args[0] b := v.Block // match: (Slicemask x) // result: (SARLconst (NEGL x) [31]) for { t := v.Type x := v_0 v.reset(Op386SARLconst) v.AuxInt = int32ToAuxInt(31) v0 := b.NewValue0(v.Pos, Op386NEGL, t) v0.AddArg(x) v.AddArg(v0) return true } } func rewriteValue386_OpStore(v *Value) bool { v_2 := v.Args[2] v_1 := v.Args[1] v_0 := v.Args[0] // match: (Store {t} ptr val mem) // cond: t.Size() == 8 && is64BitFloat(val.Type) // result: (MOVSDstore ptr val mem) for { t := auxToType(v.Aux) ptr := v_0 val := v_1 mem := v_2 if !(t.Size() == 8 && is64BitFloat(val.Type)) { break } v.reset(Op386MOVSDstore) v.AddArg3(ptr, val, mem) return true } // match: (Store {t} ptr val mem) // cond: t.Size() == 4 && is32BitFloat(val.Type) // result: (MOVSSstore ptr val mem) for { t := auxToType(v.Aux) ptr := v_0 val := v_1 mem := v_2 if !(t.Size() == 4 && is32BitFloat(val.Type)) { break } v.reset(Op386MOVSSstore) v.AddArg3(ptr, val, mem) return true } // match: (Store {t} ptr val mem) // cond: t.Size() == 4 // result: (MOVLstore ptr val mem) for { t := auxToType(v.Aux) ptr := v_0 val := v_1 mem := v_2 if !(t.Size() == 4) { break } v.reset(Op386MOVLstore) v.AddArg3(ptr, val, mem) return true } // match: (Store {t} ptr val mem) // cond: t.Size() == 2 // result: (MOVWstore ptr val mem) for { t := auxToType(v.Aux) ptr := v_0 val := v_1 mem := v_2 if !(t.Size() == 2) { break } v.reset(Op386MOVWstore) v.AddArg3(ptr, val, mem) return true } // match: (Store {t} ptr val mem) // cond: t.Size() == 1 // result: (MOVBstore ptr val mem) for { t := auxToType(v.Aux) ptr := v_0 val := v_1 mem := v_2 if !(t.Size() == 1) { break } v.reset(Op386MOVBstore) v.AddArg3(ptr, val, mem) return true } return false } func rewriteValue386_OpZero(v *Value) bool { v_1 := v.Args[1] v_0 := v.Args[0] b := v.Block config := b.Func.Config typ := &b.Func.Config.Types // match: (Zero [0] _ mem) // result: mem for { if auxIntToInt64(v.AuxInt) != 0 { break } mem := v_1 v.copyOf(mem) return true } // match: (Zero [1] destptr mem) // result: (MOVBstoreconst [0] destptr mem) for { if auxIntToInt64(v.AuxInt) != 1 { break } destptr := v_0 mem := v_1 v.reset(Op386MOVBstoreconst) v.AuxInt = valAndOffToAuxInt(0) v.AddArg2(destptr, mem) return true } // match: (Zero [2] destptr mem) // result: (MOVWstoreconst [0] destptr mem) for { if auxIntToInt64(v.AuxInt) != 2 { break } destptr := v_0 mem := v_1 v.reset(Op386MOVWstoreconst) v.AuxInt = valAndOffToAuxInt(0) v.AddArg2(destptr, mem) return true } // match: (Zero [4] destptr mem) // result: (MOVLstoreconst [0] destptr mem) for { if auxIntToInt64(v.AuxInt) != 4 { break } destptr := v_0 mem := v_1 v.reset(Op386MOVLstoreconst) v.AuxInt = valAndOffToAuxInt(0) v.AddArg2(destptr, mem) return true } // match: (Zero [3] destptr mem) // result: (MOVBstoreconst [makeValAndOff(0,2)] destptr (MOVWstoreconst [makeValAndOff(0,0)] destptr mem)) for { if auxIntToInt64(v.AuxInt) != 3 { break } destptr := v_0 mem := v_1 v.reset(Op386MOVBstoreconst) v.AuxInt = valAndOffToAuxInt(makeValAndOff(0, 2)) v0 := b.NewValue0(v.Pos, Op386MOVWstoreconst, types.TypeMem) v0.AuxInt = valAndOffToAuxInt(makeValAndOff(0, 0)) v0.AddArg2(destptr, mem) v.AddArg2(destptr, v0) return true } // match: (Zero [5] destptr mem) // result: (MOVBstoreconst [makeValAndOff(0,4)] destptr (MOVLstoreconst [makeValAndOff(0,0)] destptr mem)) for { if