// Copyright 2011 The Go Authors. All rights reserved. // Use of this source code is governed by a BSD-style // license that can be found in the LICENSE file. // Package ecdsa implements the Elliptic Curve Digital Signature Algorithm, as // defined in FIPS 186-4 and SEC 1, Version 2.0. // // Signatures generated by this package are not deterministic, but entropy is // mixed with the private key and the message, achieving the same level of // security in case of randomness source failure. package ecdsa // [FIPS 186-4] references ANSI X9.62-2005 for the bulk of the ECDSA algorithm. // That standard is not freely available, which is a problem in an open source // implementation, because not only the implementer, but also any maintainer, // contributor, reviewer, auditor, and learner needs access to it. Instead, this // package references and follows the equivalent [SEC 1, Version 2.0]. // // [FIPS 186-4]: https://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.186-4.pdf // [SEC 1, Version 2.0]: https://www.secg.org/sec1-v2.pdf import ( "bytes" "crypto" "crypto/aes" "crypto/cipher" "crypto/ecdh" "crypto/elliptic" "crypto/internal/bigmod" "crypto/internal/boring" "crypto/internal/boring/bbig" "crypto/internal/nistec" "crypto/internal/randutil" "crypto/sha512" "crypto/subtle" "errors" "io" "math/big" "sync" "golang.org/x/crypto/cryptobyte" "golang.org/x/crypto/cryptobyte/asn1" ) // PublicKey represents an ECDSA public key. type PublicKey struct { elliptic.Curve X, Y *big.Int } // Any methods implemented on PublicKey might need to also be implemented on // PrivateKey, as the latter embeds the former and will expose its methods. // ECDH returns k as a [ecdh.PublicKey]. It returns an error if the key is // invalid according to the definition of [ecdh.Curve.NewPublicKey], or if the // Curve is not supported by crypto/ecdh. func (k *PublicKey) ECDH() (*ecdh.PublicKey, error) { c := curveToECDH(k.Curve) if c == nil { return nil, errors.New("ecdsa: unsupported curve by crypto/ecdh") } if !k.Curve.IsOnCurve(k.X, k.Y) { return nil, errors.New("ecdsa: invalid public key") } return c.NewPublicKey(elliptic.Marshal(k.Curve, k.X, k.Y)) } // Equal reports whether pub and x have the same value. // // Two keys are only considered to have the same value if they have the same Curve value. // Note that for example elliptic.P256() and elliptic.P256().Params() are different // values, as the latter is a generic not constant time implementation. func (pub *PublicKey) Equal(x crypto.PublicKey) bool { xx, ok := x.(*PublicKey) if !ok { return false } return bigIntEqual(pub.X, xx.X) && bigIntEqual(pub.Y, xx.Y) && // Standard library Curve implementations are singletons, so this check // will work for those. Other Curves might be equivalent even if not // singletons, but there is no definitive way to check for that, and // better to err on the side of safety. pub.Curve == xx.Curve } // PrivateKey represents an ECDSA private key. type PrivateKey struct { PublicKey D *big.Int } // ECDH returns k as a [ecdh.PrivateKey]. It returns an error if the key is // invalid according to the definition of [ecdh.Curve.NewPrivateKey], or if the // Curve is not supported by crypto/ecdh. func (k *PrivateKey) ECDH() (*ecdh.PrivateKey, error) { c := curveToECDH(k.Curve) if c == nil { return nil, errors.New("ecdsa: unsupported curve by crypto/ecdh") } size := (k.Curve.Params().N.BitLen() + 7) / 8 if k.D.BitLen() > size*8 { return nil, errors.New("ecdsa: invalid private key") } return c.NewPrivateKey(k.D.FillBytes(make([]byte, size))) } func curveToECDH(c elliptic.Curve) ecdh.Curve { switch c { case elliptic.P256(): return ecdh.P256() case elliptic.P384(): return ecdh.P384() case elliptic.P521(): return ecdh.P521() default: return nil } } // Public returns the public key corresponding to priv. func (priv *PrivateKey) Public() crypto.PublicKey { return &priv.PublicKey } // Equal reports whether priv and x have the same value. // // See PublicKey.Equal for details on how Curve is compared. func (priv *PrivateKey) Equal(x crypto.PrivateKey) bool { xx, ok := x.