// Copyright 2009 The Go Authors. All rights reserved. // Use of this source code is governed by a BSD-style // license that can be found in the LICENSE file. // This file implements unsigned multi-precision integers (natural // numbers). They are the building blocks for the implementation // of signed integers, rationals, and floating-point numbers. // // Caution: This implementation relies on the function "alias" // which assumes that (nat) slice capacities are never // changed (no 3-operand slice expressions). If that // changes, alias needs to be updated for correctness. package big import ( "encoding/binary" "math/bits" "math/rand" "sync" ) // An unsigned integer x of the form // // x = x[n-1]*_B^(n-1) + x[n-2]*_B^(n-2) + ... + x[1]*_B + x[0] // // with 0 <= x[i] < _B and 0 <= i < n is stored in a slice of length n, // with the digits x[i] as the slice elements. // // A number is normalized if the slice contains no leading 0 digits. // During arithmetic operations, denormalized values may occur but are // always normalized before returning the final result. The normalized // representation of 0 is the empty or nil slice (length = 0). type nat []Word var ( natOne = nat{1} natTwo = nat{2} natFive = nat{5} natTen = nat{10} ) func (z nat) String() string { return "0x" + string(z.itoa(false, 16)) } func (z nat) clear() { for i := range z { z[i] = 0 } } func (z nat) norm() nat { i := len(z) for i > 0 && z[i-1] == 0 { i-- } return z[0:i] } func (z nat) make(n int) nat { if n <= cap(z) { return z[:n] // reuse z } if n == 1 { // Most nats start small and stay that way; don't over-allocate. return make(nat, 1) } // Choosing a good value for e has significant performance impact // because it increases the chance that a value can be reused. const e = 4 // extra capacity return make(nat, n, n+e) } func (z nat) setWord(x Word) nat { if x == 0 { return z[:0] } z = z.make(1) z[0] = x return z } func (z nat) setUint64(x uint64) nat { // single-word value if w := Word(x); uint64(w) == x { return z.setWord(w) } // 2-word value z = z.make(2) z[1] = Word(x >> 32) z[0] = Word(x) return z } func (z nat) set(x nat) nat { z = z.make(len(x)) copy(z, x) return z } func (z nat) add(x, y nat) nat { m := len(x) n := len(y) switch { case m < n: return z.add(y, x) case m == 0: // n == 0 because m >= n; result is 0 return z[:0] case n == 0: // result is x return z.set(x) } // m > 0 z = z.make(m + 1) c := addVV(z[0:n], x, y) if m > n { c = addVW(z[n:m], x[n:], c) } z[m] = c return z.norm() } func (z nat) sub(x, y nat) nat { m := len(x) n := len(y) switch { case m < n: panic("underflow") case m == 0: // n == 0 because m >= n; result is 0 return z[:0] case n == 0: // result is x return z.set(x) } // m > 0 z = z.make(m) c := subVV(z[0:n], x, y) if m > n { c = subVW(z[n:], x[n:], c) } if c != 0 { panic("underflow") } return z.norm() } func (x nat) cmp(y nat) (r int) { m := len(x) n := len(y) if m != n || m == 0 { switch { case m < n: r = -1 case m > n: r = 1 } return } i := m - 1 for i > 0 && x[i] == y[i] { i-- } switch { case x[i] < y[i]: r = -1 case x[i] > y[i]: r = 1 } return } func (z nat) mulAddWW(x nat, y, r Word) nat { m := len(x) if m == 0 || y == 0 { return z.setWord(r) // result is r } // m > 0 z = z.make(m + 1) z[m] = mulAddVWW(z[0:m], x, y, r) return z.norm() } // basicMul multiplies x and y and leaves the result in z. // The (non-normalized) result is placed in z[0 : len(x) + len(y)]. func basicMul(z, x, y nat) { z[0 : len(x)+len(y)].clear() // initialize z for i, d := range y { if d != 0 { z[len(x)+i] = addMulVVW(z[i:i+len(x)], x, d) } } } // montgomery computes z mod m = x*y*2**(-n*_W) mod m, // assuming k = -1/m mod 