auxIntToInt64(v.AuxInt) != 5 { break } destptr := v_0 mem := v_1 v.reset(Op386MOVBstoreconst) v.AuxInt = valAndOffToAuxInt(makeValAndOff(0, 4)) v0 := b.NewValue0(v.Pos, Op386MOVLstoreconst, types.TypeMem) v0.AuxInt = valAndOffToAuxInt(makeValAndOff(0, 0)) v0.AddArg2(destptr, mem) v.AddArg2(destptr, v0) return true } // match: (Zero [6] destptr mem) // result: (MOVWstoreconst [makeValAndOff(0,4)] destptr (MOVLstoreconst [makeValAndOff(0,0)] destptr mem)) for { if auxIntToInt64(v.AuxInt) != 6 { break } destptr := v_0 mem := v_1 v.reset(Op386MOVWstoreconst) v.AuxInt = valAndOffToAuxInt(makeValAndOff(0, 4)) v0 := b.NewValue0(v.Pos, Op386MOVLstoreconst, types.TypeMem) v0.AuxInt = valAndOffToAuxInt(makeValAndOff(0, 0)) v0.AddArg2(destptr, mem) v.AddArg2(destptr, v0) return true } // match: (Zero [7] destptr mem) // result: (MOVLstoreconst [makeValAndOff(0,3)] destptr (MOVLstoreconst [makeValAndOff(0,0)] destptr mem)) for { if auxIntToInt64(v.AuxInt) != 7 { break } destptr := v_0 mem := v_1 v.reset(Op386MOVLstoreconst) v.AuxInt = valAndOffToAuxInt(makeValAndOff(0, 3)) v0 := b.NewValue0(v.Pos, Op386MOVLstoreconst, types.TypeMem) v0.AuxInt = valAndOffToAuxInt(makeValAndOff(0, 0)) v0.AddArg2(destptr, mem) v.AddArg2(destptr, v0) return true } // match: (Zero [s] destptr mem) // cond: s%4 != 0 && s > 4 // result: (Zero [s-s%4] (ADDLconst destptr [int32(s%4)]) (MOVLstoreconst [0] destptr mem)) for { s := auxIntToInt64(v.AuxInt) destptr := v_0 mem := v_1 if !(s%4 != 0 && s > 4) { break } v.reset(OpZero) v.AuxInt = int64ToAuxInt(s - s%4) v0 := b.NewValue0(v.Pos, Op386ADDLconst, typ.UInt32) v0.AuxInt = int32ToAuxInt(int32(s % 4)) v0.AddArg(destptr) v1 := b.NewValue0(v.Pos, Op386MOVLstoreconst, types.TypeMem) v1.AuxInt = valAndOffToAuxInt(0) v1.AddArg2(destptr, mem) v.AddArg2(v0, v1) return true } // match: (Zero [8] destptr mem) // result: (MOVLstoreconst [makeValAndOff(0,4)] destptr (MOVLstoreconst [makeValAndOff(0,0)] destptr mem)) for { if auxIntToInt64(v.AuxInt) != 8 { break } destptr := v_0 mem := v_1 v.reset(Op386MOVLstoreconst) v.AuxInt = valAndOffToAuxInt(makeValAndOff(0, 4)) v0 := b.NewValue0(v.Pos, Op386MOVLstoreconst, types.TypeMem) v0.AuxInt = valAndOffToAuxInt(makeValAndOff(0, 0)) v0.AddArg2(destptr, mem) v.AddArg2(destptr, v0) return true } // match: (Zero [12] destptr mem) // result: (MOVLstoreconst [makeValAndOff(0,8)] destptr (MOVLstoreconst [makeValAndOff(0,4)] destptr (MOVLstoreconst [makeValAndOff(0,0)] destptr mem))) for { if auxIntToInt64(v.AuxInt) != 12 { break } destptr := v_0 mem := v_1 v.reset(Op386MOVLstoreconst) v.AuxInt = valAndOffToAuxInt(makeValAndOff(0, 8)) v0 := b.NewValue0(v.Pos, Op386MOVLstoreconst, types.TypeMem) v0.AuxInt = valAndOffToAuxInt(makeValAndOff(0, 4)) v1 := b.NewValue0(v.Pos, Op386MOVLstoreconst, types.TypeMem) v1.AuxInt = valAndOffToAuxInt(makeValAndOff(0, 0)) v1.AddArg2(destptr, mem) v0.AddArg2(destptr, v1) v.AddArg2(destptr, v0) return true } // match: (Zero [16] destptr mem) // result: (MOVLstoreconst [makeValAndOff(0,12)] destptr (MOVLstoreconst [makeValAndOff(0,8)] destptr (MOVLstoreconst [makeValAndOff(0,4)] destptr (MOVLstoreconst [makeValAndOff(0,0)] destptr mem)))) for { if auxIntToInt64(v.AuxInt) != 16 { break } destptr := v_0 mem := v_1 v.reset(Op386MOVLstoreconst) v.AuxInt = valAndOffToAuxInt(makeValAndOff(0, 12)) v0 := b.NewValue0(v.Pos, Op386MOVLstoreconst, types.TypeMem) v0.AuxInt = valAndOffToAuxInt(makeValAndOff(0, 8)) v1 := b.NewValue0(v.Pos, Op386MOVLstoreconst, types.TypeMem) v1.AuxInt = valAndOffToAuxInt(makeValAndOff(0, 4)) v2 := b.NewValue0(v.Pos, Op386MOVLstoreconst, types.TypeMem) v2.AuxInt = valAndOffToAuxInt(makeValAndOff(0, 0)) v2.AddArg2(destptr, mem) v1.AddArg2(destptr, v2) v0.AddArg2(destptr, v1) v.AddArg2(destptr, v0) return true } // match: (Zero [s] destptr mem) // cond: s > 16 && s <= 4*128 && s%4 == 0 && !config.noDuffDevice // result: (DUFFZERO [1*(128-s/4)] destptr (MOVLconst [0]) mem) for { s := auxIntToInt64(v.AuxInt) destptr := v_0 mem := v_1 if !(s > 16 && s <= 4*128 && s%4 == 0 && !config.noDuffDevice) { break } v.reset(Op386DUFFZERO) v.AuxInt = int64ToAuxInt(1 * (128 - s/4)) v0 := b.NewValue0(v.Pos, Op386MOVLconst, typ.UInt32) v0.AuxInt = int32ToAuxInt(0) v.AddArg3(destptr, v0, mem) return true } // match: (Zero [s] destptr mem) // cond: (s > 4*128 || (config.noDuffDevice && s > 16)) && s%4 == 0 // result: (REPSTOSL destptr (MOVLconst [int32(s/4)]) (MOVLconst [0]) mem) for { s := auxIntToInt64(v.AuxInt) destptr := v_0 mem := v_1 if !((s > 4*128 || (config.noDuffDevice && s > 16)) && s%4 == 0) { break } v.reset(Op386REPSTOSL) v0 := b.NewValue0(v.Pos, Op386MOVLconst, typ.UInt32) v0.AuxInt = int32ToAuxInt(int32(s / 4)) v1 := b.NewValue0(v.Pos, Op386MOVLconst, typ.UInt32) v1.AuxInt = int32ToAuxInt(0) v.AddArg4(destptr, v0, v1, mem) return true } return false } func rewriteValue386_OpZeromask(v *Value) bool { v_0 := v.Args[0] b := v.Block // match: (Zeromask x) // result: (XORLconst [-1] (SBBLcarrymask (CMPLconst x [1]))) for { t := v.Type x := v_0 v.reset(Op386XORLconst) v.AuxInt = int32ToAuxInt(-1) v0 := b.NewValue0(v.Pos, Op386SBBLcarrymask, t) v1 := b.NewValue0(v.Pos, Op386CMPLconst, types.TypeFlags) v1.AuxInt = int32ToAuxInt(1) v1.AddArg(x) v0.AddArg(v1) v.AddArg(v0) return true } } func rewriteBlock386(b *Block) bool { switch b.Kind { case Block386EQ: // match: (EQ (InvertFlags cmp) yes no) // result: (EQ cmp yes no) for b.Controls[0].Op == Op386InvertFlags { v_0 := b.Controls[0] cmp := v_0.Args[0] b.resetWithControl(Block386EQ, cmp) return true } // match: (EQ (FlagEQ) yes no) // result: (First yes no) for b.Controls[0].Op == Op386FlagEQ { b.Reset(BlockFirst) return true } // match: (EQ (FlagLT_ULT) yes no) // result: (First no yes) for b.Controls[0].Op == Op386FlagLT_ULT { b.Reset(BlockFirst) b.swapSuccessors() return true } // match: (EQ (FlagLT_UGT) yes no) // result: (First no yes) for b.Controls[0].Op == Op386FlagLT_UGT { b.Reset(BlockFirst) b.swapSuccessors() return true } // match: (EQ (FlagGT_ULT) yes no) // result: (First no yes) for b.Controls[0].Op == Op386FlagGT_ULT { b.Reset(BlockFirst) b.swapSuccessors() return true } // match: (EQ (FlagGT_UGT) yes no) // result: (First no yes) for b.Controls[0].Op == Op386FlagGT_UGT { b.Reset(BlockFirst) b.swapSuccessors() return true } case Block386GE: // match: (GE (InvertFlags cmp) yes no) // result: (LE cmp yes no) for b.Controls[0].Op == Op386InvertFlags { v_0 := b.Controls[0] cmp := v_0.Args[0] b.resetWithControl(Block386LE, cmp) return true } // match: (GE (FlagEQ) yes no) // result: (First yes no) for b.Controls[0].Op == Op386FlagEQ { b.Reset(BlockFirst) return true } // match: (GE (FlagLT_ULT) yes