// Copyright 2022 The Go Authors. All rights reserved. // Use of this source code is governed by a BSD-style // license that can be found in the LICENSE file. // Package ecdh implements Elliptic Curve Diffie-Hellman over // NIST curves and Curve25519. package ecdh import ( "crypto" "crypto/internal/boring" "crypto/subtle" "errors" "io" "sync" ) type Curve interface { // GenerateKey generates a new PrivateKey from rand. GenerateKey(rand io.Reader) (*PrivateKey, error) // NewPrivateKey checks that key is valid and returns a PrivateKey. // // For NIST curves, this follows SEC 1, Version 2.0, Section 2.3.6, which // amounts to decoding the bytes as a fixed length big endian integer and // checking that the result is lower than the order of the curve. The zero // private key is also rejected, as the encoding of the corresponding public // key would be irregular. // // For X25519, this only checks the scalar length. NewPrivateKey(key []byte) (*PrivateKey, error) // NewPublicKey checks that key is valid and returns a PublicKey. // // For NIST curves, this decodes an uncompressed point according to SEC 1, // Version 2.0, Section 2.3.4. Compressed encodings and the point at // infinity are rejected. // // For X25519, this only checks the u-coordinate length. Adversarially // selected public keys can cause ECDH to return an error. NewPublicKey(key []byte) (*PublicKey, error) // ecdh performs a ECDH exchange and returns the shared secret. It's exposed // as the PrivateKey.ECDH method. // // The private method also allow us to expand the ECDH interface with more // methods in the future without breaking backwards compatibility. ecdh(local *PrivateKey, remote *PublicKey) ([]byte, error) // privateKeyToPublicKey converts a PrivateKey to a PublicKey. It's exposed // as the PrivateKey.PublicKey method. // // This method always succeeds: for X25519, the zero key can't be // constructed due to clamping; for NIST curves, it is rejected by // NewPrivateKey. privateKeyToPublicKey(*PrivateKey) *PublicKey } // PublicKey is an ECDH public key, usually a peer's ECDH share sent over the wire. // // These keys can be parsed with [crypto/x509.ParsePKIXPublicKey] and encoded // with [crypto/x509.MarshalPKIXPublicKey]. For NIST curves, they then need to // be converted with [crypto/ecdsa.PublicKey.ECDH] after parsing. type PublicKey struct { curve Curve publicKey []byte boring *boring.PublicKeyECDH } // Bytes returns a copy of the encoding of the public key. func (k *PublicKey) Bytes() []byte { // Copy the public key to a fixed size buffer that can get allocated on the // caller's stack after inlining. var buf [133]byte return append(buf[:0], k.publicKey...) } // Equal returns whether x represents the same public key as k. // // Note that there can be equivalent public keys with different encodings which // would return false from this check but behave the same way as inputs to ECDH. // // This check is performed in constant time as long as the key types and their // curve match. func (k *PublicKey) Equal(x crypto.PublicKey) bool { xx, ok := x.(*PublicKey) if !ok { return false } return k.curve == xx.curve && subtle.ConstantTimeCompare(k.publicKey, xx.publicKey) == 1 } func (k *PublicKey) Curve() Curve { return k.curve } // PrivateKey is an ECDH private key, usually kept secret. // // These keys can be parsed with [crypto/x509.ParsePKCS8PrivateKey] and encoded // with [crypto/x509.MarshalPKCS8PrivateKey]. For NIST curves, they then need to // be converted with [crypto/ecdsa.PrivateKey.ECDH] after parsing. type PrivateKey struct { curve Curve privateKey []byte boring *boring.PrivateKeyECDH // publicKey is set under publicKeyOnce, to allow loading private keys with // NewPrivateKey without having to perform a scalar multiplication. publicKey *PublicKey publicKeyOnce sync.Once } // ECDH performs a ECDH exchange and returns the shared secret. The PrivateKey // and PublicKey must use the same curve. // // For NIST curves, this performs ECDH as specified in SEC 1, Version 2.0, // Section 3.3.1, and returns the x-coordinate encoded according to SEC 1, // Version 2.0, Section 2.3.5. The result is never the point at infinity. // // For X25519, this performs ECDH as specified in RFC 7748, Section 6.1. If // the result is the all-zero value, ECDH returns an error. func (k *PrivateKey) ECDH(remote *PublicKey) ([]byte, error) { if k.curve != remote.curve { return nil, errors.New("crypto/ecdh: private key and public key curves do not match") } return k.curve.ecdh(k, remote) } // Bytes returns a copy of the encoding of the private key. func (k *PrivateKey) Bytes() []byte { // Copy the private key to a fixed size buffer that can get allocated on the // caller's stack after inlining. var buf [66]byte return append(buf[:0], k.privateKey...) } // Equal returns whether x represents the same private key as k. // // Note that there can be equivalent private keys with different encodings which // would return false from this check but behave the same way as inputs to ECDH. // // This check is performed in constant time as long as the key types and their // curve match. func (k *PrivateKey) Equal(x crypto.PrivateKey) bool { xx, ok := x.(*PrivateKey) if !ok { return false } return k.curve == xx.curve && subtle.ConstantTimeCompare(k.privateKey, xx.privateKey) == 1 } func (k *PrivateKey) Curve() Curve { return k.curve } func (k *PrivateKey) PublicKey() *PublicKey { k.publicKeyOnce.Do(func() { if k.boring != nil { // Because we already checked in NewPrivateKey that the key is valid, // there should not be any possible errors from BoringCrypto, // so we turn the error into a panic. // (We can't return it anyhow.) kpub, err := k.boring.PublicKey() if err != nil { panic("boringcrypto: " + err.Error()) } k.publicKey = &PublicKey{ curve: k.curve, publicKey: kpub.Bytes(), boring: kpub, } } else { k.publicKey = k.curve.privateKeyToPublicKey(k) } }) return k.publicKey } // Public implements the implicit interface of all standard library private // keys. See the docs of crypto.PrivateKey. func (k *PrivateKey) Public() crypto.PublicKey { return k.PublicKey() }