2**_W. // z is used for storing the result which is returned; // z must not alias x, y or m. // See Gueron, "Efficient Software Implementations of Modular Exponentiation". // https://eprint.iacr.org/2011/239.pdf // In the terminology of that paper, this is an "Almost Montgomery Multiplication": // x and y are required to satisfy 0 <= z < 2**(n*_W) and then the result // z is guaranteed to satisfy 0 <= z < 2**(n*_W), but it may not be < m. func (z nat) montgomery(x, y, m nat, k Word, n int) nat { // This code assumes x, y, m are all the same length, n. // (required by addMulVVW and the for loop). // It also assumes that x, y are already reduced mod m, // or else the result will not be properly reduced. if len(x) != n || len(y) != n || len(m) != n { panic("math/big: mismatched montgomery number lengths") } z = z.make(n * 2) z.clear() var c Word for i := 0; i < n; i++ { d := y[i] c2 := addMulVVW(z[i:n+i], x, d) t := z[i] * k c3 := addMulVVW(z[i:n+i], m, t) cx := c + c2 cy := cx + c3 z[n+i] = cy if cx < c2 || cy < c3 { c = 1 } else { c = 0 } } if c != 0 { subVV(z[:n], z[n:], m) } else { copy(z[:n], z[n:]) } return z[:n] } // Fast version of z[0:n+n>>1].add(z[0:n+n>>1], x[0:n]) w/o bounds checks. // Factored out for readability - do not use outside karatsuba. func karatsubaAdd(z, x nat, n int) { if c := addVV(z[0:n], z, x); c != 0 { addVW(z[n:n+n>>1], z[n:], c) } } // Like karatsubaAdd, but does subtract. func karatsubaSub(z, x nat, n int) { if c := subVV(z[0:n], z, x); c != 0 { subVW(z[n:n+n>>1], z[n:], c) } } // Operands that are shorter than karatsubaThreshold are multiplied using // "grade school" multiplication; for longer operands the Karatsuba algorithm // is used. var karatsubaThreshold = 40 // computed by calibrate_test.go // karatsuba multiplies x and y and leaves the result in z. // Both x and y must have the same length n and n must be a // power of 2. The result vector z must have len(z) >= 6*n. // The (non-normalized) result is placed in z[0 : 2*n]. func karatsuba(z, x, y nat) { n := len(y) // Switch to basic multiplication if numbers are odd or small. // (n is always even if karatsubaThreshold is even, but be // conservative) if n&1 != 0 || n < karatsubaThreshold || n < 2 { basicMul(z, x, y) return } // n&1 == 0 && n >= karatsubaThreshold && n >= 2 // Karatsuba multiplication is based on the observation that // for two numbers x and y with: // // x = x1*b + x0 // y = y1*b + y0 // // the product x*y can be obtained with 3 products z2, z1, z0 // instead of 4: // // x*y = x1*y1*b*b + (x1*y0 + x0*y1)*b + x0*y0 // = z2*b*b + z1*b + z0 // // with: // // xd = x1 - x0 // yd = y0 - y1 // // z1 = xd*yd + z2 + z0 // = (x1-x0)*(y0 - y1) + z2 + z0 // = x1*y0 - x1*y1 - x0*y0 + x0*y1 + z2 + z0 // = x1*y0 - z2 - z0 + x0*y1 + z2 + z0 // = x1*y0 + x0*y1 // split x, y into "digits" n2 := n >> 1 // n2 >= 1 x1, x0 := x[n2:], x[0:n2] // x = x1*b + y0 y1, y0 := y[n2:], y[0:n2] // y = y1*b + y0 // z is used for the result and temporary storage: // // 6*n 5*n 4*n 3*n 2*n 1*n 0*n // z = [z2 copy|z0 copy| xd*yd | yd:xd | x1*y1 | x0*y0 ] // // For each recursive call of karatsuba, an unused slice of // z is passed in that has (at least) half the length of the // caller's z. // compute z0 and z2 with the result "in place" in z karatsuba(z, x0, y0) // z0 = x0*y0 karatsuba(z[n:], x1, y1) // z2 = x1*y1 // compute xd (or the negative value if underflow occurs) s := 1 // sign of product xd*yd xd := z[2*n : 2*n+n2] if subVV(xd, x1, x0) != 0 { // x1-x0 s = -s subVV(xd, x0, x1) // x0-x1 } // compute yd (or the negative value if underflow occurs) yd := z[2*n+n2 : 3*n] if subVV(yd, y0, y1) != 0 { // y0-y1 s = -s subVV(yd, y1, y0) // y1-y0 } // p = (x1-x0)*(y0-y1) == x1*y0 - x1*y1 - x0*y0 + x0*y1 for s > 0 // p = (x0-x1)*(y0-y1) == x0*y0 - x0*y1 - x1*y0 + x1*y1 for s < 0 p := z[n*3:] karatsuba(p, xd, yd) // save original z2:z0 // (ok to use upper half of z since we're done recurring) r := z[n*4:] copy(r, z[:n*2]) // add up all partial products // // 2*n n 0 // z = [ z2 | z0 ] // + [ z0 ] // + [ z2 ] // + [ p ] // karatsubaAdd(z[n2:], r, n) karatsubaAdd(z[n2:], r[n:], n) if s > 0 { karatsubaAdd(z[n2:], p, n) } else { karatsubaSub(z[n2:], p, n) } } // alias reports whether x and y share the same base array. // // Note: alias assumes that the capacity of underlying arrays // is never changed for nat values; i.e. that there are // no 3-operand slice expressions in this code (or worse, // reflect-based operations to the same effect). func alias(x, y nat) bool { return cap(x) > 0 && cap(y) > 0 && &x[0:cap(x)][cap(x)-1] == &y[0:cap(y)][cap(y)-1] } // addAt implements z += x<<(_W*i); z must be long enough. // (we don't use nat.add because we need z to stay the same // slice, and we don't need to normalize z after each addition) func addAt(z, x nat, i int) { if n := len(x); n > 0 { if c := addVV(z[i:i+n], z[i:], x); c != 0 { j := i + n if j < len(z) { addVW(z[j:], z[j:], c) } } } } func max(x, y int) int { if x > y { return x } return y } // karatsubaLen computes an approximation to the maximum k <= n such that // k = p<= 0. Thus, the // result is the largest number that can be divided repeatedly by 2 before // becoming about the value of threshold. func karatsubaLen(n, threshold int) int { i := uint(0) for n > threshold { n >>= 1 i++ } return n << i } func (z nat) mul(x, y nat) nat { m := len(x) n := len(y) switch { case m < n: return z.mul(y, x) case m == 0 || n == 0: return z[:0] case n == 1: return z.mulAddWW(x, y[0], 0) } // m >= n > 1 // determine if z can be reused if alias(z, x) || alias(z, y) { z = nil // z is an alias for x or y - cannot reuse } // use basic multiplication if the numbers are small if n < karatsubaThreshold { z = z.make(m + n) basicMul(z, x, y) return z.norm() } // m >= n && n >= karatsubaThreshold && n >= 2 // determine Karatsuba length k such that // // x = xh*b + x0 (0 <= x0 < b) // y = yh*b + y0 (0 <= y0 < b) // b = 1<<(_W*k) ("base" of digits xi, yi) // k := karatsubaLen(n, karatsubaThreshold) // k <= n // multiply x0 and y0 via Karatsuba x0 := x[0:k] // x0 is not normalized y0 := y[0:k] // y0 is not normalized z = z.make(max(6*k, m+n)) // enough space for karatsuba of x0*y0 and full result of x*y karatsuba(z, x0, y0) z = z[0 : m+n] // z has final length but may be incomplete z[2*k:].clear() // upper portion of z is garbage (and 2*k <= m+n since k <= n <= m) // If xh != 0 or yh != 0, add the missing terms to z. For // // xh = xi*b^i + ... + x2*b^2 + x1*b (0 <= xi < b) // yh = y1*b (0 <= y1 < b) // // the missing terms are // // x0*y1*b and xi*y0*b^i, xi*y1*b^(i+1) for i > 0 // // since all the yi for i > 1 are 0 by choice of k: If any of them // were > 0, then yh >= b^2 and thus y >= b^2. Then k' = k*2 would // be a larger valid threshold contradicting the assumption about k. // if k < n || m != n { tp := getNat(3 * k) t := *tp // add x0*y1*b x0 := x0.norm() y1 := y[k:] // y1 is normalized because y is t = t.mul(x0, y1) // update t so we don't lose t's underlying array addAt(z, t, k) // add xi*y0< k { xi = xi[:k] } xi = xi.norm() t = t.mul(xi, y0) addAt(z, t, i) t = t.mul(xi, y1) addAt(z, t, i+k) } putNat(tp) } return z.norm() } // basicSqr sets z = x*x and is asymptotically faster than basicMul // by about a factor of 2, but slower for small arguments due to overhead. // Requirements: len(x) > 0, len(z) == 