// Copyright 2016 The Go Authors. All rights reserved. // Use of this source code is governed by a BSD-style // license that can be found in the LICENSE file. //go:build !math_big_pure_go // +build !math_big_pure_go #include "textflag.h" // This file provides fast assembly versions for the elementary // arithmetic operations on vectors implemented in arith.go. // DI = R3, CX = R4, SI = r10, r8 = r8, r9=r9, r10 = r2, r11 = r5, r12 = r6, r13 = r7, r14 = r1 (R0 set to 0) + use R11 // func addVV(z, x, y []Word) (c Word) TEXT ·addVV(SB), NOSPLIT, $0 MOVD addvectorfacility+0x00(SB), R1 BR (R1) TEXT ·addVV_check(SB), NOSPLIT, $0 MOVB ·hasVX(SB), R1 CMPBEQ R1, $1, vectorimpl // vectorfacility = 1, vector supported MOVD $addvectorfacility+0x00(SB), R1 MOVD $·addVV_novec(SB), R2 MOVD R2, 0(R1) // MOVD $·addVV_novec(SB), 0(R1) BR ·addVV_novec(SB) vectorimpl: MOVD $addvectorfacility+0x00(SB), R1 MOVD $·addVV_vec(SB), R2 MOVD R2, 0(R1) // MOVD $·addVV_vec(SB), 0(R1) BR ·addVV_vec(SB) GLOBL addvectorfacility+0x00(SB), NOPTR, $8 DATA addvectorfacility+0x00(SB)/8, $·addVV_check(SB) TEXT ·addVV_vec(SB), NOSPLIT, $0 MOVD z_len+8(FP), R3 MOVD x+24(FP), R8 MOVD y+48(FP), R9 MOVD z+0(FP), R2 MOVD $0, R4 // c = 0 MOVD $0, R0 // make sure it's zero MOVD $0, R10 // i = 0 // s/JL/JMP/ below to disable the unrolled loop SUB $4, R3 BLT v1 SUB $12, R3 // n -= 16 BLT A1 // if n < 0 goto A1 MOVD R8, R5 MOVD R9, R6 MOVD R2, R7 // n >= 0 // regular loop body unrolled 16x VZERO V0 // c = 0 UU1: VLM 0(R5), V1, V4 // 64-bytes into V1..V8 ADD $64, R5 VPDI $0x4, V1, V1, V1 // flip the doublewords to big-endian order VPDI $0x4, V2, V2, V2 // flip the doublewords to big-endian order VLM 0(R6), V9, V12 // 64-bytes into V9..V16 ADD $64, R6 VPDI $0x4, V9, V9, V9 // flip the doublewords to big-endian order VPDI $0x4, V10, V10, V10 // flip the doublewords to big-endian order VACCCQ V1, V9, V0, V25 VACQ V1, V9, V0, V17 VACCCQ V2, V10, V25, V26 VACQ V2, V10, V25, V18 VLM 0(R5), V5, V6 // 32-bytes into V1..V8 VLM 0(R6), V13, V14 // 32-bytes into V9..V16 ADD $32, R5 ADD $32, R6 VPDI $0x4, V3, V3, V3 // flip the doublewords to big-endian order VPDI $0x4, V4, V4, V4 // flip the doublewords to big-endian order VPDI $0x4, V11, V11, V11 // flip the doublewords to big-endian order VPDI $0x4, V12, V12, V12 // flip the doublewords to big-endian order VACCCQ V3, V11, V26, V27 VACQ V3, V11, V26, V19 VACCCQ V4, V12, V27, V28 VACQ V4, V12, V27, V20 VLM 0(R5), V7, V8 // 32-bytes into V1..V8 VLM 0(R6), V15, V16 // 32-bytes into V9..V16 ADD $32, R5 ADD $32, R6 VPDI $0x4, V5, V5, V5 // flip the doublewords to big-endian order VPDI $0x4, V6, V6, V6 // flip the doublewords to big-endian order VPDI $0x4, V13, V13, V13 // flip the doublewords to