no) // result: (First no yes) for b.Controls[0].Op == Op386FlagLT_ULT { b.Reset(BlockFirst) b.swapSuccessors() return true } // match: (GE (FlagLT_UGT) yes no) // result: (First no yes) for b.Controls[0].Op == Op386FlagLT_UGT { b.Reset(BlockFirst) b.swapSuccessors() return true } // match: (GE (FlagGT_ULT) yes no) // result: (First yes no) for b.Controls[0].Op == Op386FlagGT_ULT { b.Reset(BlockFirst) return true } // match: (GE (FlagGT_UGT) yes no) // result: (First yes no) for b.Controls[0].Op == Op386FlagGT_UGT { b.Reset(BlockFirst) return true } case Block386GT: // match: (GT (InvertFlags cmp) yes no) // result: (LT cmp yes no) for b.Controls[0].Op == Op386InvertFlags { v_0 := b.Controls[0] cmp := v_0.Args[0] b.resetWithControl(Block386LT, cmp) return true } // match: (GT (FlagEQ) yes no) // result: (First no yes) for b.Controls[0].Op == Op386FlagEQ { b.Reset(BlockFirst) b.swapSuccessors() return true } // match: (GT (FlagLT_ULT) yes no) // result: (First no yes) for b.Controls[0].Op == Op386FlagLT_ULT { b.Reset(BlockFirst) b.swapSuccessors() return true } // match: (GT (FlagLT_UGT) yes no) // result: (First no yes) for b.Controls[0].Op == Op386FlagLT_UGT { b.Reset(BlockFirst) b.swapSuccessors() return true } // match: (GT (FlagGT_ULT) yes no) // result: (First yes no) for b.Controls[0].Op == Op386FlagGT_ULT { b.Reset(BlockFirst) return true } // match: (GT (FlagGT_UGT) yes no) // result: (First yes no) for b.Controls[0].Op == Op386FlagGT_UGT { b.Reset(BlockFirst) return true } case BlockIf: // match: (If (SETL cmp) yes no) // result: (LT cmp yes no) for b.Controls[0].Op == Op386SETL { v_0 := b.Controls[0] cmp := v_0.Args[0] b.resetWithControl(Block386LT, cmp) return true } // match: (If (SETLE cmp) yes no) // result: (LE cmp yes no) for b.Controls[0].Op == Op386SETLE { v_0 := b.Controls[0] cmp := v_0.Args[0] b.resetWithControl(Block386LE, cmp) return true } // match: (If (SETG cmp) yes no) // result: (GT cmp yes no) for b.Controls[0].Op == Op386SETG { v_0 := b.Controls[0] cmp := v_0.Args[0] b.resetWithControl(Block386GT, cmp) return true } // match: (If (SETGE cmp) yes no) // result: (GE cmp yes no) for b.Controls[0].Op == Op386SETGE { v_0 := b.Controls[0] cmp := v_0.Args[0] b.resetWithControl(Block386GE, cmp) return true } // match: (If (SETEQ cmp) yes no) // result: (EQ cmp yes no) for b.Controls[0].Op == Op386SETEQ { v_0 := b.Controls[0] cmp := v_0.Args[0] b.resetWithControl(Block386EQ, cmp) return true } // match: (If (SETNE cmp) yes no) // result: (NE cmp yes no) for b.Controls[0].Op == Op386SETNE { v_0 := b.Controls[0] cmp := v_0.Args[0] b.resetWithControl(Block386NE, cmp) return true } // match: (If (SETB cmp) yes no) // result: (ULT cmp yes no) for b.Controls[0].Op == Op386SETB { v_0 := b.Controls[0] cmp := v_0.Args[0] b.resetWithControl(Block386ULT, cmp) return true } // match: (If (SETBE cmp) yes no) // result: (ULE cmp yes no) for b.Controls[0].Op == Op386SETBE { v_0 := b.Controls[0] cmp := v_0.Args[0] b.resetWithControl(Block386ULE, cmp) return true } // match: (If (SETA cmp) yes no) // result: (UGT cmp yes no) for b.Controls[0].Op == Op386SETA { v_0 := b.Controls[0] cmp := v_0.Args[0] b.resetWithControl(Block386UGT, cmp) return true } // match: (If (SETAE cmp) yes no) // result: (UGE cmp yes no) for b.Controls[0].Op == Op386SETAE { v_0 := b.Controls[0] cmp := v_0.Args[0] b.resetWithControl(Block386UGE, cmp) return true } // match: (If (SETO cmp) yes no) // result: (OS cmp yes no) for b.Controls[0].Op == Op386SETO { v_0 := b.Controls[0] cmp := v_0.Args[0] b.resetWithControl(Block386OS, cmp) return true } // match: (If (SETGF cmp) yes no) // result: (UGT cmp yes no) for b.Controls[0].Op == Op386SETGF { v_0 := b.Controls[0] cmp := v_0.Args[0] b.resetWithControl(Block386UGT, cmp) return true } // match: (If (SETGEF cmp) yes no) // result: (UGE cmp yes no) for b.Controls[0].Op == Op386SETGEF { v_0 := b.Controls[0] cmp := v_0.Args[0] b.resetWithControl(Block386UGE, cmp) return true } // match: (If (SETEQF cmp) yes no) // result: (EQF cmp yes no) for b.Controls[0].Op == Op386SETEQF { v_0 := b.Controls[0] cmp := v_0.Args[0] b.resetWithControl(Block386EQF, cmp) return true } // match: (If (SETNEF cmp) yes no) // result: (NEF cmp yes no) for b.Controls[0].Op == Op386SETNEF { v_0 := b.Controls[0] cmp := v_0.Args[0] b.resetWithControl(Block386NEF, cmp) return true } // match: (If cond yes no) // result: (NE (TESTB cond cond) yes no) for { cond := b.Controls[0] v0 := b.NewValue0(cond.Pos, Op386TESTB, types.TypeFlags) v0.AddArg2(cond, cond) b.resetWithControl(Block386NE, v0) return true } case Block386LE: // match: (LE (InvertFlags cmp) yes no) // result: (GE cmp yes no) for b.Controls[0].Op == Op386InvertFlags { v_0 := b.Controls[0] cmp := v_0.Args[0] b.resetWithControl(Block386GE, cmp) return true } // match: (LE (FlagEQ) yes no) // result: (First yes no) for b.Controls[0].Op == Op386FlagEQ { b.Reset(BlockFirst) return true } // match: (LE (FlagLT_ULT) yes no) // result: (First yes no) for b.Controls[0].Op == Op386FlagLT_ULT { b.Reset(BlockFirst) return true } // match: (LE (FlagLT_UGT) yes no) // result: (First yes no) for b.Controls[0].Op == Op386FlagLT_UGT { b.Reset(BlockFirst) return true } // match: (LE (FlagGT_ULT) yes no) // result: (First no yes) for b.Controls[0].Op == Op386FlagGT_ULT { b.Reset(BlockFirst) b.swapSuccessors() return true } // match: (LE (FlagGT_UGT) yes no) // result: (First no yes) for b.Controls[0].Op == Op386FlagGT_UGT { b.Reset(BlockFirst) b.swapSuccessors() return true } case Block386LT: // match: (LT (InvertFlags cmp) yes no) // result: (GT cmp yes no) for b.Controls[0].Op == Op386InvertFlags { v_0 := b.Controls[0] cmp := v_0.Args[0] b.resetWithControl(Block386GT, cmp) return true } // match: (LT (FlagEQ) yes no) // result: (First no yes) for b.Controls[0].Op == Op386FlagEQ { b.Reset(BlockFirst) b.swapSuccessors() return true } // match: (LT (FlagLT_ULT) yes no) // result: (First yes no) for b.Controls[0].Op == Op386FlagLT_ULT { b.Reset(BlockFirst) return true } // match: (LT (FlagLT_UGT) yes no) // result: (First yes no) for b.Controls[0].Op == Op386FlagLT_UGT { b.Reset(BlockFirst) return true } // match: (LT (FlagGT_ULT) yes no) // result: (First no yes) for b.Controls[0].Op == Op386FlagGT_ULT { b.Reset(BlockFirst) b.swapSuccessors() return true } // match: (LT (FlagGT_UGT) yes no) // result: (First no yes) for b.Controls[0].Op == Op386FlagGT_UGT { b.Reset(BlockFirst) b.swapSuccessors() return true } case Block386NE: // match: (NE (TESTB (SETL cmp) (SETL cmp)) yes no) // result: (LT cmp yes no) for b.Controls[0].Op == Op386TESTB { v_0 := b.Controls[0] _ = v_0.Args[1] v_0_0 := v_0.Args[0] if v_0_0.Op != Op386SETL { break } cmp := v_0_0.Args[0] v_0_1 := v_0.Args[1] if v_0_1.Op != Op386SETL || cmp != v_0_1.Args[0] { break } b.resetWithControl(Block386LT, cmp) return true } // match: (NE (TESTB (SETLE cmp) (SETLE cmp)) yes no) // result: (LE cmp yes no) for b.Controls[0].Op == Op386TESTB { v_0 := b.Controls[0] _ = v_0.Args[1] v_0_0 := v_0.Args[0] if v_0_0.Op != Op386SETLE { break } cmp := v_0_0.Args[0] v_0_1 := v_0.Args[1] if v_0_1.Op != Op386SETLE || cmp != v_0_1.Args[0] { break } b.resetWithControl(Block386LE, cmp) return true } // match: (NE (TESTB (SETG cmp) (SETG cmp)) yes no) // result: (GT cmp yes no) for b.Controls[0].Op == Op386TESTB { v_0 := b.Controls[0] _ = v_0.Args[1] v_0_0 := v_0.Args[0] if v_0_0.Op != Op386SETG { break } cmp := v_0_0.Args[0] v_0_1 := v_0.Args[1] if v_0_1.Op != Op386SETG || cmp != v_0_1.Args[0] { break } b.resetWithControl(Block386GT, cmp) return true } // match: (NE (TESTB (SETGE cmp) (SETGE cmp)) yes no) // result: (GE cmp yes no) for b.Controls[0].Op == Op386TESTB { v_0 := b.Controls[0] _ = v_0.Args[1] v_0_0 := v_0.Args[0] if v_0_0.Op != Op386SETGE { break } cmp := v_0_0.Args[0] v_0_1 := v_0.Args[1] if v_0_1.Op != Op386SETGE || cmp != v_0_1.Args[0] { break } b.resetWithControl(Block386GE, cmp) return true } // match: (NE (TESTB (SETEQ cmp) (SETEQ cmp)) yes no) // result: (EQ cmp yes no) for b.Controls[0].Op == Op386TESTB { v_0 := b.Controls[0] _ = v_0.Args[1] v_0_0 := v_0.Args[0] if v_0_0.Op != Op386SETEQ { break } cmp := v_0_0.Args[0] v_0_1 := v_0.Args[1] if v_0_1.Op != Op386SETEQ || cmp != v_0_1.Args[0] { break } b.resetWithControl(Block386EQ, cmp) return true } // match: (NE (TESTB (SETNE cmp) (SETNE cmp)) yes no) // result: (NE cmp yes no) for b.Controls[0].Op == Op386TESTB { v_0 := b.Controls[0] _ = v_0.Args[1] v_0_0 := v_0.Args[0] if v_0_0.Op != Op386SETNE { break } cmp := v_0_0.Args[0] v_0_1 := v_0.Args[1] if v_0_1.Op != Op386SETNE || cmp != v_0_1.Args[0] { break } b.resetWithControl(Block386NE, cmp) return true } // match: (NE (TESTB (SETB cmp) (SETB cmp)) yes no) // result: (ULT cmp yes no) for b.Controls[0].Op == Op386TESTB { v_0 := b.Controls[0] _ = v_0.Args[1] v_0_0 := v_0.Args[0] if v_0_0.Op != Op386SETB { break } cmp := v_0_0.Args[0] v_0_1 := v_0.Args[1] if v_0_1.Op != Op386SETB || cmp != v_0_1.Args[0] { break } b.resetWithControl(Block386ULT, cmp) return true } // match: (NE (TESTB (SETBE cmp) (SETBE cmp)) yes no) // result: (ULE cmp yes no) for b.Controls[0].Op == Op386TESTB { v_0 := b.Controls[0] _ = v_0.Args[1] v_0_0 := v_0.Args[0] if v_0_0.Op != Op386SETBE { break } cmp := v_0_0.Args[0] v_0_1 := v_0.Args[1] if v_0_1.Op != Op386SETBE || cmp != v_0_1.Args[0] { break } b.resetWithControl(Block386ULE, cmp) return true } // match: (NE (TESTB (SETA cmp) (SETA cmp)) yes no) // result: (UGT cmp yes no) for b.Controls[0].Op == Op386TESTB { v_0 := b.Controls[0] _ = v_0.Args[1] v_0_0 := v_0.Args[0] if v_0_0.Op != Op386SETA { break } cmp := v_0_0.Args[0] v_0_1 := v_0.Args[1] if v_0_1.Op != Op386SETA || cmp != v_0_1.Args[0] { break } b.resetWithControl(Block386UGT, cmp) return true } // match: (NE (TESTB (SETAE cmp) (SETAE cmp)) yes no) // result: (UGE cmp yes no) for b.Controls[0].Op == Op386TESTB { v_0 := b.Controls[0] _ = v_0.Args[1] v_0_0 := v_0.Args[0] if v_0_0.Op != Op386SETAE { break } cmp := v_0_0.Args[0] v_0_1 := v_0.Args[1] if