2*len(x) // The (non-normalized) result is placed in z. func basicSqr(z, x nat) { n := len(x) tp := getNat(2 * n) t := *tp // temporary variable to hold the products t.clear() z[1], z[0] = mulWW(x[0], x[0]) // the initial square for i := 1; i < n; i++ { d := x[i] // z collects the squares x[i] * x[i] z[2*i+1], z[2*i] = mulWW(d, d) // t collects the products x[i] * x[j] where j < i t[2*i] = addMulVVW(t[i:2*i], x[0:i], d) } t[2*n-1] = shlVU(t[1:2*n-1], t[1:2*n-1], 1) // double the j < i products addVV(z, z, t) // combine the result putNat(tp) } // karatsubaSqr squares x and leaves the result in z. // len(x) must be a power of 2 and len(z) >= 6*len(x). // The (non-normalized) result is placed in z[0 : 2*len(x)]. // // The algorithm and the layout of z are the same as for karatsuba. func karatsubaSqr(z, x nat) { n := len(x) if n&1 != 0 || n < karatsubaSqrThreshold || n < 2 { basicSqr(z[:2*n], x) return } n2 := n >> 1 x1, x0 := x[n2:], x[0:n2] karatsubaSqr(z, x0) karatsubaSqr(z[n:], x1) // s = sign(xd*yd) == -1 for xd != 0; s == 1 for xd == 0 xd := z[2*n : 2*n+n2] if subVV(xd, x1, x0) != 0 { subVV(xd, x0, x1) } p := z[n*3:] karatsubaSqr(p, xd) r := z[n*4:] copy(r, z[:n*2]) karatsubaAdd(z[n2:], r, n) karatsubaAdd(z[n2:], r[n:], n) karatsubaSub(z[n2:], p, n) // s == -1 for p != 0; s == 1 for p == 0 } // Operands that are shorter than basicSqrThreshold are squared using // "grade school" multiplication; for operands longer than karatsubaSqrThreshold // we use the Karatsuba algorithm optimized for x == y. var basicSqrThreshold = 20 // computed by calibrate_test.go var karatsubaSqrThreshold = 260 // computed by calibrate_test.go // z = x*x func (z nat) sqr(x nat) nat { n := len(x) switch { case n == 0: return z[:0] case n == 1: d := x[0] z = z.make(2) z[1], z[0] = mulWW(d, d) return z.norm() } if alias(z, x) { z = nil // z is an alias for x - cannot reuse } if n < basicSqrThreshold { z = z.make(2 * n) basicMul(z, x, x) return z.norm() } if n < karatsubaSqrThreshold { z = z.make(2 * n) basicSqr(z, x) return z.norm() } // Use Karatsuba multiplication optimized for x == y. // The algorithm and layout of z are the same as for mul. // z = (x1*b + x0)^2 = x1^2*b^2 + 2*x1*x0*b + x0^2 k := karatsubaLen(n, karatsubaSqrThreshold) x0 := x[0:k] z = z.make(max(6*k, 2*n)) karatsubaSqr(z, x0) // z = x0^2 z = z[0 : 2*n] z[2*k:].clear() if k < n { tp := getNat(2 * k) t := *tp x0 := x0.norm() x1 := x[k:] t = t.mul(x0, x1) addAt(z, t, k) addAt(z, t, k) // z = 2*x1*x0*b + x0^2 t = t.sqr(x1) addAt(z, t, 2*k) // z = x1^2*b^2 + 2*x1*x0*b + x0^2 putNat(tp) } return z.norm() } // mulRange computes the product of all the unsigned integers in the // range [a, b] inclusively. If a > b (empty range), the result is 1. func (z nat) mulRange(a, b uint64) nat { switch { case a == 0: // cut long ranges short (optimization) return z.setUint64(0) case a > b: return z.setUint64(1) case a == b: return z.setUint64(a) case a+1 == b: return z.mul(nat(nil).setUint64(a), nat(nil).setUint64(b)) } m := (a + b) / 2 return z.mul(nat(nil).mulRange(a, m), nat(nil).mulRange(m+1, b)) } // getNat returns a *nat of len n. The contents may not be zero. // The pool holds *nat to avoid allocation when converting to interface{}. func getNat(n int) *nat { var z *nat if v := natPool.Get(); v != nil { z = v.