big-endian order VPDI $0x4, V14, V14, V14 // flip the doublewords to big-endian order VACCCQ V5, V13, V28, V29 VACQ V5, V13, V28, V21 VACCCQ V6, V14, V29, V30 VACQ V6, V14, V29, V22 VPDI $0x4, V7, V7, V7 // flip the doublewords to big-endian order VPDI $0x4, V8, V8, V8 // flip the doublewords to big-endian order VPDI $0x4, V15, V15, V15 // flip the doublewords to big-endian order VPDI $0x4, V16, V16, V16 // flip the doublewords to big-endian order VACCCQ V7, V15, V30, V31 VACQ V7, V15, V30, V23 VACCCQ V8, V16, V31, V0 // V0 has carry-over VACQ V8, V16, V31, V24 VPDI $0x4, V17, V17, V17 // flip the doublewords to big-endian order VPDI $0x4, V18, V18, V18 // flip the doublewords to big-endian order VPDI $0x4, V19, V19, V19 // flip the doublewords to big-endian order VPDI $0x4, V20, V20, V20 // flip the doublewords to big-endian order VPDI $0x4, V21, V21, V21 // flip the doublewords to big-endian order VPDI $0x4, V22, V22, V22 // flip the doublewords to big-endian order VPDI $0x4, V23, V23, V23 // flip the doublewords to big-endian order VPDI $0x4, V24, V24, V24 // flip the doublewords to big-endian order VSTM V17, V24, 0(R7) // 128-bytes into z ADD $128, R7 ADD $128, R10 // i += 16 SUB $16, R3 // n -= 16 BGE UU1 // if n >= 0 goto U1 VLGVG $1, V0, R4 // put cf into R4 NEG R4, R4 // save cf A1: ADD $12, R3 // n += 16 // s/JL/JMP/ below to disable the unrolled loop BLT v1 // if n < 0 goto v1 U1: // n >= 0 // regular loop body unrolled 4x MOVD 0(R8)(R10*1), R5 MOVD 8(R8)(R10*1), R6 MOVD 16(R8)(R10*1), R7 MOVD 24(R8)(R10*1), R1 ADDC R4, R4 // restore CF MOVD 0(R9)(R10*1), R11 ADDE R11, R5 MOVD 8(R9)(R10*1), R11 ADDE R11, R6 MOVD 16(R9)(R10*1), R11 ADDE R11, R7 MOVD 24(R9)(R10*1), R11 ADDE R11, R1 MOVD R0, R4 ADDE R4, R4 // save CF NEG R4, R4 MOVD R5, 0(R2)(R10*1) MOVD R6, 8(R2)(R10*1) MOVD R7, 16(R2)(R10*1) MOVD R1, 24(R2)(R10*1) ADD $32, R10 // i += 4 SUB $4, R3 // n -= 4 BGE U1 // if n >= 0 goto U1 v1: ADD $4, R3 // n += 4 BLE E1 // if n <= 0 goto E1 L1: // n > 0 ADDC R4, R4 // restore CF MOVD 0(R8)(R10*1), R5 MOVD 0(R9)(R10*1), R11 ADDE R11, R5 MOVD R5, 0(R2)(R10*1) MOVD R0, R4 ADDE R4, R4 // save CF NEG R4, R4 ADD $8, R10 // i++ SUB $1, R3 // n-- BGT L1 // if n > 0 goto L1 E1: NEG R4, R4 MOVD R4, c+72(FP) // return c RET TEXT ·addVV_novec(SB), NOSPLIT, $0 novec: MOVD z_len+8(FP), R3 MOVD x+24(FP), R8 MOVD y+48(FP), R9 MOVD z+0(FP), R2 MOVD $0, R4 // c = 0 MOVD $0, R0 // make sure it's zero MOVD $0, R10 // i = 0 // s/JL/JMP/ below to disable the unrolled loop SUB $4, R3 // n -= 4 BLT v1n // if n < 0 goto v1n U1n: // n >= 0 // regular loop body unrolled 4x MOVD 0(R8)(R10*1), R5 MOVD 8(R8)(R10*1), R6 MOVD 16(R8)(R10*1), R7 MOVD 24(R8)(R10*1), R1 ADDC R4, R4 // restore CF MOVD 0(R9)(R10*1), R11 