// Copyright 2009 The Go Authors. All rights reserved. // Use of this source code is governed by a BSD-style // license that can be found in the LICENSE file. // Use an external test to avoid os/exec -> net/http -> crypto/x509 -> os/exec // circular dependency on non-cgo darwin. package exec_test import ( "bufio" "bytes" "context" "errors" "flag" "fmt" "internal/poll" "internal/testenv" "io" "log" "net" "net/http" "net/http/httptest" "os" "os/exec" "os/exec/internal/fdtest" "os/signal" "path/filepath" "runtime" "runtime/debug" "strconv" "strings" "sync" "sync/atomic" "testing" "time" ) // haveUnexpectedFDs is set at init time to report whether any file descriptors // were open at program start. var haveUnexpectedFDs bool func init() { godebug := os.Getenv("GODEBUG") if godebug != "" { godebug += "," } godebug += "execwait=2" os.Setenv("GODEBUG", godebug) if os.Getenv("GO_EXEC_TEST_PID") != "" { return } if runtime.GOOS == "windows" { return } for fd := uintptr(3); fd <= 100; fd++ { if poll.IsPollDescriptor(fd) { continue } if fdtest.Exists(fd) { haveUnexpectedFDs = true return } } } // TestMain allows the test binary to impersonate many other binaries, // some of which may manipulate os.Stdin, os.Stdout, and/or os.Stderr // (and thus cannot run as an ordinary Test function, since the testing // package monkey-patches those variables before running tests). func TestMain(m *testing.M) { flag.Parse() pid := os.Getpid() if os.Getenv("GO_EXEC_TEST_PID") == "" { os.Setenv("GO_EXEC_TEST_PID", strconv.Itoa(pid)) code := m.Run() if code == 0 && flag.Lookup("test.run").Value.String() == "" && flag.Lookup("test.list").Value.String() == "" { for cmd := range helperCommands { if _, ok := helperCommandUsed.Load(cmd); !ok { fmt.Fprintf(os.Stderr, "helper command unused: %q\n", cmd) code = 1 } } } if !testing.Short() { // Run a couple of GC cycles to increase the odds of detecting // process leaks using the finalizers installed by GODEBUG=execwait=2. runtime.GC() runtime.GC() } os.Exit(code) } args := flag.Args() if len(args) == 0 { fmt.Fprintf(os.Stderr, "No command\n") os.Exit(2) } cmd, args := args[0], args[1:] f, ok := helperCommands[cmd] if !ok { fmt.Fprintf(os.Stderr, "Unknown command %q\n", cmd) os.Exit(2) } f(args...) os.Exit(0) } // registerHelperCommand registers a command that the test process can impersonate. // A command should be registered in the same source file in which it is used. // If all tests are run and pass, all registered commands must be used. // (This prevents stale commands from accreting if tests are removed or // refactored over time.) func registerHelperCommand(name string, f func(...string)) { if helperCommands[name] != nil { panic("duplicate command registered: " + name) } helperCommands[name] = f } // maySkipHelperCommand records that the test that uses the named helper command // was invoked, but may call Skip on the test before actually calling // helperCommand. func maySkipHelperCommand(name string) { helperCommandUsed.Store(name, true) } // helperCommand returns an exec.Cmd that will run the named helper command. func helperCommand(t *testing.T, name string, args ...string) *exec.Cmd { t.Helper() return helperCommandContext(t, nil, name, args...) } // helperCommandContext is like helperCommand, but also accepts a Context under // which to run the command. func helperCommandContext(t *testing.T, ctx context.Context, name string, args ...string) (cmd *exec.Cmd) { helperCommandUsed.LoadOrStore(name, true) t.Helper() testenv.MustHaveExec(t) cs := append([]string{name}, args...) if ctx != nil { cmd = exec.CommandContext(ctx, exePath(t), cs...) } else { cmd = exec.Command(exePath(t), cs...) } return cmd } // exePath returns the path to the running executable. func exePath(t testing.TB) string { exeOnce.Do(func() { // Use os.Executable instead of os.Args[0] in case the caller modifies // cmd.Dir: if the test binary is invoked like "./exec.test", it should // not fail spuriously. exeOnce.path, exeOnce.err = os.Executable() }) if exeOnce.err != nil { if t == nil { panic(exeOnce.err) } t.Fatal(exeOnce.err) } return exeOnce.path } var exeOnce struct { path string err error sync.Once } var helperCommandUsed sync.Map var helperCommands = map[string]func(...string){ "echo": cmdEcho, "echoenv": cmdEchoEnv, "cat": cmdCat, "pipetest": cmdPipeTest, "stdinClose": cmdStdinClose, "exit": cmdExit, "describefiles": cmdDescribeFiles, "stderrfail": cmdStderrFail, "yes": cmdYes, "hang": cmdHang, } func cmdEcho(args ...string) { iargs := []any{} for _, s := range args { iargs = append(iargs, s) } fmt.Println(iargs...) } func cmdEchoEnv(args ...string) { for _, s := range args { fmt.Println(os.Getenv(s)) } } func cmdCat(args ...string) { if len(args) == 0 { io.Copy(os.Stdout, os.Stdin) return } exit := 0 for _, fn := range args { f, err := os.Open(fn) if err != nil { fmt.Fprintf(os.Stderr, "Error: %v\n", err) exit = 2 } else { defer f.Close() io.Copy(os.Stdout, f) } } os.Exit(exit) } func cmdPipeTest(...string) { bufr := bufio.NewReader(os.Stdin) for { line, _, err := bufr.ReadLine() if err == io.EOF { break } else if err != nil { os.Exit(1) } if bytes.HasPrefix(line, []byte("O:")) { os.Stdout.Write(line) os.Stdout.Write([]byte{'\n'}) } else if bytes.HasPrefix(line, []byte("E:")) { os.Stderr.Write(line) os.Stderr.Write([]byte{'\n'}) } else { os.Exit(1) } } } func cmdStdinClose(...string) { b, err := io.ReadAll(os.Stdin) if err != nil { fmt.Fprintf(os.Stderr, "Error: %v\n", err) os.Exit(1) } if s := string(b); s != stdinCloseTestString { fmt.Fprintf(os.Stderr, "Error: Read %q, want %q", s, stdinCloseTestString) os.Exit(1) } } func cmdExit(args ...string) { n, _ := strconv.Atoi(args[0]) os.Exit(n) } func cmdDescribeFiles(args ...string) { f := os.NewFile(3, fmt.Sprintf("fd3")) ln, err := net.FileListener(f) if err == nil { fmt.Printf("fd3: listener %s\n", ln.Addr()) ln.Close() } } func cmdStderrFail(...string) { fmt.Fprintf(os.Stderr, "some stderr text\n") os.Exit(1) } func cmdYes(args ...string) { if len(args) == 0 { args = []string{"y"} } s := strings.Join(args, " ") + "\n" for { _, err := os.Stdout.WriteString(s) if err != nil { os.Exit(1) } } } func TestEcho(t *testing.T) { t.Parallel() bs, err := helperCommand(t, "echo", "foo bar", "baz").Output() if err != nil { t.Errorf("echo: %v", err) } if g, e := string(bs), "foo bar baz\n"; g != e { t.Errorf("echo: want %q, got %q", e, g) } } func TestCommandRelativeName(t *testing.T) { t.Parallel() cmd := helperCommand(t, "echo", "foo") // Run our own binary as a relative path // (e.g. "_test/exec.test") our parent directory. base := filepath.Base(os.Args[0]) // "exec.test" dir := filepath.Dir(os.Args[0]) // "/tmp/go-buildNNNN/os/exec/_test" if dir == "." { t.Skip("skipping; running test at root somehow") } parentDir := filepath.Dir(dir) // "/tmp/go-buildNNNN/os/exec" dirBase := filepath.Base(dir) // "_test" if dirBase == "." { t.Skipf("skipping; unexpected shallow dir of %q", dir) } cmd.Path = filepath.Join(dirBase, base) cmd.Dir = parentDir out, err := cmd.Output() if err != nil { t.Errorf("echo: %v", err) } if g, e := string(out), "foo\n"; g != e { t.Errorf("echo: want %q, got %q", e, g) } } func TestCatStdin(t *testing.T) { t.Parallel() // Cat, testing stdin and stdout. input := "Input string\nLine 2" p := helperCommand(t, "cat") p.Stdin = strings.NewReader(input) bs, err := p.Output() if err != nil { t.Errorf("cat: %v", err) } s := string(bs) if s != input { t.Errorf("cat: want %q, got %q", input, s) } } func TestEchoFileRace(t *testing.T) { t.Parallel() cmd := helperCommand(t, "echo") stdin, err := cmd.StdinPipe() if err != nil { t.Fatalf("StdinPipe: %v", err) } if err := cmd.Start(); err != nil { t.Fatalf("Start: %v", err) } wrote := make(chan bool) go func() { defer close(wrote) fmt.Fprint(stdin, "echo\n") }() if err := cmd.Wait(); err != nil { t.Fatalf("Wait: %v", err) } <-wrote } func TestCatGoodAndBadFile(t *testing.T) { t.Parallel() // Testing combined output and error values. bs, err := helperCommand(t, "cat", "/bogus/file.foo", "exec_test.go").CombinedOutput() if _, ok := err.(*exec.ExitError); !ok { t.Errorf("expected *exec.ExitError from cat combined; got %T: %v", err, err) } errLine, body, ok := strings.Cut(string(bs), "\n") if !ok { t.Fatalf("expected two lines from cat; got %q", bs) } if !strings.HasPrefix(errLine, "Error: open /bogus/file.foo") { t.Errorf("expected stderr to complain about file; got %q", errLine) } if !strings.Contains(body, "func TestCatGoodAndBadFile(t *testing.T)") { t.Errorf("expected test code; got %q (len %d)", body, len(body)) } } func TestNoExistExecutable(t *testing.T) { t.Parallel() // Can't run a non-existent executable err := exec.Command("/no-exist-executable").Run() if err == nil { t.Error("expected error from /no-exist-executable") } } func TestExitStatus(t *testing.T) { t.Parallel() // Test that exit values are returned correctly cmd := helperCommand(t, "exit", "42") err := cmd.Run() want := "exit status 42" switch runtime.GOOS { case "plan9": want = fmt.Sprintf("exit status: '%s %d: 42'", filepath.Base(cmd.Path), cmd.ProcessState.Pid()) } if werr, ok := err.(*exec.ExitError); ok { if s := werr.Error(); s != want { t.Errorf("from exit 42 got exit %q, want %q", s, want) } } else { t.Fatalf("expected *exec.ExitError from exit 42; got %T: %v", err, err) } } func TestExitCode(t *testing.T) { t.Parallel() // Test that exit code are returned correctly cmd := helperCommand(t, "exit", "42") cmd.Run() want := 42 if runtime.GOOS == "plan9" { want = 1 } got := cmd.ProcessState.ExitCode() if want != got { t.Errorf("ExitCode got %d, want %d", got, want) } cmd = helperCommand(t, "/no-exist-executable") cmd.Run() want = 2 if runtime.GOOS == "plan9" { want = 1 } got = cmd.ProcessState.ExitCode() if want != got { t.Errorf("ExitCode got %d, want %d", got, want) } cmd = helperCommand(t, "exit", "255") cmd.Run() want = 255 if runtime.GOOS == "plan9" { want = 1 } got = cmd.ProcessState.ExitCode() if want != got { t.Errorf("ExitCode got %d, want %d", got, want) } cmd = helperCommand(t, "cat") cmd.Run() want = 0 got = cmd.ProcessState.ExitCode() if want != got { t.Errorf("ExitCode got %d, want %d", got, want) } // Test when command does not call Run(). cmd = helperCommand(t, "cat") want = -1 got = cmd.ProcessState.ExitCode() if want != got { t.Errorf("ExitCode got %d, want %d", got, want) } } func TestPipes(t *testing.T) { t.Parallel() check := func(what string, err error) { if err != nil { t.Fatalf("%s: %v", what, err) } } // Cat, testing stdin and stdout. c := helperCommand(t, "pipetest") stdin, err := c.StdinPipe() check("StdinPipe", err) stdout, err := c.StdoutPipe() check("StdoutPipe", err) stderr, err := c.StderrPipe() check("StderrPipe", err) outbr := bufio.NewReader(stdout) errbr := bufio.NewReader(stderr) line := func(what string, br *bufio.Reader) string { line, _, err := br.ReadLine() if err != nil { t.Fatalf("%s: %v", what, err) } return string(line) } err = c.Start() check("Start", err) _, err = stdin.Write([]byte("O:I am output\n")) check("first stdin Write", err) if g, e := line("first output line", outbr), "O:I am output"; g != e { t.Errorf("got %q, want %q", g, e) } _, err = stdin.Write([]byte("E:I am error\n")) check("second stdin Write", err) if g, e := line("first error line", errbr), "E:I am error"; g != e { t.Errorf("got %q, want %q", g, e) } _, err = stdin.Write([]byte("O:I am output2\n")) check("third stdin Write 3", err) if g, e := line("second output line", outbr), "O:I am output2"; g != e { t.Errorf("got %q, want %q", g, e) } stdin.Close() err = c.Wait() check("Wait", err) } const stdinCloseTestString = "Some test string." // Issue 6270. func TestStdinClose(t *testing.T) { t.Parallel() check := func(what string, err error) { if err != nil { t.Fatalf("%s: %v", what, err) } } cmd := helperCommand(t, "stdinClose") stdin, err := cmd.StdinPipe() check("StdinPipe", err) // Check that we can access methods of the underlying os.File.` if _, ok := stdin.(interface { Fd() uintptr }); !ok { t.Error("can't access methods of underlying *os.File") } check("Start", cmd.Start()) var wg sync.WaitGroup wg.Add(1) defer wg.Wait() go func() { defer wg.Done() _, err := io.Copy(stdin, strings.NewReader(stdinCloseTestString)) check("Copy", err) // Before the fix, this next line would race with cmd.Wait. if err := stdin.Close(); err != nil && !errors.Is(err, os.ErrClosed) { t.Errorf("Close: %v", err) } }() check("Wait", cmd.Wait()) } // Issue 17647. // It used to be the case that TestStdinClose, above, would fail when // run under the race detector. This test is a variant of TestStdinClose // that also used to fail when run under the race detector. // This test is run by cmd/dist under the race detector to verify that // the race detector no longer reports any problems. func TestStdinCloseRace(t *testing.T) { t.Parallel() cmd := helperCommand(t, "stdinClose") stdin, err := cmd.StdinPipe() if err != nil { t.Fatalf("StdinPipe: %v", err) } if err := cmd.Start(); err != nil { t.Fatalf("Start: %v", err) } var wg sync.WaitGroup wg.Add(2) defer wg.Wait() go func() { defer wg.Done() // We don't check the error return of Kill. It is // possible that the process has already exited, in // which case Kill will return an error "process // already finished". The purpose of this test is to // see whether the race detector reports an error; it // doesn't matter whether this Kill succeeds or not. cmd.Process.Kill() }() go func() { defer wg.Done() // Send the wrong string, so that the child fails even // if the other goroutine doesn't manage to kill it first. // This test is to check that the race detector does not // falsely report an error, so it doesn't matter how the // child process fails. io.Copy(stdin, strings.NewReader("unexpected string")) if err := stdin.Close(); err != nil && !errors.Is(err, os.ErrClosed) { t.Errorf("stdin.Close: %v", err) } }() if err := cmd.Wait(); err == nil { t.Fatalf("Wait: succeeded unexpectedly") } } // Issue 5071 func TestPipeLookPathLeak(t *testing.T) { if runtime.GOOS == "windows" { t.Skip("we don't currently suppore counting open handles on windows") } // Not parallel: checks for leaked file descriptors openFDs := func() []uintptr { var fds []uintptr for i := uintptr(0); i < 100; i++ { if fdtest.Exists(i) { fds = append(fds, i) } } return fds } old := map[uintptr]bool{} for _, fd := range openFDs() { old[fd] = true } for i := 0; i < 6; i++ { cmd := exec.Command("something-that-does-not-exist-executable") cmd.StdoutPipe() cmd.StderrPipe() cmd.StdinPipe() if err := cmd.Run(); err == nil { t.Fatal("unexpected success") } } // Since this test is not running in parallel, we don't expect any new file // descriptors to be opened while it runs. However, if there are additional // FDs present at the start of the test (for example, opened by libc), those // may be closed due to a timeout of some sort. Allow those to go away, but // check that no new FDs are added. for _, fd := range openFDs() { if !old[fd] { t.Errorf("leaked file descriptor %v", fd) } } } func TestExtraFiles(t *testing.T) { if testing.Short() { t.Skipf("skipping test in short mode that would build a helper binary") } if haveUnexpectedFDs { // The point of this test is to make sure that any // descriptors we open are marked close-on-exec. // If haveUnexpectedFDs is true then there were other // descriptors open when we started the test, // so those descriptors are clearly not close-on-exec, // and they will confuse the test. We could modify // the test to expect those descriptors to remain open, // but since we don't know where they came from or what // they are doing, that seems fragile. For example, // perhaps they are from the startup code on this // system for some reason. Also, this test is not // system-specific; as long as most systems do not skip // the test, we will still be testing what we care about. t.Skip("skipping test because test was run with FDs open") } testenv.MustHaveExec(t) testenv.MustHaveGoBuild(t) // This test runs with cgo disabled. External linking needs cgo, so // it doesn't work if external linking is required. testenv.MustInternalLink(t) if runtime.GOOS == "windows" { t.Skipf("skipping test on %q", runtime.GOOS) } // Force network usage, to verify the epoll (or whatever) fd // doesn't leak to the child, ln, err := net.Listen("tcp", "127.0.0.1:0") if err != nil { t.Fatal(err) } defer ln.Close() // Make sure duplicated fds don't leak to the child. f, err := ln.