// Copyright 2009 The Go Authors. All rights reserved. // Use of this source code is governed by a BSD-style // license that can be found in the LICENSE file. package walk import ( "go/constant" "go/token" "sort" "cmd/compile/internal/base" "cmd/compile/internal/ir" "cmd/compile/internal/ssagen" "cmd/compile/internal/typecheck" "cmd/compile/internal/types" "cmd/internal/src" ) // walkSwitch walks a switch statement. func walkSwitch(sw *ir.SwitchStmt) { // Guard against double walk, see #25776. if sw.Walked() { return // Was fatal, but eliminating every possible source of double-walking is hard } sw.SetWalked(true) if sw.Tag != nil && sw.Tag.Op() == ir.OTYPESW { walkSwitchType(sw) } else { walkSwitchExpr(sw) } } // walkSwitchExpr generates an AST implementing sw. sw is an // expression switch. func walkSwitchExpr(sw *ir.SwitchStmt) { lno := ir.SetPos(sw) cond := sw.Tag sw.Tag = nil // convert switch {...} to switch true {...} if cond == nil { cond = ir.NewBool(true) cond = typecheck.Expr(cond) cond = typecheck.DefaultLit(cond, nil) } // Given "switch string(byteslice)", // with all cases being side-effect free, // use a zero-cost alias of the byte slice. // Do this before calling walkExpr on cond, // because walkExpr will lower the string // conversion into a runtime call. // See issue 24937 for more discussion. if cond.Op() == ir.OBYTES2STR && allCaseExprsAreSideEffectFree(sw) { cond := cond.(*ir.ConvExpr) cond.SetOp(ir.OBYTES2STRTMP) } cond = walkExpr(cond, sw.PtrInit()) if cond.Op() != ir.OLITERAL && cond.Op() != ir.ONIL { cond = copyExpr(cond, cond.Type(), &sw.Compiled) } base.Pos = lno s := exprSwitch{ pos: lno, exprname: cond, } var defaultGoto ir.Node var body ir.Nodes for _, ncase := range sw.Cases { label := typecheck.AutoLabel(".s") jmp := ir.NewBranchStmt(ncase.Pos(), ir.OGOTO, label) // Process case dispatch. if len(ncase.List) == 0 { if defaultGoto != nil { base.Fatalf("duplicate default case not detected during typechecking") } defaultGoto = jmp } for i, n1 := range ncase.List { var rtype ir.Node if i < len(ncase.RTypes) { rtype = ncase.RTypes[i] } s.Add(ncase.Pos(), n1, rtype, jmp) } // Process body. body.Append(ir.NewLabelStmt(ncase.Pos(), label)) body.Append(ncase.Body...) if fall, pos := endsInFallthrough(ncase.Body); !fall { br := ir.NewBranchStmt(base.Pos, ir.OBREAK, nil) br.SetPos(pos) body.Append(br) } } sw.Cases = nil if defaultGoto == nil { br := ir.NewBranchStmt(base.Pos, ir.OBREAK, nil) br.SetPos(br.Pos().WithNotStmt()) defaultGoto = br } s.Emit(&sw.Compiled) sw.Compiled.Append(defaultGoto) sw.Compiled.Append(body.Take()...) walkStmtList(sw.Compiled) } // An exprSwitch walks an expression switch. type exprSwitch struct { pos src.XPos exprname ir.Node // value being switched on done ir.Nodes clauses []exprClause } type exprClause struct { pos src.XPos lo, hi ir.Node rtype ir.Node // *runtime._type for OEQ node jmp ir.Node } func (s *exprSwitch) Add(pos src.XPos, expr, rtype, jmp ir.Node) { c := exprClause{pos: pos, lo: expr, hi: expr, rtype: rtype, jmp: jmp} if types.IsOrdered[s.exprname.Type().Kind()] && expr.Op() == ir.OLITERAL { s.clauses = append(s.clauses, c) return } s.flush() s.clauses = append(s.clauses, c) s.flush() } func (s *exprSwitch) Emit(out *ir.Nodes) { s.flush() out.Append(s.done.Take()...) } func (s *exprSwitch) flush() { cc := s.clauses s.clauses = nil if len(cc) == 0 { return } // Caution: If len(cc) == 1, then cc[0] might not an OLITERAL. // The code below is structured