(*PrivateKey) if !ok { return false } return priv.PublicKey.Equal(&xx.PublicKey) && bigIntEqual(priv.D, xx.D) } // bigIntEqual reports whether a and b are equal leaking only their bit length // through timing side-channels. func bigIntEqual(a, b *big.Int) bool { return subtle.ConstantTimeCompare(a.Bytes(), b.Bytes()) == 1 } // Sign signs digest with priv, reading randomness from rand. The opts argument // is not currently used but, in keeping with the crypto.Signer interface, // should be the hash function used to digest the message. // // This method implements crypto.Signer, which is an interface to support keys // where the private part is kept in, for example, a hardware module. Common // uses can use the SignASN1 function in this package directly. func (priv *PrivateKey) Sign(rand io.Reader, digest []byte, opts crypto.SignerOpts) ([]byte, error) { return SignASN1(rand, priv, digest) } // GenerateKey generates a public and private key pair. func GenerateKey(c elliptic.Curve, rand io.Reader) (*PrivateKey, error) { randutil.MaybeReadByte(rand) if boring.Enabled && rand == boring.RandReader { x, y, d, err := boring.GenerateKeyECDSA(c.Params().Name) if err != nil { return nil, err } return &PrivateKey{PublicKey: PublicKey{Curve: c, X: bbig.Dec(x), Y: bbig.Dec(y)}, D: bbig.Dec(d)}, nil } boring.UnreachableExceptTests() switch c.Params() { case elliptic.P224().Params(): return generateNISTEC(p224(), rand) case elliptic.P256().Params(): return generateNISTEC(p256(), rand) case elliptic.P384().Params(): return generateNISTEC(p384(), rand) case elliptic.P521().Params(): return generateNISTEC(p521(), rand) default: return generateLegacy(c, rand) } } func generateNISTEC[Point nistPoint[Point]](c *nistCurve[Point], rand io.Reader) (*PrivateKey, error) { k, Q, err := randomPoint(c, rand) if err != nil { return nil, err } priv := new(PrivateKey) priv.PublicKey.Curve = c.curve priv.D = new(big.Int).SetBytes(k.Bytes(c.N)) priv.PublicKey.X, priv.PublicKey.Y, err = c.pointToAffine(Q) if err != nil { return nil, err } return priv, nil } // randomPoint returns a random scalar and the corresponding point using the // procedure given in FIPS 186-4, Appendix B.5.2 (rejection sampling). func randomPoint[Point nistPoint[Point]](c *nistCurve[Point], rand io.Reader) (k *bigmod.Nat, p Point, err error) { k = bigmod.NewNat() for { b := make([]byte, c.N.Size()) if _, err = io.ReadFull(rand, b); err != nil { return } // Mask off any excess bits to increase the chance of hitting a value in // (0, N). These are the most dangerous lines in the package and maybe in // the library: a single bit of bias in the selection of nonces would likely // lead to key recovery, but no tests would fail. Look but DO NOT TOUCH. if excess := len(b)*8 - c.N.BitLen(); excess > 0 { // Just to be safe, assert that this only happens for the one curve that // doesn't have a round number of bits. if excess != 0 && c.curve.Params().Name != "P-521" { panic("ecdsa: internal error: unexpectedly masking off bits") } b[0] >>= excess } // FIPS 186-4 makes us check k <= N - 2 and then add one. // Checking 0 < k <= N - 1 is strictly equivalent. // None of this matters anyway because the chance of selecting // zero is cryptographically negligible. if _, err = k.SetBytes(b, c.N); err == nil && k.IsZero() == 0 { break } if testingOnlyRejectionSamplingLooped != nil { testingOnlyRejectionSamplingLooped() } } p, err = c.newPoint().ScalarBaseMult(k.Bytes(c.N)) return } // testingOnlyRejectionSamplingLooped is called when rejection sampling in // randomPoint rejects a candidate for being higher than the modulus. var testingOnlyRejectionSamplingLooped