(*net.TCPListener).File() if err != nil { t.Fatal(err) } defer f.Close() ln2, err := net.FileListener(f) if err != nil { t.Fatal(err) } defer ln2.Close() // Force TLS root certs to be loaded (which might involve // cgo), to make sure none of that potential C code leaks fds. ts := httptest.NewUnstartedServer(http.HandlerFunc(func(w http.ResponseWriter, r *http.Request) {})) // quiet expected TLS handshake error "remote error: bad certificate" ts.Config.ErrorLog = log.New(io.Discard, "", 0) ts.StartTLS() defer ts.Close() _, err = http.Get(ts.URL) if err == nil { t.Errorf("success trying to fetch %s; want an error", ts.URL) } tf, err := os.CreateTemp("", "") if err != nil { t.Fatalf("TempFile: %v", err) } defer os.Remove(tf.Name()) defer tf.Close() const text = "Hello, fd 3!" _, err = tf.Write([]byte(text)) if err != nil { t.Fatalf("Write: %v", err) } _, err = tf.Seek(0, io.SeekStart) if err != nil { t.Fatalf("Seek: %v", err) } tempdir := t.TempDir() exe := filepath.Join(tempdir, "read3.exe") c := exec.Command(testenv.GoToolPath(t), "build", "-o", exe, "read3.go") // Build the test without cgo, so that C library functions don't // open descriptors unexpectedly. See issue 25628. c.Env = append(os.Environ(), "CGO_ENABLED=0") if output, err := c.CombinedOutput(); err != nil { t.Logf("go build -o %s read3.go\n%s", exe, output) t.Fatalf("go build failed: %v", err) } // Use a deadline to try to get some output even if the program hangs. ctx := context.Background() if deadline, ok := t.Deadline(); ok { // Leave a 20% grace period to flush output, which may be large on the // linux/386 builders because we're running the subprocess under strace. deadline = deadline.Add(-time.Until(deadline) / 5) var cancel context.CancelFunc ctx, cancel = context.WithDeadline(ctx, deadline) defer cancel() } c = exec.CommandContext(ctx, exe) var stdout, stderr strings.Builder c.Stdout = &stdout c.Stderr = &stderr c.ExtraFiles = []*os.File{tf} if runtime.GOOS == "illumos" { // Some facilities in illumos are implemented via access // to /proc by libc; such accesses can briefly occupy a // low-numbered fd. If this occurs concurrently with the // test that checks for leaked descriptors, the check can // become confused and report a spurious leaked descriptor. // (See issue #42431 for more detailed analysis.) // // Attempt to constrain the use of additional threads in the // child process to make this test less flaky: c.Env = append(os.Environ(), "GOMAXPROCS=1") } err = c.Run() if err != nil { t.Fatalf("Run: %v\n--- stdout:\n%s--- stderr:\n%s", err, stdout.String(), stderr.String()) } if stdout.String() != text { t.Errorf("got stdout %q, stderr %q; want %q on stdout", stdout.String(), stderr.String(), text) } } func TestExtraFilesRace(t *testing.T) { if runtime.GOOS == "windows" { maySkipHelperCommand("describefiles") t.Skip("no operating system support; skipping") } t.Parallel() listen := func() net.Listener { ln, err := net.Listen("tcp", "127.0.0.1:0") if err != nil { t.Fatal(err) } return ln } listenerFile := func(ln net.Listener) *os.File { f, err := ln.(*net.TCPListener).File() if err != nil { t.Fatal(err) } return f } runCommand := func(c *exec.Cmd, out chan<- string) { bout, err := c.CombinedOutput() if err != nil { out <- "ERROR:" + err.Error() } else { out <- string(bout) } } for i := 0; i < 10; i++ { if testing.Short() && i >= 3 { break } la := listen() ca := helperCommand(t, "describefiles") ca.ExtraFiles = []*os.File{listenerFile(la)} lb := listen() cb := helperCommand(t, "describefiles") cb.ExtraFiles = []*os.File{listenerFile(lb)} ares := make(chan string) bres := make(chan string) go runCommand(ca, ares) go runCommand(cb, bres) if got, want := <-ares, fmt.Sprintf("fd3: listener %s\n", la.Addr()); got != want { t.Errorf("iteration %d, process A got:\n%s\nwant:\n%s\n", i, got, want) } if got, want := <-bres, fmt.Sprintf("fd3: listener %s\n", lb.Addr()); got != want { t.Errorf("iteration %d, process B got:\n%s\nwant:\n%s\n", i, got, want) } la.Close() lb.Close() for _, f := range ca.ExtraFiles { f.Close() } for _, f := range cb.ExtraFiles { f.Close() } } } type delayedInfiniteReader struct{} func (delayedInfiniteReader) Read(b []byte) (int, error) { time.Sleep(100 * time.Millisecond) for i := range b { b[i] = 'x' } return len(b), nil } // Issue 9173: ignore stdin pipe writes if the program completes successfully. func TestIgnorePipeErrorOnSuccess(t *testing.T) { t.Parallel() testWith := func(r io.Reader) func(*testing.T) { return func(t *testing.T) { t.Parallel() cmd := helperCommand(t, "echo", "foo") var out strings.Builder cmd.Stdin = r cmd.Stdout = &out if err := cmd.Run(); err != nil { t.Fatal(err) } if got, want := out.String(), "foo\n"; got != want { t.Errorf("output = %q; want %q", got, want) } } } t.Run("10MB", testWith(strings.NewReader(strings.Repeat("x", 10<<20)))) t.Run("Infinite", testWith(delayedInfiniteReader{})) } type badWriter struct{} func (w *badWriter) Write(data []byte) (int, error) { return 0, io.ErrUnexpectedEOF } func TestClosePipeOnCopyError(t *testing.T) { t.Parallel() cmd := helperCommand(t, "yes") cmd.Stdout = new(badWriter) err := cmd.Run() if err == nil { t.Errorf("yes unexpectedly completed successfully") } } func TestOutputStderrCapture(t *testing.T) { t.Parallel() cmd := helperCommand(t, "stderrfail") _, err := cmd.Output() ee, ok := err.