ADDE R11, R5 MOVD 8(R9)(R10*1), R11 ADDE R11, R6 MOVD 16(R9)(R10*1), R11 ADDE R11, R7 MOVD 24(R9)(R10*1), R11 ADDE R11, R1 MOVD R0, R4 ADDE R4, R4 // save CF NEG R4, R4 MOVD R5, 0(R2)(R10*1) MOVD R6, 8(R2)(R10*1) MOVD R7, 16(R2)(R10*1) MOVD R1, 24(R2)(R10*1) ADD $32, R10 // i += 4 SUB $4, R3 // n -= 4 BGE U1n // if n >= 0 goto U1n v1n: ADD $4, R3 // n += 4 BLE E1n // if n <= 0 goto E1n L1n: // n > 0 ADDC R4, R4 // restore CF MOVD 0(R8)(R10*1), R5 MOVD 0(R9)(R10*1), R11 ADDE R11, R5 MOVD R5, 0(R2)(R10*1) MOVD R0, R4 ADDE R4, R4 // save CF NEG R4, R4 ADD $8, R10 // i++ SUB $1, R3 // n-- BGT L1n // if n > 0 goto L1n E1n: NEG R4, R4 MOVD R4, c+72(FP) // return c RET TEXT ·subVV(SB), NOSPLIT, $0 MOVD subvectorfacility+0x00(SB), R1 BR (R1) TEXT ·subVV_check(SB), NOSPLIT, $0 MOVB ·hasVX(SB), R1 CMPBEQ R1, $1, vectorimpl // vectorfacility = 1, vector supported MOVD $subvectorfacility+0x00(SB), R1 MOVD $·subVV_novec(SB), R2 MOVD R2, 0(R1) // MOVD $·subVV_novec(SB), 0(R1) BR ·subVV_novec(SB) vectorimpl: MOVD $subvectorfacility+0x00(SB), R1 MOVD $·subVV_vec(SB), R2 MOVD R2, 0(R1) // MOVD $·subVV_vec(SB), 0(R1) BR ·subVV_vec(SB) GLOBL subvectorfacility+0x00(SB), NOPTR, $8 DATA subvectorfacility+0x00(SB)/8, $·subVV_check(SB) // DI = R3, CX = R4, SI = r10, r8 = r8, r9=r9, r10 = r2, r11 = r5, r12 = r6, r13 = r7, r14 = r1 (R0 set to 0) + use R11 // func subVV(z, x, y []Word) (c Word) // (same as addVV except for SUBC/SUBE instead of ADDC/ADDE and label names) TEXT ·subVV_vec(SB), NOSPLIT, $0 MOVD z_len+8(FP), R3 MOVD x+24(FP), R8 MOVD y+48(FP), R9 MOVD z+0(FP), R2 MOVD $0, R4 // c = 0 MOVD $0, R0 // make sure it's zero MOVD $0, R10 // i = 0 // s/JL/JMP/ below to disable the unrolled loop SUB $4, R3 // n -= 4 BLT v1 // if n < 0 goto v1 SUB $12, R3 // n -= 16 BLT A1 // if n < 0 goto A1 MOVD R8, R5 MOVD R9, R6 MOVD R2, R7 // n >= 0 // regular loop body unrolled 16x VZERO V0 // cf = 0 MOVD $1, R4 // for 390 subtraction cf starts as 1 (no borrow) VLVGG $1, R4, V0 // put carry into V0 UU1: VLM 0(R5), V1, V4 // 64-bytes into V1..V8 ADD $64, R5 VPDI $0x4, V1, V1, V1 // flip the doublewords to big-endian order VPDI $0x4, V2, V2, V2 // flip the doublewords to big-endian order VLM 0(R6), V9, V12 // 64-bytes into V9..V16 ADD $64, R6 VPDI $0x4, V9, V9, V9 // flip the doublewords to big-endian order VPDI $0x4, V10, V10, V10 // flip the doublewords to big-endian order VSBCBIQ V1, V9, V0, V25 VSBIQ V1, V9, V0, V17 VSBCBIQ V2, V10, V25, V26 VSBIQ V2, V10, V25, V18 VLM 0(R5), V5, V6 // 32-bytes into V1..V8 VLM 0(R6), V13, V14 // 32-bytes into V9..V16 ADD $32, R5 ADD $32, R6 VPDI $0x4, V3, V3, V3 // flip the doublewords to big-endian order VPDI $0x4, V4, V4, V4 // flip the doublewords to big-endian order VPDI $0x4, V11, V11, V11 // flip the doublewords to big-endian order VPDI $0x4, V12, V12, V12 // flip the doublewords to big-endian order VSBCBIQ V3, V11, V26, V27 VSBIQ V3, V11, V26, V19 VSBCBIQ V4, V12, V27, V28 VSBIQ V4, V12, V27, V20 VLM 0(R5), V7, V8 // 32-bytes into V1..V8 VLM 0(R6), V15, V16 // 32-bytes into V9..V16 ADD $32, R5 ADD $32, R6 VPDI $0x4, V5, V5, V5 // flip the doublewords to big-endian order VPDI $0x4, V6, V6, V6 // flip the doublewords to big-endian order VPDI $0x4, V13, V13, V13 // flip the doublewords to big-endian order VPDI $0x4, V14, V14, V14 // flip the doublewords to big-endian order VSBCBIQ V5, V13, V28, V29 VSBIQ V5, V13, V28, V21 VSBCBIQ V6, V14, V29, V30 VSBIQ V6, V14, V29, V22 VPDI $0x4, V7, V7, V7 // flip the doublewords to big-endian order VPDI $0x4, V8, V8, V8 // flip the doublewords to big-endian order VPDI $0x4, V15, V15, V15 // flip the doublewords to big-endian order VPDI $0x4, V16, V16, V16 // flip the doublewords to big-endian order VSBCBIQ V7, V15, V30, V31 VSBIQ V7, V15, V30, V23 VSBCBIQ V8, V16, V31, V0 // V0 has carry-over VSBIQ V8, V16, V31, V24 VPDI $0x4, V17, V17, V17 // flip the doublewords to big-endian order VPDI $0x4, V18, V18, V18 // flip the doublewords to big-endian order VPDI $0x4, V19, V19, V19 // flip the doublewords to big-endian order VPDI $0x4, V20, V20, V20 // flip the doublewords to big-endian order VPDI $0x4, V21, V21, V21 // flip the doublewords to big-endian order VPDI $0x4, V22, V22, V22 // flip the doublewords to big-endian order VPDI $0x4, V23, V23, V23 // flip the doublewords to big-endian order VPDI $0x4, V24, V24, V24 // flip the doublewords to big-endian order VSTM V17, V24, 0(R7) // 128-bytes into z ADD $128, R7 ADD $128, R10 // i += 16 SUB $16, R3 // n -= 16 BGE UU1 // if n >= 0 goto U1 VLGVG $1, V0, R4 // put cf into R4 SUB $1, R4 // save cf A1: ADD $12, R3 // n += 16 BLT v1 // if n < 0 goto v1 U1: // n >= 0 // regular loop body unrolled 4x MOVD 0(R8)(R10*1), R5 MOVD 8(R8)(R10*1), R6 MOVD 16(R8)(R10*1), R7 MOVD 24(R8)(R10*1), R1 MOVD R0, R11 SUBC R4, R11 // restore CF MOVD 0(R9)(R10*1), R11 SUBE R11, R5 MOVD 8(R9)(R10*1), R11 SUBE R11, R6 MOVD 16(R9)(R10*1), R11 SUBE R11, R7 MOVD 24(R9)(R10*1), R11 SUBE R11, R1 MOVD R0, R4 SUBE R4, R4 // save CF MOVD R5, 0(R2)(R10*1) MOVD R6, 8(R2)(R10*1) MOVD R7, 16(R2)(R10*1) MOVD R1, 24(R2)(R10*1) ADD $32, R10 // i += 4 SUB $4, R3 // n -= 4 BGE U1 // if n >= 0 goto U1n v1: ADD $4, R3 // n += 4 BLE E1 // if n <= 0 goto E1 L1: // n > 0 MOVD R0, R11 SUBC R4, R11 // restore CF MOVD 0(R8)(R10*1), R5 MOVD 0(R9)(R10*1), R11 SUBE R11, R5 MOVD R5, 0(R2)(R10*1) MOVD R0, R4 SUBE R4, R4 // save CF ADD $8, R10 // i++ SUB $1, R3 // n-- BGT L1 // if n > 0 goto L1n E1: NEG R4, R4 MOVD R4, c+72(FP) // return