// Copyright 2015 The Go Authors. All rights reserved. // Use of this source code is governed by a BSD-style // license that can be found in the LICENSE file. package ssa // tighten moves Values closer to the Blocks in which they are used. // This can reduce the amount of register spilling required, // if it doesn't also create more live values. // A Value can be moved to any block that // dominates all blocks in which it is used. func tighten(f *Func) { canMove := f.Cache.allocBoolSlice(f.NumValues()) defer f.Cache.freeBoolSlice(canMove) for _, b := range f.Blocks { for _, v := range b.Values { if v.Op.isLoweredGetClosurePtr() { // Must stay in the entry block. continue } switch v.Op { case OpPhi, OpArg, OpArgIntReg, OpArgFloatReg, OpSelect0, OpSelect1, OpSelectN: // Phis need to stay in their block. // Arg must stay in the entry block. // Tuple selectors must stay with the tuple generator. // SelectN is typically, ultimately, a register. continue } if v.MemoryArg() != nil { // We can't move values which have a memory arg - it might // make two memory values live across a block boundary. continue } // Count arguments which will need a register. narg := 0 for _, a := range v.Args { if !a.rematerializeable() { narg++ } } if narg >= 2 && !v.Type.IsFlags() { // Don't move values with more than one input, as that may // increase register pressure. // We make an exception for flags, as we want flag generators // moved next to uses (because we only have 1 flag register). continue } canMove[v.ID] = true } } // Build data structure for fast least-common-ancestor queries. lca := makeLCArange(f) // For each moveable value, record the block that dominates all uses found so far. target := f.Cache.allocBlockSlice(f.NumValues()) defer f.Cache.freeBlockSlice(target) // Grab loop information. // We use this to make sure we don't tighten a value into a (deeper) loop. idom := f.Idom() loops := f.loopnest() loops.calculateDepths() changed := true for changed { changed = false // Reset target for i := range target { target[i] = nil } // Compute target locations (for moveable values only). // target location = the least common ancestor of all uses in the dominator tree. for _, b := range f.Blocks { for _, v := range b.Values { for i, a := range v.Args { if !canMove[a.ID] { continue } use := b if v.Op == OpPhi { use = b.Preds[i].b } if target[a.ID] == nil { target[a.ID] = use } else { target[a.ID] = lca.find(target[a.ID], use) } } } for _, c := range b.ControlValues() { if !canMove[c.ID] { continue } if target[c.ID] == nil { target[c.ID] = b } else { target[c.ID] = lca.find(target[c.ID], b) } } } // If the target location is inside a loop, // move the target location up to just before the loop head. for _, b := range f.Blocks { origloop := loops.b2l[b.ID] for _, v := range b.Values { t := target[v.ID] if t == nil { continue } targetloop := loops.b2l[t.ID] for targetloop != nil && (origloop == nil || targetloop.depth > origloop.depth) { t = idom[targetloop.header.ID] target[v.ID] = t targetloop = loops.b2l[t.ID] } } } // Move values to target locations. for _, b := range f.Blocks { for i := 0; i < len(b.Values); i++ { v := b.Values[i] t := target[v.ID] if t == nil || t == b { // v is not moveable, or is already in correct place. continue } // Move v to the block which dominates its uses. t.Values = append(t.Values, v) v.Block = t last := len(b.Values) - 1 b.Values[i] = b.Values[last] b.Values[last] = nil b.Values = b.Values[:last] changed = true i-- } } } } // phiTighten moves constants closer to phi users. // This pass avoids having lots of constants live for lots of the program. // See issue 16407. func phiTighten(f *Func) { for _, b := range f.Blocks { for _, v := range b.Values { if v.Op != OpPhi { continue } for i, a := range v.Args { if !a.rematerializeable() { continue // not a constant we can move around } if a.Block == b.Preds[i].b { continue // already in the right place } // Make a copy of a, put in predecessor block. v.SetArg(i, a.copyInto(b.Preds[i].b)) } } } }