(*exec.ExitError) if !ok { t.Fatalf("Output error type = %T; want ExitError", err) } got := string(ee.Stderr) want := "some stderr text\n" if got != want { t.Errorf("ExitError.Stderr = %q; want %q", got, want) } } func TestContext(t *testing.T) { t.Parallel() ctx, cancel := context.WithCancel(context.Background()) c := helperCommandContext(t, ctx, "pipetest") stdin, err := c.StdinPipe() if err != nil { t.Fatal(err) } stdout, err := c.StdoutPipe() if err != nil { t.Fatal(err) } if err := c.Start(); err != nil { t.Fatal(err) } if _, err := stdin.Write([]byte("O:hi\n")); err != nil { t.Fatal(err) } buf := make([]byte, 5) n, err := io.ReadFull(stdout, buf) if n != len(buf) || err != nil || string(buf) != "O:hi\n" { t.Fatalf("ReadFull = %d, %v, %q", n, err, buf[:n]) } go cancel() if err := c.Wait(); err == nil { t.Fatal("expected Wait failure") } } func TestContextCancel(t *testing.T) { if runtime.GOOS == "netbsd" && runtime.GOARCH == "arm64" { maySkipHelperCommand("cat") testenv.SkipFlaky(t, 42061) } // To reduce noise in the final goroutine dump, // let other parallel tests complete if possible. t.Parallel() ctx, cancel := context.WithCancel(context.Background()) defer cancel() c := helperCommandContext(t, ctx, "cat") stdin, err := c.StdinPipe() if err != nil { t.Fatal(err) } defer stdin.Close() if err := c.Start(); err != nil { t.Fatal(err) } // At this point the process is alive. Ensure it by sending data to stdin. if _, err := io.WriteString(stdin, "echo"); err != nil { t.Fatal(err) } cancel() // Calling cancel should have killed the process, so writes // should now fail. Give the process a little while to die. start := time.Now() delay := 1 * time.Millisecond for { if _, err := io.WriteString(stdin, "echo"); err != nil { break } if time.Since(start) > time.Minute { // Panic instead of calling t.Fatal so that we get a goroutine dump. // We want to know exactly what the os/exec goroutines got stuck on. debug.SetTraceback("system") panic("canceling context did not stop program") } // Back off exponentially (up to 1-second sleeps) to give the OS time to // terminate the process. delay *= 2 if delay > 1*time.Second { delay = 1 * time.Second } time.Sleep(delay) } if err := c.Wait(); err == nil { t.Error("program unexpectedly exited successfully") } else { t.Logf("exit status: %v", err) } } // test that environment variables are de-duped. func TestDedupEnvEcho(t *testing.T) { t.Parallel() cmd := helperCommand(t, "echoenv", "FOO") cmd.Env = append(cmd.Environ(), "FOO=bad", "FOO=good") out, err := cmd.CombinedOutput() if err != nil { t.Fatal(err) } if got, want := strings.TrimSpace(string(out)), "good"; got != want { t.Errorf("output = %q; want %q", got, want) } } func TestEnvNULCharacter(t *testing.T) { if runtime.GOOS == "plan9" { t.Skip("plan9 explicitly allows NUL in the enviroment") } cmd := helperCommand(t, "echoenv", "FOO", "BAR") cmd.Env = append(cmd.Environ(), "FOO=foo\x00BAR=bar") out, err := cmd.CombinedOutput() if err == nil { t.Errorf("output = %q; want error", string(out)) } } func TestString(t *testing.T) { t.Parallel() echoPath, err := exec.LookPath("echo") if err != nil { t.Skip(err) } tests := [...]struct { path string args []string want string }{ {"echo", nil, echoPath}, {"echo", []string{"a"}, echoPath + " a"}, {"echo", []string{"a", "b"}, echoPath + " a b"}, } for _, test := range tests { cmd := exec.Command(test.path, test.args...) if got := cmd.String(); got != test.want { t.Errorf("String(%q, %q) = %q, want %q", test.path, test.args, got, test.want) } } } func TestStringPathNotResolved(t *testing.T) { t.Parallel() _, err := exec.LookPath("makemeasandwich") if err == nil { t.Skip("wow, thanks") } cmd := exec.Command("makemeasandwich", "-lettuce") want := "makemeasandwich -lettuce" if got := cmd.String(); got != want { t.Errorf("String(%q, %q) = %q, want %q", "makemeasandwich", "-lettuce", got, want) } } func TestNoPath(t *testing.T) { err := new(exec.Cmd).Start() want := "exec: no command" if err == nil || err.Error() != want { t.Errorf("new(Cmd).Start() = %v, want %q", err, want) } } // TestDoubleStartLeavesPipesOpen checks for a regression in which calling // Start twice, which returns an error on the second call, would spuriously // close the pipes established in the first call. func TestDoubleStartLeavesPipesOpen(t *testing.T) { t.Parallel() cmd := helperCommand(t, "pipetest") in, err := cmd.StdinPipe() if err != nil { t.Fatal(err) } out, err := cmd.StdoutPipe() if err != nil { t.Fatal(err) } if err := cmd.Start(); err != nil { t.Fatal(err) } t.Cleanup(func() { if err := cmd.Wait(); err != nil { t.Error(err) } }) if err := cmd.Start(); err == nil || !strings.HasSuffix(err.Error(), "already started") { t.Fatalf("second call to Start returned a nil; want an 'already started' error") } outc := make(chan []byte, 1) go func() { b, err := io.ReadAll(out) if err != nil { t.Error(err) } outc <- b }() const msg = "O:Hello, pipe!