func() // errNoAsm is returned by signAsm and verifyAsm when the assembly // implementation is not available. var errNoAsm = errors.New("no assembly implementation available") // SignASN1 signs a hash (which should be the result of hashing a larger message) // using the private key, priv. If the hash is longer than the bit-length of the // private key's curve order, the hash will be truncated to that length. It // returns the ASN.1 encoded signature. func SignASN1(rand io.Reader, priv *PrivateKey, hash []byte) ([]byte, error) { randutil.MaybeReadByte(rand) if boring.Enabled && rand == boring.RandReader { b, err := boringPrivateKey(priv) if err != nil { return nil, err } return boring.SignMarshalECDSA(b, hash) } boring.UnreachableExceptTests() csprng, err := mixedCSPRNG(rand, priv, hash) if err != nil { return nil, err } if sig, err := signAsm(priv, csprng, hash); err != errNoAsm { return sig, err } switch priv.Curve.Params() { case elliptic.P224().Params(): return signNISTEC(p224(), priv, csprng, hash) case elliptic.P256().Params(): return signNISTEC(p256(), priv, csprng, hash) case elliptic.P384().Params(): return signNISTEC(p384(), priv, csprng, hash) case elliptic.P521().Params(): return signNISTEC(p521(), priv, csprng, hash) default: return signLegacy(priv, csprng, hash) } } func signNISTEC[Point nistPoint[Point]](c *nistCurve[Point], priv *PrivateKey, csprng io.Reader, hash []byte) (sig []byte, err error) { // SEC 1, Version 2.0, Section 4.1.3 k, R, err := randomPoint(c, csprng) if err != nil { return nil, err } // kInv = k⁻¹ kInv := bigmod.NewNat() inverse(c, kInv, k) Rx, err := R.BytesX() if err != nil { return nil, err } r, err := bigmod.NewNat().SetOverflowingBytes(Rx, c.N) if err != nil { return nil, err } // The spec wants us to retry here, but the chance of hitting this condition // on a large prime-order group like the NIST curves we support is // cryptographically negligible. If we hit it, something is awfully wrong. if r.IsZero() == 1 { return nil, errors.New("ecdsa: internal error: r is zero") } e := bigmod.NewNat() hashToNat(c, e, hash) s, err := bigmod.NewNat().SetBytes(priv.D.Bytes(), c.N) if err != nil { return nil, err } s.Mul(r, c.N) s.Add(e, c.N) s.Mul(kInv, c.N) // Again, the chance of this happening is cryptographically negligible. if s.IsZero() == 1 { return nil, errors.New("ecdsa: internal error: s is zero") } return encodeSignature(r.Bytes(c.N), s.Bytes(c.N)) } func encodeSignature(r, s []byte) ([]byte, error) { var b cryptobyte.Builder b.AddASN1(asn1.SEQUENCE, func(b *cryptobyte.Builder) { addASN1IntBytes(b, r) addASN1IntBytes(b, s) }) return b.Bytes() } // addASN1IntBytes encodes in ASN.1 a positive integer represented as // a big-endian byte slice with zero or more leading zeroes. func addASN1IntBytes(b *cryptobyte.Builder, bytes []byte) { for len(bytes) > 0 && bytes[0] == 0 { bytes = bytes[1:] } if len(bytes) == 0 { b.SetError(errors.New("invalid integer")) return } b.AddASN1(asn1.INTEGER, func(c *cryptobyte.Builder) { if bytes[0]&0x80 != 0 { c.AddUint8(0) } c.AddBytes(bytes) }) } // inverse sets kInv to the inverse of k modulo the order of the curve. func inverse[Point nistPoint[Point]](c *nistCurve[Point], kInv, k *bigmod.Nat) { if c.curve.Params().Name == "P-256" { kBytes, err := nistec.P256OrdInverse(k.Bytes(c.N)) // Some platforms don't implement P256OrdInverse, and always return an error. if err == nil { _, err := kInv.SetBytes(kBytes, c.N) if err != nil { panic("ecdsa: internal error: P256OrdInverse produced an invalid value") } return } } // Calculate the inverse of s in GF(N) using Fermat's method // (exponentiation modulo P - 2, per Euler's theorem) kInv.Exp(k, c.nMinus2, c.N) } // hashToNat sets e to the left-most bits of hash, according to // SEC 1, Section 4.1.3, point 5 and Section 4.1.4, point 3. func hashToNat[Point nistPoint[Point]](c *nistCurve[Point], e *bigmod.Nat, hash []byte) { // ECDSA asks us to take the left-most log2(N) bits of hash, and use them as // an integer modulo N. This is the absolute worst of all worlds: we still // have to reduce, because the result might still overflow N, but to take // the left-most bits for P-521 we have to do a right shift. if size := c.N.Size(); len(hash) >= size { hash = hash[:size] if excess := len(hash)*8 - c.N.BitLen(); excess > 0 { hash = bytes.Clone(hash) for i := len(hash) - 1; i >= 0; i-- { hash[i] >>= excess if i > 0 { hash[i] |= hash[i-1] << (8 - excess) } } } } _, err := e.SetOverflowingBytes(hash, c.N) if err != nil { panic("ecdsa: internal error: truncated hash is too long") } } // mixedCSPRNG returns a CSPRNG that mixes entropy from rand with the message // and the private key, to protect the key in case rand fails. This is // equivalent in security to RFC 6979 deterministic nonce generation, but still // produces randomized signatures. func mixedCSPRNG(rand io.Reader, priv *PrivateKey, hash []byte) (io.Reader, error) { // This implementation derives the nonce from an AES-CTR CSPRNG keyed by: // // SHA2-512(priv.D || entropy || hash)[:32] // // The CSPRNG key is indifferentiable from a random oracle as shown in // [Coron], the AES-CTR stream is indifferentiable from a random oracle // under standard cryptographic assumptions (see [Larsson] for examples). // // [Coron]: https://cs.nyu.edu/~dodis/ps/merkle.pdf // [Larsson]: https://web.archive.org/web/20040719170906/https://www.nada.kth.se/kurser/kth/2D1441/semteo03/lecturenotes/assump.pdf // Get 256 bits of entropy from rand. entropy := make([]byte, 32) if _, err := io.ReadFull(rand, entropy); err != nil { return nil, err } // Initialize an SHA-512 hash context; digest... md := sha512.New() md.Write(priv.D.Bytes()) // the private key, md.Write(entropy) // the entropy, md.Write(hash) // and the input hash; key := md.Sum(nil)[:32] // and compute ChopMD-256(SHA-512), // which is an indifferentiable MAC. // Create an AES-CTR instance to use as a CSPRNG. block, err := aes.NewCipher(key) if err != nil { return nil, err } // Create a CSPRNG that xors a stream of zeros with // the output of the AES-CTR instance. const aesIV = "IV for ECDSA CTR" return &cipher.StreamReader{ R: zeroReader, S: cipher.NewCTR(block, []byte(aesIV)), }, nil } type zr struct{} var zeroReader = zr{} // Read replaces the contents of dst with zeros. It is safe for concurrent use. func (zr) Read(dst []byte) (n int, err error) { for i := range dst { dst[i] = 0 } return len(dst), nil } // VerifyASN1 verifies the ASN.1 encoded signature, sig, of hash using the // public key, pub. Its return value records whether the signature is valid. func VerifyASN1(pub *PublicKey, hash, sig []byte) bool { if boring.Enabled { key, err := boringPublicKey(pub) if err != nil { return false } return boring.VerifyECDSA(key, hash, sig) } boring.UnreachableExceptTests() if err := verifyAsm(pub, hash, sig); err != errNoAsm { return err == nil } switch pub.Curve.Params() { case elliptic.P224().Params(): return verifyNISTEC(p224(), pub, hash, sig) case elliptic.P256().Params(): return verifyNISTEC(p256(), pub, hash, sig) case elliptic.P384().Params(): return verifyNISTEC(p384(), pub, hash, sig) case elliptic.P521().Params(): return verifyNISTEC(p521(), pub, hash, sig) default: return verifyLegacy(pub, hash, sig) } } func verifyNISTEC[Point nistPoint[Point]](c *nistCurve[Point], pub *PublicKey, hash, sig []byte) bool { rBytes, sBytes, err := parseSignature(sig) if err != nil { return false } Q, err := c.pointFromAffine(pub.X, pub.Y) if err != nil { return false } // SEC 1, Version 2.0, Section 4.1.4 r, err := bigmod.NewNat().SetBytes(rBytes, c.N) if err != nil || r.IsZero() == 1 { return false } s, err := bigmod.NewNat().SetBytes(sBytes, c.N) if err != nil || s.IsZero() == 1 { return