c RET // DI = R3, CX = R4, SI = r10, r8 = r8, r9=r9, r10 = r2, r11 = r5, r12 = r6, r13 = r7, r14 = r1 (R0 set to 0) + use R11 // func subVV(z, x, y []Word) (c Word) // (same as addVV except for SUBC/SUBE instead of ADDC/ADDE and label names) TEXT ·subVV_novec(SB), NOSPLIT, $0 MOVD z_len+8(FP), R3 MOVD x+24(FP), R8 MOVD y+48(FP), R9 MOVD z+0(FP), R2 MOVD $0, R4 // c = 0 MOVD $0, R0 // make sure it's zero MOVD $0, R10 // i = 0 // s/JL/JMP/ below to disable the unrolled loop SUB $4, R3 // n -= 4 BLT v1 // if n < 0 goto v1 U1: // n >= 0 // regular loop body unrolled 4x MOVD 0(R8)(R10*1), R5 MOVD 8(R8)(R10*1), R6 MOVD 16(R8)(R10*1), R7 MOVD 24(R8)(R10*1), R1 MOVD R0, R11 SUBC R4, R11 // restore CF MOVD 0(R9)(R10*1), R11 SUBE R11, R5 MOVD 8(R9)(R10*1), R11 SUBE R11, R6 MOVD 16(R9)(R10*1), R11 SUBE R11, R7 MOVD 24(R9)(R10*1), R11 SUBE R11, R1 MOVD R0, R4 SUBE R4, R4 // save CF MOVD R5, 0(R2)(R10*1) MOVD R6, 8(R2)(R10*1) MOVD R7, 16(R2)(R10*1) MOVD R1, 24(R2)(R10*1) ADD $32, R10 // i += 4 SUB $4, R3 // n -= 4 BGE U1 // if n >= 0 goto U1 v1: ADD $4, R3 // n += 4 BLE E1 // if n <= 0 goto E1 L1: // n > 0 MOVD R0, R11 SUBC R4, R11 // restore CF MOVD 0(R8)(R10*1), R5 MOVD 0(R9)(R10*1), R11 SUBE R11, R5 MOVD R5, 0(R2)(R10*1) MOVD R0, R4 SUBE R4, R4 // save CF ADD $8, R10 // i++ SUB $1, R3 // n-- BGT L1 // if n > 0 goto L1 E1: NEG R4, R4 MOVD R4, c+72(FP) // return c RET TEXT ·addVW(SB), NOSPLIT, $0 MOVD z_len+8(FP), R5 // length of z MOVD x+24(FP), R6 MOVD y+48(FP), R7 // c = y MOVD z+0(FP), R8 CMPBEQ R5, $0, returnC // if len(z) == 0, we can have an early return // Add the first two words, and determine which path (copy path or loop path) to take based on the carry flag. ADDC 0(R6), R7 MOVD R7, 0(R8) CMPBEQ R5, $1, returnResult // len(z) == 1 MOVD $0, R9 ADDE 8(R6), R9 MOVD R9, 8(R8) CMPBEQ R5, $2, returnResult // len(z) == 2 // Update the counters MOVD $16, R12 // i = 2 MOVD $-2(R5), R5 // n = n - 2 loopOverEachWord: BRC $12, copySetup // carry = 0, copy the rest MOVD $1, R9 // Originally we used the carry flag generated in the previous iteration // (i.e: ADDE could be used here to do the addition). However, since we // already know carry is 1 (otherwise we will go to copy section), we can use // ADDC here so the current iteration does not depend on the carry flag // generated in the previous iteration. This could be useful when branch prediction happens. ADDC 0(R6)(R12*1), R9 MOVD R9, 0(R8)(R12*1) // z[i] = x[i] + c MOVD $8(R12), R12 // i++ BRCTG R5, loopOverEachWord // n-- // Return the current carry value returnResult: MOVD $0, R0 ADDE R0, R0 MOVD R0, c+56(FP) RET // Update position of x(R6) and z(R8) based on the current counter value and perform copying. // With the assumption that