\n" _, err = io.WriteString(in, msg) if err != nil { t.Fatal(err) } in.Close() b := <-outc if !bytes.Equal(b, []byte(msg)) { t.Fatalf("read %q from stdout pipe; want %q", b, msg) } } func cmdHang(args ...string) { sleep, err := time.ParseDuration(args[0]) if err != nil { panic(err) } fs := flag.NewFlagSet("hang", flag.ExitOnError) exitOnInterrupt := fs.Bool("interrupt", false, "if true, commands should exit 0 on os.Interrupt") subsleep := fs.Duration("subsleep", 0, "amount of time for the 'hang' helper to leave an orphaned subprocess sleeping with stderr open") probe := fs.Duration("probe", 0, "if nonzero, the 'hang' helper should write to stderr at this interval, and exit nonzero if a write fails") read := fs.Bool("read", false, "if true, the 'hang' helper should read stdin to completion before sleeping") fs.Parse(args[1:]) pid := os.Getpid() if *subsleep != 0 { cmd := exec.Command(exePath(nil), "hang", subsleep.String(), "-read=true", "-probe="+probe.String()) cmd.Stdin = os.Stdin cmd.Stderr = os.Stderr out, err := cmd.StdoutPipe() if err != nil { fmt.Fprintln(os.Stderr, err) os.Exit(1) } cmd.Start() buf := new(strings.Builder) if _, err := io.Copy(buf, out); err != nil { fmt.Fprintln(os.Stderr, err) cmd.Process.Kill() cmd.Wait() os.Exit(1) } fmt.Fprintf(os.Stderr, "%d: started %d: %v\n", pid, cmd.Process.Pid, cmd) go cmd.Wait() // Release resources if cmd happens not to outlive this process. } if *exitOnInterrupt { c := make(chan os.Signal, 1) signal.Notify(c, os.Interrupt) go func() { sig := <-c fmt.Fprintf(os.Stderr, "%d: received %v\n", pid, sig) os.Exit(0) }() } else { signal.Ignore(os.Interrupt) } // Signal that the process is set up by closing stdout. os.Stdout.Close() if *read { if pipeSignal != nil { signal.Ignore(pipeSignal) } r := bufio.NewReader(os.Stdin) for { line, err := r.ReadBytes('\n') if len(line) > 0 { // Ignore write errors: we want to keep reading even if stderr is closed. fmt.Fprintf(os.Stderr, "%d: read %s", pid, line) } if err != nil { fmt.Fprintf(os.Stderr, "%d: finished read: %v", pid, err) break } } } if *probe != 0 { ticker := time.NewTicker(*probe) go func() { for range ticker.C { if _, err := fmt.Fprintf(os.Stderr, "%d: ok\n", pid); err != nil { os.Exit(1) } } }() } if sleep != 0 { time.Sleep(sleep) fmt.Fprintf(os.Stderr, "%d: slept %v\n", pid, sleep) } } // A tickReader reads an unbounded sequence of timestamps at no more than a // fixed interval. type tickReader struct { interval time.Duration lastTick time.Time s string } func newTickReader(interval time.Duration) *tickReader { return &tickReader{interval: interval} } func (r *tickReader) Read(p []byte) (n int, err error) { if len(r.s) == 0 { if d := r.interval - time.Since(r.lastTick); d > 0 { time.Sleep(d) } r.lastTick = time.Now() r.s = r.lastTick.Format(time.RFC3339Nano + "\n") } n = copy(p, r.s) r.s = r.s[n:] return n, nil } func startHang(t *testing.T, ctx context.Context, hangTime time.Duration, interrupt os.Signal, waitDelay time.Duration, flags ...string) *exec.Cmd { t.Helper() args := append([]string{hangTime.String()}, flags...) cmd := helperCommandContext(t, ctx, "hang", args...) cmd.Stdin = newTickReader(1 * time.Millisecond) cmd.Stderr = new(strings.Builder) if interrupt == nil { cmd.Cancel = nil } else { cmd.Cancel = func() error { return cmd.Process.Signal(interrupt) } } cmd.WaitDelay = waitDelay out, err := cmd.StdoutPipe() if err != nil { t.Fatal(err) } t.Log(cmd) if err := cmd.Start(); err != nil { t.Fatal(err) } // Wait for cmd to close stdout to signal that its handlers are installed. buf := new(strings.Builder) if _, err := io.Copy(buf, out); err != nil { t.Error(err) cmd.Process.Kill() cmd.Wait() t.FailNow() } if buf.Len() > 0 { t.Logf("stdout %v:\n%s", cmd.Args, buf) } return cmd } func TestWaitInterrupt(t *testing.T) { t.Parallel() // tooLong is an arbitrary duration that is expected to be much longer than // the test runs, but short enough that leaked processes will eventually exit // on their own. const tooLong = 10 * time.Minute // Control case: with no cancellation and no WaitDelay, we should wait for the // process to exit. t.Run("Wait", func(t *testing.T) { t.Parallel() cmd := startHang(t, context.Background(), 1*time.Millisecond, os.Kill, 0) err := cmd.Wait() t.Logf("stderr:\n%s", cmd.Stderr) t.Logf("[%d] %v", cmd.Process.Pid, err) if err != nil { t.Errorf("Wait: %v; want ", err) } if ps := cmd.ProcessState; !ps.Exited() { t.Errorf("cmd did not exit: %v", ps) } else if code := ps.ExitCode(); code != 0 { t.Errorf("cmd.ProcessState.ExitCode() = %v; want 0", code) } }) // With a very long WaitDelay and no Cancel function, we should wait for the // process to exit even if the command's Context is cancelled. t.Run("WaitDelay", func(t *testing.T) { if runtime.GOOS == "windows" { t.Skipf("skipping: os.Interrupt is not implemented on Windows") } t.Parallel() ctx, cancel := context.WithCancel(context.Background()) cmd := startHang(t, ctx, tooLong, nil, tooLong, "-interrupt=true") cancel() time.Sleep(1 * time.Millisecond) // At this point cmd should still be running (because we passed nil to // startHang for the cancel signal). Sending it an explicit Interrupt signal // should succeed. if err := cmd.Process.Signal(os.Interrupt); err != nil { t.Error(err) } err := cmd.Wait() t.Logf("stderr:\n%s", cmd.Stderr) t.Logf("[%d] %v", cmd.Process.Pid, err) // This program exits with status 0, // but pretty much always does so during the wait delay. // Since the Cmd itself didn't do anything to stop the process when the // context expired, a successful exit is valid (even if late) and does // not merit a non-nil error. if err != nil { t.Errorf("Wait: %v; want nil", err) } if ps := cmd.ProcessState; !ps.Exited() { t.Errorf("cmd did not exit: %v", ps) } else if code := ps.ExitCode(); code != 0 { t.Errorf("cmd.ProcessState.ExitCode() = %v; want 0", code) } }) // If the context is cancelled and the Cancel function sends os.Kill, // the process should be terminated immediately, and its output // pipes should be closed (causing Wait to return) after WaitDelay // even if a child process is still writing to them. t.Run("SIGKILL-hang", func(t *testing.T) { t.Parallel() ctx, cancel := context.WithCancel(context.Background()) cmd := startHang(t, ctx, tooLong, os.Kill, 10*time.Millisecond, "-subsleep=10m", "-probe=1ms") cancel() err := cmd.Wait() t.Logf("stderr:\n%s", cmd.Stderr) t.Logf("[%d] %v", cmd.Process.Pid, err) // This test should kill the child process after 10ms, // leaving a grandchild process writing probes in a loop. // The child process should be reported as failed, // and the grandchild will exit (or die by SIGPIPE) once the // stderr pipe is closed. if ee := new(*exec.ExitError); !errors.As(err, ee) { t.Errorf("Wait error = %v; want %T", err, *ee) } }) // If the process exits with status 0 but leaves a child behind writing // to its output pipes, Wait should only wait for WaitDelay before // closing the pipes and returning. Wait should return ErrWaitDelay // to indicate that the piped output may be incomplete even though the // command returned a “success” code. t.Run("Exit-hang", func(t *testing.T) { t.Parallel() cmd := startHang(t, context.Background(), 1*time.Millisecond, nil, 10*time.Millisecond, "-subsleep=10m", "-probe=1ms") err := cmd.Wait() t.Logf("stderr:\n%s", cmd.Stderr) t.Logf("[%d] %v", cmd.Process.Pid, err) // This child process should exit immediately, // leaving a grandchild process writing probes in a loop. // Since the child has no ExitError to report but we did not // read all of its output, Wait should return ErrWaitDelay. if !errors.Is(err, exec.ErrWaitDelay) { t.Errorf("Wait error = %v; want %T", err, exec.ErrWaitDelay) } }) // If the Cancel function sends a signal that the process can handle, and it // handles that signal without actually exiting, then it should be terminated // after the WaitDelay. t.Run("SIGINT-ignored", func(t *testing.T) { if runtime.GOOS == "windows" { t.Skipf("skipping: os.Interrupt is not implemented on Windows") } t.Parallel() ctx, cancel := context.WithCancel(context.Background()) cmd := startHang(t, ctx, tooLong, os.Interrupt, 10*time.Millisecond, "-interrupt=false") cancel() err := cmd.Wait() t.Logf("stderr:\n%s", cmd.Stderr) t.Logf("[%d] %v", cmd.Process.Pid, err) // This command ignores SIGINT, sleeping until it is killed. // Wait should return the usual error for a killed process. if ee := new(*exec.ExitError); !errors.As(err, ee) { t.Errorf("Wait error = %v; want %T", err, *ee) } }) // If the process handles the cancellation signal and exits with status 0, // Wait should report a non-nil error (because the process had to be // interrupted), and it should be a context error (because there is no error // to report from the child process itself). t.Run("SIGINT-handled", func(t *testing.T) { if runtime.GOOS == "windows" { t.Skipf("skipping: os.Interrupt is not implemented on Windows") } t.Parallel() ctx, cancel := context.WithCancel(context.Background()) cmd := startHang(t, ctx, tooLong, os.Interrupt, 0, "-interrupt=true") cancel() err := cmd.Wait() t.Logf("stderr:\n%s", cmd.Stderr) t.Logf("[%d] %v", cmd.Process.Pid, err) if !errors.Is(err, ctx.Err()) { t.Errorf("Wait error = %v; want %v", err, ctx.Err()) } if ps := cmd.ProcessState; !ps.Exited() { t.Errorf("cmd did not exit: %v", ps) } else if code := ps.ExitCode(); code != 0 { t.Errorf("cmd.ProcessState.ExitCode() = %v; want 0", code) } }) // If the Cancel function sends SIGQUIT, it should be handled in the usual // way: a Go program should dump its goroutines and exit with non-success // status. (We expect SIGQUIT to be a common pattern in real-world use.) t.Run("SIGQUIT", func(t *testing.T) { if quitSignal == nil { t.Skipf("skipping: SIGQUIT is not supported on %v", runtime.GOOS) } t.Parallel() ctx, cancel := context.WithCancel(context.Background()) cmd := startHang(t, ctx, tooLong, quitSignal, 0) cancel() err := cmd.Wait() t.Logf("stderr:\n%s", cmd.Stderr) t.Logf("[%d] %v", cmd.Process.Pid, err) if ee := new(*exec.ExitError); !errors.As(err, ee) { t.Errorf("Wait error = %v; want %v", err, ctx.Err()) } if ps := cmd.ProcessState; !ps.Exited() { t.Errorf("cmd did not exit: %v", ps) } else if code := ps.ExitCode(); code != 2 { // The default os/signal handler exits with code 2. t.Errorf("cmd.ProcessState.ExitCode() = %v; want 2", code) } if !strings.Contains(fmt.Sprint(cmd.Stderr), "\n\ngoroutine ") { t.Errorf("cmd.Stderr does not contain a goroutine dump") } }) } func TestCancelErrors(t *testing.T) { t.Parallel() // If Cancel returns a non-ErrProcessDone error and the process // exits successfully, Wait