to implicitly handle this case // (e.g., sort.Slice doesn't need to invoke the less function // when there's only a single slice element). if s.exprname.Type().IsString() && len(cc) >= 2 { // Sort strings by length and then by value. It is // much cheaper to compare lengths than values, and // all we need here is consistency. We respect this // sorting below. sort.Slice(cc, func(i, j int) bool { si := ir.StringVal(cc[i].lo) sj := ir.StringVal(cc[j].lo) if len(si) != len(sj) { return len(si) < len(sj) } return si < sj }) // runLen returns the string length associated with a // particular run of exprClauses. runLen := func(run []exprClause) int64 { return int64(len(ir.StringVal(run[0].lo))) } // Collapse runs of consecutive strings with the same length. var runs [][]exprClause start := 0 for i := 1; i < len(cc); i++ { if runLen(cc[start:]) != runLen(cc[i:]) { runs = append(runs, cc[start:i]) start = i } } runs = append(runs, cc[start:]) // We have strings of more than one length. Generate an // outer switch which switches on the length of the string // and an inner switch in each case which resolves all the // strings of the same length. The code looks something like this: // goto outerLabel // len5: // ... search among length 5 strings ... // goto endLabel // len8: // ... search among length 8 strings ... // goto endLabel // ... other lengths ... // outerLabel: // switch len(s) { // case 5: goto len5 // case 8: goto len8 // ... other lengths ... // } // endLabel: outerLabel := typecheck.AutoLabel(".s") endLabel := typecheck.AutoLabel(".s") // Jump around all the individual switches for each length. s.done.Append(ir.NewBranchStmt(s.pos, ir.OGOTO, outerLabel)) var outer exprSwitch outer.exprname = ir.NewUnaryExpr(s.pos, ir.OLEN, s.exprname) outer.exprname.SetType(types.Types[types.TINT]) for _, run := range runs { // Target label to jump to when we match this length. label := typecheck.AutoLabel(".s") // Search within this run of same-length strings. pos := run[0].pos s.done.Append(ir.NewLabelStmt(pos, label)) stringSearch(s.exprname, run, &s.done) s.done.Append(ir.NewBranchStmt(pos, ir.OGOTO, endLabel)) // Add length case to outer switch. cas := ir.NewBasicLit(pos, constant.MakeInt64(runLen(run))) jmp := ir.NewBranchStmt(pos, ir.OGOTO, label) outer.Add(pos, cas, nil, jmp) } s.done.Append(ir.NewLabelStmt(s.pos, outerLabel)) outer.Emit(&s.done) s.done.Append(ir.NewLabelStmt(s.pos, endLabel)) return } sort.Slice(cc, func(i, j int) bool { return constant.Compare(cc[i].lo.Val(), token.LSS, cc[j].lo.Val()) }) // Merge consecutive integer cases. if s.exprname.Type().IsInteger() { consecutive := func(last, next constant.Value) bool { delta := constant.BinaryOp(next, token.SUB, last) return constant.Compare(delta, token.EQL, constant.MakeInt64(1)) } merged := cc[:1] for _, c := range cc[1:] { last := &merged[len(merged)-1] if last.jmp == c.jmp && consecutive(last.hi.Val(), c.lo.Val()) { last.hi = c.lo } else { merged = append(merged, c) } } cc = merged } s.search(cc, &s.done) } func (s *exprSwitch) search(cc []exprClause, out *ir.Nodes) { if s.tryJumpTable(cc, out) { return } binarySearch(len(cc), out, func(i int) ir.Node { return ir.NewBinaryExpr(base.Pos, ir.OLE, s.exprname, cc[i-1].hi) }, func(i int, nif *ir.IfStmt) { c := &cc[i] nif.Cond = c.test(s.exprname) nif.Body = []ir.Node{c.jmp} }, ) } // Try to implement the clauses with a jump table. Returns true if successful. func (s *exprSwitch) tryJumpTable(cc []exprClause, out *ir.Nodes) bool { const go119UseJumpTables = true const minCases = 8 // have at least minCases cases in the switch const minDensity = 4 // use at least 1 out of every minDensity entries if !go119UseJumpTables || base.Flag.N != 0 || !ssagen.Arch.LinkArch.CanJumpTable || base.Ctxt.Retpoline { return false } if len(cc) < minCases { return false // not enough cases for it to be worth it } if cc[0].lo.Val().Kind() != constant.Int { return false // e.g. float } if s.exprname.Type().Size() > int64(types.PtrSize) { return false // 64-bit switches on 32-bit archs } min := cc[0].lo.Val() max := cc[len(cc)-1].hi.Val() width := constant.BinaryOp(constant.BinaryOp(max, token.SUB, min), token.ADD, constant.MakeInt64(1)) limit := constant.MakeInt64(int64(len(cc)) * minDensity) if constant.Compare(width, token.GTR, limit) { // We disable jump tables if we use less than a minimum fraction of the entries. // i.e. for switch x {case 0: case 1000: case 2000:} we don't want to use a jump table. return false } jt := ir.NewJumpTableStmt(base.Pos, s.exprname) for _, c := range cc { jmp := c.jmp.(*ir.BranchStmt) if jmp.Op() != ir.OGOTO || jmp.Label == nil { panic("bad switch case body") } for i := c.lo.Val(); constant.Compare(i, token.LEQ, c.hi.Val()); i = constant.BinaryOp(i, token.ADD, constant.MakeInt64(1)) { jt.Cases = append(jt.Cases, i) jt.Targets = append(jt.Targets, jmp.Label) } } out.Append(jt) return true } func (c *exprClause) test(exprname ir.Node) ir.Node { // Integer range. if c.hi != c.lo { low := ir.NewBinaryExpr(c.pos, ir.OGE, exprname, c.lo) high := ir.NewBinaryExpr(c.pos, ir.OLE, exprname, c.hi) return ir.NewLogicalExpr(c.pos, ir.OANDAND, low, high) } // Optimize "switch true { ...}" and "switch false { ... }". if ir.IsConst(exprname, constant.Bool) && !c.lo.Type().IsInterface() { if ir.BoolVal(exprname) { return c.lo } else { return ir.NewUnaryExpr(c.pos, ir.ONOT, c.lo) } } n := ir.NewBinaryExpr(c.pos, ir.OEQ, exprname, c.lo) n.RType = c.rtype return n } func allCaseExprsAreSideEffectFree(sw *ir.SwitchStmt) bool { // In theory, we could be more aggressive, allowing any // side-effect-free expressions in cases, but it's a bit // tricky because some of that information is unavailable due // to the introduction of temporaries during order. // Restricting to constants is simple and probably powerful // enough. for _, ncase := range sw.Cases { for _, v := range ncase.List { if v.Op() != ir.OLITERAL { return false } } } return true } // endsInFallthrough reports whether stmts ends with a "fallthrough" statement. func endsInFallthrough(stmts []ir.Node) (bool, src.XPos) { if len(stmts) == 0 { return false, src.NoXPos } i := len(stmts) - 1 return stmts[i].Op() == ir.OFALL, stmts[i].Pos() } // walkSwitchType generates an AST that implements sw, where sw is a // type switch. func walkSwitchType(sw *ir.SwitchStmt) { var s typeSwitch s.facename = sw.Tag.(*ir.TypeSwitchGuard).X sw.Tag = nil s.facename = walkExpr(s.facename, sw.PtrInit()) s.facename = copyExpr(s.facename, s.facename.Type(), &sw.Compiled) s.okname = typecheck.Temp(types.Types[types.TBOOL]) // Get interface descriptor word. // For empty interfaces this will be the type. // For non-empty interfaces this will be the itab. itab := ir.NewUnaryExpr(base.Pos, ir.OITAB, s.facename) // For empty interfaces, do: // if e._type == nil { // do nil case if it exists, otherwise default // } // h := e._type.hash // Use a similar strategy for non-empty interfaces. ifNil := ir.NewIfStmt(base.Pos, nil, nil, nil) ifNil.Cond = ir.NewBinaryExpr(base.Pos, ir.OEQ, itab, typecheck.NodNil()) base.Pos = base.Pos.WithNotStmt() // disable statement marks after the first check. ifNil.Cond = typecheck.Expr(ifNil.Cond) ifNil.Cond = typecheck.DefaultLit(ifNil.Cond, nil) // ifNil.Nbody assigned at end. sw.Compiled.Append(ifNil) // Load hash from type or itab. dotHash := typeHashFieldOf(base.Pos, itab) s.hashname = copyExpr(dotHash, dotHash.Type(), &sw.Compiled) br := ir.NewBranchStmt(base.Pos, ir.OBREAK, nil) var defaultGoto, nilGoto ir.Node var body ir.Nodes for _, ncase := range sw.Cases { caseVar := ncase.Var // For single-type cases with an interface type, // we initialize the case variable as part of the type assertion. // In other cases, we initialize it in the body. var singleType *types.Type if len(ncase.List) == 1 && ncase.List[0].Op() == ir.OTYPE { singleType = ncase.List[0].Type() } caseVarInitialized := false label := typecheck.AutoLabel(".s") jmp := ir.NewBranchStmt(ncase.Pos(), ir.OGOTO, label) if len(ncase.List) == 0 { // default: if defaultGoto != nil { base.Fatalf("duplicate default case not detected during typechecking") } defaultGoto = jmp } for _, n1 := range ncase.List { if ir.IsNil(n1) { // case nil: if nilGoto != nil { base.Fatalf("duplicate nil case not detected during typechecking") } nilGoto = jmp continue } if singleType != nil && singleType.IsInterface() { s.Add(ncase.Pos(), n1, caseVar, jmp) caseVarInitialized = true } else { s.Add(ncase.Pos(), n1, nil, jmp) } } body.Append(ir.NewLabelStmt(ncase.Pos(), label)) if caseVar != nil && !caseVarInitialized { val := s.facename if singleType != nil { // We have a single concrete type. Extract the data. if singleType.IsInterface() { base.Fatalf("singleType interface should have been handled in Add") } val = ifaceData(ncase.Pos(), s.facename, singleType) } if len(ncase.List) == 1 && ncase.List[0].Op() == ir.ODYNAMICTYPE { dt := ncase.List[0].(*ir.DynamicType) x := ir.NewDynamicTypeAssertExpr(ncase.Pos(), ir.ODYNAMICDOTTYPE, val, dt.RType) x.ITab = dt.ITab x.SetType(caseVar.Type()) x.SetTypecheck(1) val = x } l := []ir.Node{ ir.NewDecl(ncase.Pos(), ir.ODCL, caseVar), ir.NewAssignStmt(ncase.Pos(), caseVar, val), } typecheck.Stmts(l) body.Append(l...) } body.Append(ncase.Body...) body.Append(br) } sw.Cases = nil if defaultGoto == nil { defaultGoto = br } if nilGoto == nil { nilGoto = defaultGoto } ifNil.Body = []ir.Node{nilGoto} s.Emit(&sw.Compiled) sw.Compiled.Append(defaultGoto) sw.Compiled.Append(body.Take()...) walkStmtList(sw.Compiled) } // typeHashFieldOf returns an expression to select the type hash field // from an interface's descriptor word (whether a *runtime._type or // *runtime.itab pointer). func typeHashFieldOf(pos src.XPos, itab *ir.UnaryExpr) *ir.SelectorExpr { if itab.Op() != ir.OITAB { base.Fatalf("expected OITAB, got %v", itab.Op()) } var hashField *types.Field if itab.X.Type().IsEmptyInterface() { // runtime._type's hash field if rtypeHashField == nil { rtypeHashField = runtimeField("hash", int64(2*types.PtrSize), types.Types[types.TUINT32]) } hashField = rtypeHashField } else { // runtime.itab's hash field if itabHashField == nil { itabHashField = runtimeField("hash", int64(2*types.PtrSize), types.Types[types.TUINT32]) } hashField = itabHashField } return boundedDotPtr(pos, itab, hashField) } var rtypeHashField, itabHashField *types.Field // A typeSwitch walks a type switch. type typeSwitch struct { // Temporary variables (i.e., ONAMEs) used by type switch dispatch logic: facename ir.Node // value being type-switched on hashname ir.Node // type hash of the value being type-switched on okname ir.Node // boolean used for comma-ok type assertions done ir.Nodes clauses []typeClause } type typeClause struct { hash uint32 body ir.Nodes } func (s *typeSwitch) Add(pos src.XPos, n1 ir.Node, caseVar *ir.Name, jmp ir.Node) { typ := n1.Type() var body ir.Nodes if caseVar != nil { l := []ir.Node{ ir.NewDecl(pos, ir.ODCL, caseVar), ir.NewAssignStmt(pos, caseVar, nil), } typecheck.Stmts(l) body.Append(l...) } else { caseVar = ir.BlankNode.(*ir.Name) } // cv, ok = iface.(type) as := ir.NewAssignListStmt(pos, ir.OAS2, nil, nil) as.Lhs = []ir.Node{caseVar, s.okname} // cv, ok = switch n1.Op() { case ir.OTYPE: // Static type assertion (non-generic) dot := ir.NewTypeAssertExpr(pos, s.facename, typ) // iface.(type) as.Rhs = []ir.Node{dot} case ir.ODYNAMICTYPE: // Dynamic type assertion (generic) dt := n1.(*ir.DynamicType) dot := ir.NewDynamicTypeAssertExpr(pos, ir.ODYNAMICDOTTYPE, s.facename, dt.RType) dot.ITab = dt.ITab dot.SetType(typ) dot.SetTypecheck(1) as.Rhs = []ir.Node{dot} default: base.Fatalf("unhandled type case %s", n1.Op()) } appendWalkStmt(&body, as) // if ok { goto label } nif := ir.NewIfStmt(pos, nil, nil, nil) nif.Cond = s.okname nif.Body = []ir.Node{jmp} body.Append(nif) if n1.Op() == ir.OTYPE && !typ.IsInterface() { // Defer static, noninterface cases so they can be binary searched by hash. s.clauses = append(s.clauses, typeClause{ hash: types.TypeHash(n1.Type()), body: body, }) return } s.flush() s.done.Append(body.Take()...) } func (s *typeSwitch) Emit(out *ir.Nodes) { s.flush() out.Append(s.done.Take()...) } func (s *typeSwitch) flush() { cc := s.clauses s.clauses = nil if len(cc) == 0 { return } sort.Slice(cc, func(i, j int) bool { return cc[i].hash < cc[j].hash }) // Combine adjacent cases with the same hash. merged := cc[:1] for _, c := range cc[1:] { last := &merged[len(merged)-1] if last.hash == c.hash { last.body.Append(c.body.Take()...) } else { merged = append(merged, c) } } cc = merged // TODO: figure out if we could use a jump table using some low bits of the type hashes. binarySearch(len(cc), &s.done, func(i int) ir.Node { return ir.NewBinaryExpr(base.Pos, ir.OLE, s.hashname, ir.NewInt(int64(cc[i-1].hash))) }, func(i int, nif *ir.IfStmt) { // TODO(mdempsky): Omit hash equality check if // there's only one type. c := cc[i] nif.Cond = ir.NewBinaryExpr(base.Pos, ir.OEQ, s.hashname, ir.NewInt(int64(c.hash))) nif.Body.Append(c.body.Take()...) }, ) } // binarySearch constructs a binary search tree for handling n cases, // and appends it to out. It's used for efficiently implementing // switch statements. // // less(i) should return a boolean expression. If it evaluates true, // then cases before i will be tested; otherwise, cases i and later. // // leaf(i, nif) should setup nif (an OIF node) to test case i. In // particular, it should set nif.Cond and nif.Body. func binarySearch(n int, out *ir.Nodes, less func(i int) ir.Node, leaf func(i int, nif *ir.IfStmt)) { const binarySearchMin = 4 // minimum number of cases for binary search var do func(lo, hi int, out *ir.Nodes) do = func(lo, hi int, out *ir.Nodes) { n := hi - lo if n < binarySearchMin { for i := lo; i < hi; i++ { nif := ir.NewIfStmt(base.Pos, nil, nil, nil) leaf(i, nif) base.Pos = base.Pos.WithNotStmt() nif.Cond = typecheck.Expr(nif.Cond) nif.Cond = typecheck.DefaultLit(nif.Cond, nil) out.Append(nif) out = &nif.Else } return } half := lo + n/2 nif := ir.NewIfStmt(base.Pos, nil, nil, nil) nif.Cond = less(half) base.Pos = base.Pos.WithNotStmt() nif.Cond = typecheck.Expr(nif.Cond) nif.Cond = typecheck.DefaultLit(nif.Cond, nil) do(lo, half, &nif.Body) do(half, hi, &nif.Else) out.Append(nif) } do(0, n, out) } func stringSearch(expr ir.Node, cc []exprClause, out *ir.Nodes) { if len(cc) < 4 { // Short list, just do brute force equality checks. for _, c := range cc { nif := ir.NewIfStmt(base.Pos.WithNotStmt(), typecheck.DefaultLit(typecheck.Expr(c.test(expr)), nil), []ir.Node{c.jmp}, nil) out.Append(nif) out = &nif.Else } return } // The strategy here is to find a simple test to divide the set of possible strings // that might match expr approximately in half. // The test we're going to use is to do an ordered comparison of a single byte // of expr to a constant. We will pick the index of that byte and the value we're // comparing against to make the split as even as possible. // if expr[3] <= 'd' { ... search strings with expr[3] at 'd' or lower ... } // else { ... search strings with expr[3] at 'e' or higher ... } // // To add complication, we will do the ordered comparison in the signed domain. // The reason for this is to prevent CSE from merging the load used for the // ordered comparison with the load used for the later equality check. // if expr[3] <= 'd' { ... if expr[0] == 'f' && expr[1] == 'o' && expr[2] == 'o' && expr[3] == 'd' { ... } } // If we did both expr[3] loads in the unsigned domain, they would be CSEd, and that // would in turn defeat the combining of expr[0]...expr[3] into a single 4-byte load. // See issue 48222. // By using signed loads for the ordered comparison and unsigned loads for the // equality comparison, they don't get CSEd and the equality comparisons will be // done using wider loads. n := len(ir.StringVal(cc[0].lo)) // Length of the constant strings. bestScore := int64(0) // measure of how good the split is. bestIdx := 0 // split using expr[bestIdx] bestByte := int8(0) // compare expr[bestIdx] against bestByte for idx := 0; idx < n; idx++ { for b := int8(-128); b < 127; b++ { le := 0 for _, c := range cc { s := ir.StringVal(c.lo) if int8(s[idx]) <= b { le++ } } score := int64(le) * int64(len(cc)-le) if score > bestScore { bestScore = score bestIdx = idx bestByte = b } } } // The split must be at least 1:n-1 because we have at least 2 distinct strings; they // have to be different somewhere. // TODO: what if the best split is still pretty bad? if bestScore == 0 { base.Fatalf("unable to split string set") } // Convert expr to a []int8 slice := ir.NewConvExpr(base.Pos, ir.OSTR2BYTESTMP, types.NewSlice(types.Types[types.TINT8]), expr) slice.SetTypecheck(1) // legacy typechecker doesn't handle this op // Load the byte we're splitting on. load := ir.NewIndexExpr(base.Pos, slice, ir.NewInt(int64(bestIdx))) // Compare with the value we're splitting on. cmp := ir.Node(ir.NewBinaryExpr(base.Pos, ir.OLE, load, ir.NewInt(int64(bestByte)))) cmp = typecheck.DefaultLit(typecheck.Expr(cmp), nil) nif := ir.NewIfStmt(base.Pos, cmp, nil, nil) var le []exprClause var gt []exprClause for _, c := range cc { s := ir.StringVal(c.lo) if int8(s[bestIdx]) <= bestByte { le = append(le, c) } else { gt = append(gt, c) } } stringSearch(expr, le, &nif.Body) stringSearch(expr, gt, &nif.Else) out.Append(nif) // TODO: if expr[bestIdx] has enough different possible values, use a jump table. }