v_0_1.Op != Op386SETAE || cmp != v_0_1.Args[0] { break } b.resetWithControl(Block386UGE, cmp) return true } // match: (NE (TESTB (SETO cmp) (SETO cmp)) yes no) // result: (OS cmp yes no) for b.Controls[0].Op == Op386TESTB { v_0 := b.Controls[0] _ = v_0.Args[1] v_0_0 := v_0.Args[0] if v_0_0.Op != Op386SETO { break } cmp := v_0_0.Args[0] v_0_1 := v_0.Args[1] if v_0_1.Op != Op386SETO || cmp != v_0_1.Args[0] { break } b.resetWithControl(Block386OS, cmp) return true } // match: (NE (TESTB (SETGF cmp) (SETGF cmp)) yes no) // result: (UGT cmp yes no) for b.Controls[0].Op == Op386TESTB { v_0 := b.Controls[0] _ = v_0.Args[1] v_0_0 := v_0.Args[0] if v_0_0.Op != Op386SETGF { break } cmp := v_0_0.Args[0] v_0_1 := v_0.Args[1] if v_0_1.Op != Op386SETGF || cmp != v_0_1.Args[0] { break } b.resetWithControl(Block386UGT, cmp) return true } // match: (NE (TESTB (SETGEF cmp) (SETGEF cmp)) yes no) // result: (UGE cmp yes no) for b.Controls[0].Op == Op386TESTB { v_0 := b.Controls[0] _ = v_0.Args[1] v_0_0 := v_0.Args[0] if v_0_0.Op != Op386SETGEF { break } cmp := v_0_0.Args[0] v_0_1 := v_0.Args[1] if v_0_1.Op != Op386SETGEF || cmp != v_0_1.Args[0] { break } b.resetWithControl(Block386UGE, cmp) return true } // match: (NE (TESTB (SETEQF cmp) (SETEQF cmp)) yes no) // result: (EQF cmp yes no) for b.Controls[0].Op == Op386TESTB { v_0 := b.Controls[0] _ = v_0.Args[1] v_0_0 := v_0.Args[0] if v_0_0.Op != Op386SETEQF { break } cmp := v_0_0.Args[0] v_0_1 := v_0.Args[1] if v_0_1.Op != Op386SETEQF || cmp != v_0_1.Args[0] { break } b.resetWithControl(Block386EQF, cmp) return true } // match: (NE (TESTB (SETNEF cmp) (SETNEF cmp)) yes no) // result: (NEF cmp yes no) for b.Controls[0].Op == Op386TESTB { v_0 := b.Controls[0] _ = v_0.Args[1] v_0_0 := v_0.Args[0] if v_0_0.Op != Op386SETNEF { break } cmp := v_0_0.Args[0] v_0_1 := v_0.Args[1] if v_0_1.Op != Op386SETNEF || cmp != v_0_1.Args[0] { break } b.resetWithControl(Block386NEF, cmp) return true } // match: (NE (InvertFlags cmp) yes no) // result: (NE cmp yes no) for b.Controls[0].Op == Op386InvertFlags { v_0 := b.Controls[0] cmp := v_0.Args[0] b.resetWithControl(Block386NE, cmp) return true } // match: (NE (FlagEQ) yes no) // result: (First no yes) for b.Controls[0].Op == Op386FlagEQ { b.Reset(BlockFirst) b.swapSuccessors() return true } // match: (NE (FlagLT_ULT) yes no) // result: (First yes no) for b.Controls[0].Op == Op386FlagLT_ULT { b.Reset(BlockFirst) return true } // match: (NE (FlagLT_UGT) yes no) // result: (First yes no) for b.Controls[0].Op == Op386FlagLT_UGT { b.Reset(BlockFirst) return true } // match: (NE (FlagGT_ULT) yes no) // result: (First yes no) for b.Controls[0].Op == Op386FlagGT_ULT { b.Reset(BlockFirst) return true } // match: (NE (FlagGT_UGT) yes no) // result: (First yes no) for b.Controls[0].Op == Op386FlagGT_UGT { b.Reset(BlockFirst) return true } case Block386UGE: // match: (UGE (InvertFlags cmp) yes no) // result: (ULE cmp yes no) for b.Controls[0].Op == Op386InvertFlags { v_0 := b.Controls[0] cmp := v_0.Args[0] b.resetWithControl(Block386ULE, cmp) return true } // match: (UGE (FlagEQ) yes no) // result: (First yes no) for b.Controls[0].Op == Op386FlagEQ { b.Reset(BlockFirst) return true } // match: (UGE (FlagLT_ULT) yes no) // result: (First no yes) for b.Controls[0].Op == Op386FlagLT_ULT { b.Reset(BlockFirst) b.swapSuccessors() return