(*nat) } if z == nil { z = new(nat) } *z = z.make(n) if n > 0 { (*z)[0] = 0xfedcb // break code expecting zero } return z } func putNat(x *nat) { natPool.Put(x) } var natPool sync.Pool // bitLen returns the length of x in bits. // Unlike most methods, it works even if x is not normalized. func (x nat) bitLen() int { // This function is used in cryptographic operations. It must not leak // anything but the Int's sign and bit size through side-channels. Any // changes must be reviewed by a security expert. if i := len(x) - 1; i >= 0 { // bits.Len uses a lookup table for the low-order bits on some // architectures. Neutralize any input-dependent behavior by setting all // bits after the first one bit. top := uint(x[i]) top |= top >> 1 top |= top >> 2 top |= top >> 4 top |= top >> 8 top |= top >> 16 top |= top >> 16 >> 16 // ">> 32" doesn't compile on 32-bit architectures return i*_W + bits.Len(top) } return 0 } // trailingZeroBits returns the number of consecutive least significant zero // bits of x. func (x nat) trailingZeroBits() uint { if len(x) == 0 { return 0 } var i uint for x[i] == 0 { i++ } // x[i] != 0 return i*_W + uint(bits.TrailingZeros(uint(x[i]))) } // isPow2 returns i, true when x == 2**i and 0, false otherwise. func (x nat) isPow2() (uint, bool) { var i uint for x[i] == 0 { i++ } if i == uint(len(x))-1 && x[i]&(x[i]-1) == 0 { return i*_W + uint(bits.TrailingZeros(uint(x[i]))), true } return 0, false } func same(x, y nat) bool { return len(x) == len(y) && len(x) > 0 && &x[0] == &y[0] } // z = x << s func (z nat) shl(x nat, s uint) nat { if s == 0 { if same(z, x) { return z } if !alias(z, x) { return z.set(x) } } m := len(x) if m == 0 { return z[:0] } // m > 0 n := m + int(s/_W) z = z.make(n + 1) z[n] = shlVU(z[n-m:n], x, s%_W) z[0 : n-m].clear() return z.norm() } // z = x >> s func (z nat) shr(x nat, s uint) nat { if s == 0 { if same(z, x) { return z } if !alias(z, x) { return z.set(x) } } m := len(x) n := m - int(s/_W) if n <= 0 { return z[:0] } // n > 0 z = z.make(n) shrVU(z, x[m-n:], s%_W) return z.norm() } func (z nat) setBit(x nat, i uint, b uint) nat { j := int(i / _W) m := Word(1) << (i % _W) n := len(x) switch b { case 0: z = z.make(n) copy(z, x) if j >= n { // no need to grow return z } z[j] &^= m return z.norm() case 1: if j >= n { z = z.make(j + 1) z[n:].clear() } else { z = z.make(n) } copy(z, x) z[j] |= m // no need to normalize return z } panic("set bit is not 0 or 1") } // bit returns the value of the i'th bit, with lsb == bit 0. func (x nat) bit(i uint) uint { j := i / _W if j >= uint(len(x)) { return 0 } // 0 <= j < len(x) return uint(x[j] >> (i % _W) & 1) } // sticky returns 1 if there's a 1 bit within the // i least significant bits, otherwise it returns 0. func (x nat) sticky(i uint) uint { j := i / _W if j >= uint(len(x)) { if len(x) == 0 { return 0 } return 1 } // 0 <= j < len(x) for _, x := range x[:j] { if x != 0 { return 1 } } if x[j]<<(_W-i%_W) != 0 { return 1 } return 0 } func (z nat) and(x, y nat) nat { m := len(x) n := len(y) if m > n { m = n } // m <= n z = z.make(m) for i := 0; i < m; i++ { z[i] = x[i] & y[i] } return z.norm() } // trunc returns z = x mod 2ⁿ. func (z nat) trunc(x nat, n uint) nat { w := (n + _W - 1) / _W if uint(len(x)) < w { return z.set(x) } z = z.make(int(w)) copy(z, x) if n%_W != 0 { z[len(z)-1] &= 1<<(n%_W) - 1 } return z.norm() } func (z nat) andNot(x, y nat) nat { m := len(x) n := len(y) if n > m { n = m } // m >= n z = z.make(m) for i := 0; i < n; i++ { z[i] = x[i] &^ y[i] } copy(z[n:m], x[n:m]) return z.norm() } func (z nat) or(x, y nat) nat { m := len(x) n := len(y) s := x if m < n { n, m = m, n s = y } // m >= n z = z.make(m) for i := 0; i < n; i++ { z[i] = x[i] | y[i] } copy(z[n:m], s[n:m]) return z.norm() } func (z nat) xor(x, y nat) nat { m := len(x) n := len(y) s := x if m < n { n, m = m, n s = y } // m >= n z = z.make(m) for i := 0; i < n; i++ { z[i] = x[i] ^ y[i] } copy(z[n:m], s[n:m]) return z.norm() } // random creates a random integer in [0..limit), using the space in z if // possible. n is the bit length of limit. func (z nat) random(rand *rand.Rand, limit nat, n int) nat { if alias(z, limit) { z = nil // z is an alias for limit - cannot reuse } z = z.make(len(limit)) bitLengthOfMSW := uint(n % _W) if bitLengthOfMSW == 0 { bitLengthOfMSW = _W } mask := Word((1 << bitLengthOfMSW) - 1) for { switch _W { case 32: for i := range z { z[i] = Word(rand.Uint32()) } case 64: for i := range z { z[i] = Word(rand.Uint32()) | Word(rand.Uint32())<<32 } default: panic("unknown word size") } z[len(limit)-1] &= mask if z.cmp(limit) < 0 { break } } return z.norm() } // If m != 0 (i.e., len(m) != 0), expNN sets z to x**y mod m; // otherwise it sets z to x**y. The result is the value of z. func (z nat) expNN(x, y, m nat, slow bool) nat { if alias(z, x) || alias(z, y) { // We cannot allow in-place modification of x or y. z = nil } // x**y mod 1 == 0 if len(m) == 1 && m[0] == 1 { return z.setWord(0) } // m == 0 || m > 1 // x**0 == 1 if len(y) == 0 { return z.setWord(1) } // y > 0 // 0**y = 0 if len(x) == 0 { return z.setWord(0) } // x > 0 // 1**y = 1 if len(x) == 1 && x[0] == 1 { return z.setWord(1) } // x > 1 // x**1 == x if len(y) == 1 && y[0] == 1 { if len(m) != 0 { return z.rem(x, m) } return z.set(x) } // y > 1 if len(m) != 0 { // We likely end up being as long as the modulus. z = z.make(len(m)) // If the exponent is large, we use the Montgomery method for odd values, // and a 4-bit, windowed exponentiation for powers of two, // and a CRT-decomposed Montgomery method for the remaining values // (even values times non-trivial odd values, which decompose into one // instance of each of the first two cases). if len(y) > 1 && !slow { if m[0]&1 == 1 { return z.expNNMontgomery(x, y, m) } if logM, ok := m.isPow2(); ok { return z.expNNWindowed(x, y, logM) } return z.expNNMontgomeryEven(x, y, m) } } z = z.set(x) v := y[len(y)-1] // v > 0 because y is normalized and y > 0 shift := nlz(v) + 1 v <<= shift var q nat const mask = 1 << (_W - 1) // We walk through the bits of the exponent one by one. Each time we // see a bit, we square, thus doubling the power. If the bit is a one, // we also multiply by x, thus adding one to the power. w := _W - int(shift) // zz and r are used to avoid allocating in mul and div as // otherwise the arguments would alias. var zz, r nat for j := 0; j < w; j++ { zz = zz.sqr(z) zz, z = z, zz if v&mask != 0 { zz = zz.mul(z, x) zz, z = z, zz } if len(m) != 0 { zz, r = zz.div(r, z, m) zz, r, q, z = q, z, zz, r } v <<= 1 } for i := len(y) - 2; i >= 0; i-- { v = y[i] for j := 0; j < _W; j++ { zz = zz.sqr(z) zz, z = z, zz if v&mask != 0 { zz = zz.mul(z, x) zz, z = z, zz } if len(m) != 0 { zz, r = zz.div(r, z, m) zz, r, q, z = q, z, zz, r } v <<= 1 } } return z.norm() } // expNNMontgomeryEven calculates x**y mod m where m = m1 × m2 for m1 = 2ⁿ and m2 odd. // It uses two recursive calls to expNN for x**y mod m1 and x**y mod m2 // and then uses the Chinese Remainder Theorem to combine the results. // The recursive call using m1 will use expNNWindowed, // while the recursive call using m2 will use expNNMontgomery. // For more details, see Ç. K. Koç, “Montgomery Reduction with Even Modulus”, // IEE Proceedings: Computers and Digital Techniques, 141(5) 314-316, September 1994. // http://www.people.vcu.edu/~jwang3/CMSC691/j34monex.pdf func (z nat) expNNMontgomeryEven(x, y, m nat) nat { // Split m = m₁ × m₂ where m₁ = 2ⁿ n := m.trailingZeroBits() m1 := nat(nil).shl(natOne, n) m2 := nat(nil).shr(m, n) // We want z = x**y mod m. // z₁ = x**y mod m1 = (x**y mod m) mod m1 = z mod m1 // z₂ = x**y mod m2 = (x**y mod m) mod m2 = z mod m2 // (We are using the math/big convention for names here, // where