x and z will not overlap with each other or x and z will // point to same memory region, we can use a faster version of copy using only MVC here. // In the following implementation, we have three copy loops, each copying a word, 4 words, and // 32 words at a time. Via benchmarking, this implementation is faster than calling runtime·memmove. copySetup: ADD R12, R6 ADD R12, R8 CMPBGE R5, $4, mediumLoop smallLoop: // does a loop unrolling to copy word when n < 4 CMPBEQ R5, $0, returnZero MVC $8, 0(R6), 0(R8) CMPBEQ R5, $1, returnZero MVC $8, 8(R6), 8(R8) CMPBEQ R5, $2, returnZero MVC $8, 16(R6), 16(R8) returnZero: MOVD $0, c+56(FP) // return 0 as carry RET mediumLoop: CMPBLT R5, $4, smallLoop CMPBLT R5, $32, mediumLoopBody largeLoop: // Copying 256 bytes at a time. MVC $256, 0(R6), 0(R8) MOVD $256(R6), R6 MOVD $256(R8), R8 MOVD $-32(R5), R5 CMPBGE R5, $32, largeLoop BR mediumLoop mediumLoopBody: // Copying 32 bytes at a time MVC $32, 0(R6), 0(R8) MOVD $32(R6), R6 MOVD $32(R8), R8 MOVD $-4(R5), R5 CMPBGE R5, $4, mediumLoopBody BR smallLoop returnC: MOVD R7, c+56(FP) RET TEXT ·subVW(SB), NOSPLIT, $0 MOVD z_len+8(FP), R5 MOVD x+24(FP), R6 MOVD y+48(FP), R7 // The borrow bit passed in MOVD z+0(FP), R8 MOVD $0, R0 // R0 is a temporary variable used during computation. Ensure it has zero in it. CMPBEQ R5, $0, returnC // len(z) == 0, have an early return // Subtract the first two words, and determine which path (copy path or loop path) to take based on the borrow flag MOVD 0(R6), R9 SUBC R7, R9 MOVD R9, 0(R8) CMPBEQ R5, $1, returnResult MOVD 8(R6), R9 SUBE R0, R9 MOVD R9, 8(R8) CMPBEQ R5, $2, returnResult // Update the counters MOVD $16, R12 // i = 2 MOVD $-2(R5), R5 // n = n - 2 loopOverEachWord: BRC $3, copySetup // no borrow, copy the rest MOVD 0(R6)(R12*1), R9 // Originally we used the borrow flag generated in the previous iteration // (i.e: SUBE could be used here to do the subtraction). However, since we // already know borrow is 1 (otherwise we will go to copy section), we can // use SUBC here so the current iteration does not depend on the borrow flag // generated in the previous iteration. This could be useful when branch prediction happens. SUBC $1, R9 MOVD R9, 0(R8)(R12*1) // z[i] = x[i] - 1 MOVD $8(R12), R12 // i++ BRCTG R5, loopOverEachWord // n-- // return the current borrow value returnResult: SUBE R0, R0 NEG R0, R0 MOVD R0, c+56(FP) RET // Update position of x(R6) and z(R8) based on the current counter value and perform copying. // With the assumption that x and z will not overlap with each other or x and z will // point to same memory region, we can use a faster version of copy using only MVC here. // In the following implementation, we have three copy loops, each copying a