true } // match: (UGE (FlagLT_UGT) yes no) // result: (First yes no) for b.Controls[0].Op == Op386FlagLT_UGT { b.Reset(BlockFirst) return true } // match: (UGE (FlagGT_ULT) yes no) // result: (First no yes) for b.Controls[0].Op == Op386FlagGT_ULT { b.Reset(BlockFirst) b.swapSuccessors() return true } // match: (UGE (FlagGT_UGT) yes no) // result: (First yes no) for b.Controls[0].Op == Op386FlagGT_UGT { b.Reset(BlockFirst) return true } case Block386UGT: // match: (UGT (InvertFlags cmp) yes no) // result: (ULT cmp yes no) for b.Controls[0].Op == Op386InvertFlags { v_0 := b.Controls[0] cmp := v_0.Args[0] b.resetWithControl(Block386ULT, cmp) return true } // match: (UGT (FlagEQ) yes no) // result: (First no yes) for b.Controls[0].Op == Op386FlagEQ { b.Reset(BlockFirst) b.swapSuccessors() return true } // match: (UGT (FlagLT_ULT) yes no) // result: (First no yes) for b.Controls[0].Op == Op386FlagLT_ULT { b.Reset(BlockFirst) b.swapSuccessors() return true } // match: (UGT (FlagLT_UGT) yes no) // result: (First yes no) for b.Controls[0].Op == Op386FlagLT_UGT { b.Reset(BlockFirst) return true } // match: (UGT (FlagGT_ULT) yes no) // result: (First no yes) for b.Controls[0].Op == Op386FlagGT_ULT { b.Reset(BlockFirst) b.swapSuccessors() return true } // match: (UGT (FlagGT_UGT) yes no) // result: (First yes no) for b.Controls[0].Op == Op386FlagGT_UGT { b.Reset(BlockFirst) return true } case Block386ULE: // match: (ULE (InvertFlags cmp) yes no) // result: (UGE cmp yes no) for b.Controls[0].Op == Op386InvertFlags { v_0 := b.Controls[0] cmp := v_0.Args[0] b.resetWithControl(Block386UGE, cmp) return true } // match: (ULE (FlagEQ) yes no) // result: (First yes no) for b.Controls[0].Op == Op386FlagEQ { b.Reset(BlockFirst) return true } // match: (ULE (FlagLT_ULT) yes no) // result: (First yes no) for b.Controls[0].Op == Op386FlagLT_ULT { b.Reset(BlockFirst) return true } // match: (ULE (FlagLT_UGT) yes no) // result: (First no yes) for b.Controls[0].Op == Op386FlagLT_UGT { b.Reset(BlockFirst) b.swapSuccessors() return true } // match: (ULE (FlagGT_ULT) yes no) // result: (First yes no) for b.Controls[0].Op == Op386FlagGT_ULT { b.Reset(BlockFirst) return true } // match: (ULE (FlagGT_UGT) yes no) // result: (First no yes) for b.Controls[0].Op == Op386FlagGT_UGT { b.Reset(BlockFirst) b.swapSuccessors() return true } case Block386ULT: // match: (ULT (InvertFlags cmp) yes no) // result: (UGT cmp yes no) for b.Controls[0].Op == Op386InvertFlags { v_0 := b.Controls[0] cmp := v_0.Args[0] b.resetWithControl(Block386UGT, cmp) return true } // match: (ULT (FlagEQ) yes no) // result: (First no yes) for b.Controls[0].Op == Op386FlagEQ { b.Reset(BlockFirst) b.swapSuccessors() return true } // match: (ULT (FlagLT_ULT) yes no) // result: (First yes no) for b.Controls[0].Op == Op386FlagLT_ULT { b.Reset(BlockFirst) return true } // match: (ULT (FlagLT_UGT) yes no) // result: (First no yes) for b.Controls[0].Op == Op386FlagLT_UGT { b.Reset(BlockFirst) b.swapSuccessors() return true } // match: (ULT (FlagGT_ULT) yes no) // result: (First yes no) for b.Controls[0].Op == Op386FlagGT_ULT { b.Reset(BlockFirst) return true } // match: (ULT (FlagGT_UGT) yes no) // result: (First no yes) for b.Controls[0].Op == Op386FlagGT_UGT { b.Reset(BlockFirst) b.swapSuccessors() return true } } return false }