the computation is z = x**y mod m, so its parts are z1 and z2. // The paper is computing x = a**e mod n; it refers to these as x2 and z1.) z1 := nat(nil).expNN(x, y, m1, false) z2 := nat(nil).expNN(x, y, m2, false) // Reconstruct z from z₁, z₂ using CRT, using algorithm from paper, // which uses only a single modInverse (and an easy one at that). // p = (z₁ - z₂) × m₂⁻¹ (mod m₁) // z = z₂ + p × m₂ // The final addition is in range because: // z = z₂ + p × m₂ // ≤ z₂ + (m₁-1) × m₂ // < m₂ + (m₁-1) × m₂ // = m₁ × m₂ // = m. z = z.set(z2) // Compute (z₁ - z₂) mod m1 [m1 == 2**n] into z1. z1 = z1.subMod2N(z1, z2, n) // Reuse z2 for p = (z₁ - z₂) [in z1] * m2⁻¹ (mod m₁ [= 2ⁿ]). m2inv := nat(nil).modInverse(m2, m1) z2 = z2.mul(z1, m2inv) z2 = z2.trunc(z2, n) // Reuse z1 for p * m2. z = z.add(z, z1.mul(z2, m2)) return z } // expNNWindowed calculates x**y mod m using a fixed, 4-bit window, // where m = 2**logM. func (z nat) expNNWindowed(x, y nat, logM uint) nat { if len(y) <= 1 { panic("big: misuse of expNNWindowed") } if x[0]&1 == 0 { // len(y) > 1, so y > logM. // x is even, so x**y is a multiple of 2**y which is a multiple of 2**logM. return z.setWord(0) } if logM == 1 { return z.setWord(1) } // zz is used to avoid allocating in mul as otherwise // the arguments would alias. w := int((logM + _W - 1) / _W) zzp := getNat(w) zz := *zzp const n = 4 // powers[i] contains x^i. var powers [1 << n]*nat for i := range powers { powers[i] = getNat(w) } *powers[0] = powers[0].set(natOne) *powers[1] = powers[1].trunc(x, logM) for i := 2; i < 1< mtop { i = mtop } advance := false z = z.setWord(1) for ; i >= 0; i-- { yi := y[i] if i == mtop { yi &= mmask } for j := 0; j < _W; j += n { if advance { // Account for use of 4 bits in previous iteration. // Unrolled loop for significant performance // gain. Use go test -bench=".*" in crypto/rsa // to check performance before making changes. zz = zz.sqr(z) zz, z = z, zz z = z.trunc(z, logM) zz = zz.sqr(z) zz, z = z, zz z = z.trunc(z, logM) zz = zz.sqr(z) zz, z = z, zz z = z.trunc(z, logM) zz = zz.sqr(z) zz, z = z, zz z = z.trunc(z, logM) } zz = zz.mul(z, *powers[yi>>(_W-n)]) zz, z = z, zz z = z.trunc(z, logM) yi <<= n advance = true } } *zzp = zz putNat(zzp) for i := range powers { putNat(powers[i]) } return z.norm() } // expNNMontgomery calculates x**y mod m using a fixed, 4-bit window. // Uses Montgomery representation. func (z nat) expNNMontgomery(x, y, m nat) nat { numWords := len(m) // We want the lengths of x and m to be equal. // It is OK if x >= m as long as len(x) == len(m). if len(x) > numWords { _, x = nat(nil).div(nil, x, m) // Note: now len(x) <= numWords, not guaranteed ==. } if len(x) < numWords { rr := make(nat, numWords) copy(rr, x) x = rr } // Ideally the precomputations would be performed outside, and reused // k0 = -m**-1 mod 2**_W. Algorithm from: Dumas, J.G. "On Newton–Raphson // Iteration for Multiplicative Inverses Modulo Prime Powers". k0 := 2 - m[0] t := m[0] - 1 for i := 1; i < _W; i <<= 1 { t *= t k0 *= (t + 1) } k0 = -k0 // RR = 2**(2*_W*len(m)) mod m RR := nat(nil).setWord(1) zz := nat(nil).shl(RR, uint(2*numWords*_W)) _, RR = nat(nil).div(RR, zz, m) if len(RR) < numWords { zz = zz.make(numWords) copy(zz, RR) RR = zz } // one = 1, with equal length to that of m one := make(nat, numWords) one[0] = 1 const n = 4 // powers[i] contains x^i var powers [1 << n]nat powers[0] = powers[0].montgomery(one, RR, m, k0, numWords) powers[1] = powers[1].montgomery(x, RR, m, k0, numWords) for i := 2; i < 1<= 0; i-- { yi := y[i] for j := 0; j < _W; j += n { if i != len(y)-1 || j != 0 { zz = zz.montgomery(z, z, m, k0, numWords) z = z.montgomery(zz, zz, m, k0, numWords) zz = zz.montgomery(z, z, m, k0, numWords) z = z.montgomery(zz, zz, m, k0, numWords) } zz = zz.montgomery(z, powers[yi>>(_W-n)], m, k0, numWords) z, zz = zz, z yi <<= n } } // convert to regular number zz = zz.montgomery(z, one, m, k0, numWords) // One last reduction, just in case. // See golang.org/issue/13907. if zz.cmp(m) >= 0 { // Common case is m has high bit set; in that case, // since zz is the same length as m, there can be just // one multiple of m to remove. Just subtract. // We think that the subtract should be sufficient in general, // so do that unconditionally, but double-check, // in case our beliefs are wrong. // The div is not expected to be reached. zz = zz.sub(zz, m) if zz.cmp(m) >= 0 { _, zz = nat(nil).div(nil, zz, m) } } return zz.norm() } // bytes writes the value of z into buf using big-endian encoding. // The value of z is encoded in the slice buf[i:]. If the value of z // cannot be represented in buf, bytes panics. The number i of unused // bytes at the beginning of buf is returned as result. func (z nat) bytes(buf []byte) (i int) { // This function is used in cryptographic operations. It must not leak // anything but the Int's sign and bit size through side-channels. Any // changes must be reviewed by a security expert. i = len(buf) for _, d := range z { for j := 0; j < _S; j++ { i-- if i >= 0 { buf[i] = byte(d) } else if byte(d) != 0 { panic("math/big: buffer too small to fit value") } d >>= 8 } } if i < 0 { i = 0 } for i < len(buf) && buf[i] == 0 { i++ } return } // bigEndianWord returns the contents of buf interpreted as a big-endian encoded Word value. func bigEndianWord(buf []byte) Word { if _W == 64 { return Word(binary.BigEndian.Uint64(buf)) } return Word(binary.BigEndian.Uint32(buf)) } // setBytes interprets buf as the bytes of a big-endian unsigned // integer, sets z to that value, and returns z. func (z nat) setBytes(buf []byte) nat { z = z.make((len(buf) + _S - 1) / _S) i := len(buf) for k := 0; i >= _S; k++ { z[k] = bigEndianWord(buf[i-_S : i]) i -= _S } if i > 0 { var d Word for s := uint(0); i > 0; s += 8 { d |= Word(buf[i-1]) << s i-- } z[len(z)-1] = d } return z.norm() } // sqrt sets z = ⌊√x⌋ func (z nat) sqrt(x nat) nat { if x.cmp(natOne) <= 0 { return z.set(x) } if alias(z, x) { z = nil } // Start with value known to be too large and repeat "z = ⌊(z + ⌊x/z⌋)/2⌋" until it stops getting smaller. // See Brent and Zimmermann, Modern Computer Arithmetic, Algorithm 1.13 (SqrtInt). // https://members.loria.fr/PZimmermann/mca/pub226.html // If x is one less than a perfect square, the sequence oscillates between the correct z and z+1; // otherwise it converges to the correct z and stays there. var z1, z2 nat z1 = z z1 = z1.setUint64(1) z1 = z1.shl(z1, uint(x.bitLen()+1)/2) // must be ≥ √x for n := 0; ; n++ { z2, _ = z2.div(nil, x, z1) z2 = z2.add(z2, z1) z2 = z2.shr(z2, 1) if z2.cmp(z1) >= 0 { // z1 is answer. // Figure out whether z1 or z2 is currently aliased to z by looking at loop count. if n&1 == 0 { return z1 } return z.set(z1) } z1, z2 = z2, z1 } } // subMod2N returns z = (x - y) mod 2ⁿ. func (z nat) subMod2N(x, y nat, n uint) nat { if uint(x.bitLen()) > n { if alias(z, x) { // ok to overwrite x in place x = x.trunc(x, n) } else { x = nat(nil).trunc(x, n) } } if uint(y.bitLen()) > n { if alias(z, y) { // ok to overwrite y in place y = y.trunc(y, n) } else { y = nat(nil).trunc(y, n) } } if x.cmp(y) >= 0 { return z.sub(x, y) } // x - y < 0; x - y mod 2ⁿ = x - y + 2ⁿ = 2ⁿ - (y - x) = 1 + 2ⁿ-1 - (y - x) = 1 + ^(y - x). z = z.sub(y, x) for uint(len(z))*_W < n { z = append(z, 0) } for i := range z { z[i] = ^z[i] } z = z.trunc(z, n) return z.add(z, natOne) }