should wrap the error from Cancel. t.Run("success after error", func(t *testing.T) { t.Parallel() ctx, cancel := context.WithCancel(context.Background()) defer cancel() cmd := helperCommandContext(t, ctx, "pipetest") stdin, err := cmd.StdinPipe() if err != nil { t.Fatal(err) } errArbitrary := errors.New("arbitrary error") cmd.Cancel = func() error { stdin.Close() t.Logf("Cancel returning %v", errArbitrary) return errArbitrary } if err := cmd.Start(); err != nil { t.Fatal(err) } cancel() err = cmd.Wait() t.Logf("[%d] %v", cmd.Process.Pid, err) if !errors.Is(err, errArbitrary) || err == errArbitrary { t.Errorf("Wait error = %v; want an error wrapping %v", err, errArbitrary) } }) // If Cancel returns an error equivalent to ErrProcessDone, // Wait should ignore that error. (ErrProcessDone indicates that the // process was already done before we tried to interrupt it — maybe we // just didn't notice because Wait hadn't been called yet.) t.Run("success after ErrProcessDone", func(t *testing.T) { t.Parallel() ctx, cancel := context.WithCancel(context.Background()) defer cancel() cmd := helperCommandContext(t, ctx, "pipetest") stdin, err := cmd.StdinPipe() if err != nil { t.Fatal(err) } stdout, err := cmd.StdoutPipe() if err != nil { t.Fatal(err) } // We intentionally race Cancel against the process exiting, // but ensure that the process wins the race (and return ErrProcessDone // from Cancel to report that). interruptCalled := make(chan struct{}) done := make(chan struct{}) cmd.Cancel = func() error { close(interruptCalled) <-done t.Logf("Cancel returning an error wrapping ErrProcessDone") return fmt.Errorf("%w: stdout closed", os.ErrProcessDone) } if err := cmd.Start(); err != nil { t.Fatal(err) } cancel() <-interruptCalled stdin.Close() io.Copy(io.Discard, stdout) // reaches EOF when the process exits close(done) err = cmd.Wait() t.Logf("[%d] %v", cmd.Process.Pid, err) if err != nil { t.Errorf("Wait error = %v; want nil", err) } }) // If Cancel returns an error and the process is killed after // WaitDelay, Wait should report the usual SIGKILL ExitError, not the // error from Cancel. t.Run("killed after error", func(t *testing.T) { t.Parallel() ctx, cancel := context.WithCancel(context.Background()) defer cancel() cmd := helperCommandContext(t, ctx, "pipetest") stdin, err := cmd.StdinPipe() if err != nil { t.Fatal(err) } defer stdin.Close() errArbitrary := errors.New("arbitrary error") var interruptCalled atomic.Bool cmd.Cancel = func() error { t.Logf("Cancel called") interruptCalled.Store(true) return errArbitrary } cmd.WaitDelay = 1 * time.Millisecond if err := cmd.Start(); err != nil { t.Fatal(err) } cancel() err = cmd.Wait() t.Logf("[%d] %v", cmd.Process.Pid, err) // Ensure that Cancel actually had the opportunity to // return the error. if !interruptCalled.Load() { t.Errorf("Cancel was not called when the context was canceled") } // This test should kill the child process after 1ms, // To maximize compatibility with existing uses of exec.CommandContext, the // resulting error should be an exec.ExitError without additional wrapping. if ee, ok := err.(*exec.ExitError); !ok { t.Errorf("Wait error = %v; want %T", err, *ee) } }) // If Cancel returns ErrProcessDone but the process is not actually done // (and has to be killed), Wait should report the usual SIGKILL ExitError, // not the error from Cancel. t.Run("killed after spurious ErrProcessDone", func(t *testing.T) { t.Parallel() ctx, cancel := context.WithCancel(context.Background()) defer cancel() cmd := helperCommandContext(t, ctx, "pipetest") stdin, err := cmd.StdinPipe() if err != nil { t.Fatal(err) } defer stdin.Close() var interruptCalled atomic.Bool cmd.Cancel = func() error { t.Logf("Cancel returning an error wrapping ErrProcessDone") interruptCalled.Store(true) return fmt.Errorf("%w: stdout closed", os.ErrProcessDone) } cmd.WaitDelay = 1 * time.Millisecond if err := cmd.Start(); err != nil { t.Fatal(err) } cancel() err = cmd.Wait() t.Logf("[%d] %v", cmd.Process.Pid, err) // Ensure that Cancel actually had the opportunity to // return the error. if !interruptCalled.Load() { t.Errorf("Cancel was not called when the context was canceled") } // This test should kill the child process after 1ms, // To maximize compatibility with existing uses of exec.CommandContext, the // resulting error should be an exec.ExitError without additional wrapping. if ee, ok := err.(*exec.ExitError); !ok { t.Errorf("Wait error of type %T; want %T", err, ee) } }) // If Cancel returns an error and the process exits with an // unsuccessful exit code, the process error should take precedence over the // Cancel error. t.Run("nonzero exit after error", func(t *testing.T) { t.Parallel() ctx, cancel := context.WithCancel(context.Background()) defer cancel() cmd := helperCommandContext(t, ctx, "stderrfail") stderr, err := cmd.StderrPipe() if err != nil { t.Fatal(err) } errArbitrary := errors.New("arbitrary error") interrupted := make(chan struct{}) cmd.Cancel = func() error { close(interrupted) return errArbitrary } if err := cmd.Start(); err != nil { t.Fatal(err) } cancel() <-interrupted io.Copy(io.Discard, stderr) err = cmd.Wait() t.Logf("[%d] %v", cmd.Process.Pid, err) if ee, ok := err.(*exec.ExitError); !ok || ee.ProcessState.ExitCode() != 1 { t.Errorf("Wait error = %v; want exit status 1", err) } }) }