false } e := bigmod.NewNat() hashToNat(c, e, hash) // w = s⁻¹ w := bigmod.NewNat() inverse(c, w, s) // p₁ = [e * s⁻¹]G p1, err := c.newPoint().ScalarBaseMult(e.Mul(w, c.N).Bytes(c.N)) if err != nil { return false } // p₂ = [r * s⁻¹]Q p2, err := Q.ScalarMult(Q, w.Mul(r, c.N).Bytes(c.N)) if err != nil { return false } // BytesX returns an error for the point at infinity. Rx, err := p1.Add(p1, p2).BytesX() if err != nil { return false } v, err := bigmod.NewNat().SetOverflowingBytes(Rx, c.N) if err != nil { return false } return v.Equal(r) == 1 } func parseSignature(sig []byte) (r, s []byte, err error) { var inner cryptobyte.String input := cryptobyte.String(sig) if !input.ReadASN1(&inner, asn1.SEQUENCE) || !input.Empty() || !inner.ReadASN1Integer(&r) || !inner.ReadASN1Integer(&s) || !inner.Empty() { return nil, nil, errors.New("invalid ASN.1") } return r, s, nil } type nistCurve[Point nistPoint[Point]] struct { newPoint func() Point curve elliptic.Curve N *bigmod.Modulus nMinus2 []byte } // nistPoint is a generic constraint for the nistec Point types. type nistPoint[T any] interface { Bytes() []byte BytesX() ([]byte, error) SetBytes([]byte) (T, error) Add(T, T) T ScalarMult(T, []byte) (T, error) ScalarBaseMult([]byte) (T, error) } // pointFromAffine is used to convert the PublicKey to a nistec Point. func (curve *nistCurve[Point]) pointFromAffine(x, y *big.Int) (p Point, err error) { bitSize := curve.curve.Params().BitSize // Reject values that would not get correctly encoded. if x.Sign() < 0 || y.Sign() < 0 { return p, errors.New("negative coordinate") } if x.BitLen() > bitSize || y.BitLen() > bitSize { return p, errors.New("overflowing coordinate") } // Encode the coordinates and let SetBytes reject invalid points. byteLen := (bitSize + 7) / 8 buf := make([]byte, 1+2*byteLen) buf[0] = 4 // uncompressed point x.FillBytes(buf[1 : 1+byteLen]) y.FillBytes(buf[1+byteLen : 1+2*byteLen]) return curve.newPoint().SetBytes(buf) } // pointToAffine is used to convert a nistec Point to a PublicKey. func (curve *nistCurve[Point]) pointToAffine(p Point) (x, y *big.Int, err error) { out := p.Bytes() if len(out) == 1 && out[0] == 0 { // This is the encoding of the point at infinity. return nil, nil, errors.New("ecdsa: public key point is the infinity") } byteLen := (curve.curve.Params().BitSize + 7) / 8 x = new(big.Int).SetBytes(out[1 : 1+byteLen]) y = new(big.Int).SetBytes(out[1+byteLen:]) return x, y, nil } var p224Once sync.Once var _p224 *nistCurve[*nistec.P224Point] func p224() *nistCurve[*nistec.P224Point] { p224Once.Do(func() { _p224 = &nistCurve[*nistec.P224Point]{ newPoint: func() *nistec.P224Point { return nistec.NewP224Point() }, } precomputeParams(_p224, elliptic.P224()) }) return _p224 } var p256Once sync.Once var _p256 *nistCurve[*nistec.P256Point] func p256() *nistCurve[*nistec.P256Point] { p256Once.Do(func() { _p256 = &nistCurve[*nistec.P256Point]{ newPoint: func() *nistec.P256Point { return nistec.NewP256Point() }, } precomputeParams(_p256, elliptic.P256()) }) return _p256 } var p384Once sync.Once var _p384 *nistCurve[*nistec.P384Point] func p384() *nistCurve[*nistec.P384Point] { p384Once.Do(func() { _p384 = &nistCurve[*nistec.P384Point]{ newPoint: func() *nistec.P384Point { return nistec.NewP384Point() }, } precomputeParams(_p384, elliptic.P384()) }) return _p384 } var p521Once sync.Once var _p521 *nistCurve[*nistec.P521Point] func p521() *nistCurve[*nistec.P521Point] { p521Once.Do(func() { _p521 = &nistCurve[*nistec.P521Point]{ newPoint: func() *nistec.P521Point { return nistec.NewP521Point() }, } precomputeParams(_p521, elliptic.P521()) }) return _p521 } func precomputeParams[Point nistPoint[Point]](c *nistCurve[Point], curve elliptic.Curve) { params := curve.Params() c.curve = curve c.N = bigmod.NewModulusFromBig(params.N) c.nMinus2 = new(big.Int).Sub(params.N, big.NewInt(2)).Bytes() }