word, 4 words, and // 32 words at a time. Via benchmarking, this implementation is faster than calling runtime·memmove. copySetup: ADD R12, R6 ADD R12, R8 CMPBGE R5, $4, mediumLoop smallLoop: // does a loop unrolling to copy word when n < 4 CMPBEQ R5, $0, returnZero MVC $8, 0(R6), 0(R8) CMPBEQ R5, $1, returnZero MVC $8, 8(R6), 8(R8) CMPBEQ R5, $2, returnZero MVC $8, 16(R6), 16(R8) returnZero: MOVD $0, c+56(FP) // return 0 as borrow RET mediumLoop: CMPBLT R5, $4, smallLoop CMPBLT R5, $32, mediumLoopBody largeLoop: // Copying 256 bytes at a time MVC $256, 0(R6), 0(R8) MOVD $256(R6), R6 MOVD $256(R8), R8 MOVD $-32(R5), R5 CMPBGE R5, $32, largeLoop BR mediumLoop mediumLoopBody: // Copying 32 bytes at a time MVC $32, 0(R6), 0(R8) MOVD $32(R6), R6 MOVD $32(R8), R8 MOVD $-4(R5), R5 CMPBGE R5, $4, mediumLoopBody BR smallLoop returnC: MOVD R7, c+56(FP) RET // func shlVU(z, x []Word, s uint) (c Word) TEXT ·shlVU(SB), NOSPLIT, $0 BR ·shlVU_g(SB) // func shrVU(z, x []Word, s uint) (c Word) TEXT ·shrVU(SB), NOSPLIT, $0 BR ·shrVU_g(SB) // CX = R4, r8 = r8, r9=r9, r10 = r2, r11 = r5, DX = r3, AX = r6, BX = R1, (R0 set to 0) + use R11 + use R7 for i // func mulAddVWW(z, x []Word, y, r Word) (c Word) TEXT ·mulAddVWW(SB), NOSPLIT, $0 MOVD z+0(FP), R2 MOVD x+24(FP), R8 MOVD y+48(FP), R9 MOVD r+56(FP), R4 // c = r MOVD z_len+8(FP), R5 MOVD $0, R1 // i = 0 MOVD $0, R7 // i*8 = 0 MOVD $0, R0 // make sure it's zero BR E5 L5: MOVD (R8)(R1*1), R6 MULHDU R9, R6 ADDC R4, R11 // add to low order bits ADDE R0, R6 MOVD R11, (R2)(R1*1) MOVD R6, R4 ADD $8, R1 // i*8 + 8 ADD $1, R7 // i++ E5: CMPBLT R7, R5, L5 // i < n MOVD R4, c+64(FP) RET // func addMulVVW(z, x []Word, y Word) (c Word) // CX = R4, r8 = r8, r9=r9, r10 = r2, r11 = r5, AX = r11, DX = R6, r12=r12, BX = R1, (R0 set to 0) + use R11 + use R7 for i TEXT ·addMulVVW(SB), NOSPLIT, $0 MOVD z+0(FP), R2 MOVD x+24(FP), R8 MOVD y+48(FP), R9 MOVD z_len+8(FP), R5 MOVD $0, R1 // i*8 = 0 MOVD $0, R7 // i = 0 MOVD $0, R0 // make sure it's zero MOVD $0, R4 // c = 0 MOVD R5, R12 AND $-2, R12 CMPBGE R5, $2, A6 BR E6 A6: MOVD (R8)(R1*1), R6 MULHDU R9, R6 MOVD (R2)(R1*1), R10 ADDC R10, R11 // add to low order bits ADDE R0, R6 ADDC R4, R11 ADDE R0, R6 MOVD R6, R4 MOVD R11, (R2)(R1*1) MOVD (8)(R8)(R1*1), R6 MULHDU R9, R6 MOVD (8)(R2)(R1*1), R10 ADDC R10, R11 // add to low order bits ADDE R0, R6 ADDC R4, R11 ADDE R0, R6 MOVD R6, R4 MOVD R11, (8)(R2)(R1*1) ADD $16, R1 // i*8 + 8 ADD $2, R7 // i++ CMPBLT R7, R12, A6 BR E6 L6: MOVD (R8)(R1*1), R6 MULHDU R9, R6 MOVD (R2)(R1*1), R10 ADDC R10, R11 // add to low order bits ADDE R0, R6 ADDC R4, R11 ADDE R0, R6 MOVD R6, R4 MOVD R11, (R2)(R1*1) ADD $8, R1 // i*8 + 8 ADD $1, R7 // i++ E6: CMPBLT R7, R5, L6 // i < n MOVD R4, c+56(FP) RET