// Copyright 2009 The Go Authors. All rights reserved. // Use of this source code is governed by a BSD-style // license that can be found in the LICENSE file. // Central free lists. // // See malloc.go for an overview. // // The mcentral doesn't actually contain the list of free objects; the mspan does. // Each mcentral is two lists of mspans: those with free objects (c->nonempty) // and those that are completely allocated (c->empty). package runtime import ( "runtime/internal/atomic" "runtime/internal/sys" ) // Central list of free objects of a given size. type mcentral struct { _ sys.NotInHeap spanclass spanClass // partial and full contain two mspan sets: one of swept in-use // spans, and one of unswept in-use spans. These two trade // roles on each GC cycle. The unswept set is drained either by // allocation or by the background sweeper in every GC cycle, // so only two roles are necessary. // // sweepgen is increased by 2 on each GC cycle, so the swept // spans are in partial[sweepgen/2%2] and the unswept spans are in // partial[1-sweepgen/2%2]. Sweeping pops spans from the // unswept set and pushes spans that are still in-use on the // swept set. Likewise, allocating an in-use span pushes it // on the swept set. // // Some parts of the sweeper can sweep arbitrary spans, and hence // can't remove them from the unswept set, but will add the span // to the appropriate swept list. As a result, the parts of the // sweeper and mcentral that do consume from the unswept list may // encounter swept spans, and these should be ignored. partial [2]spanSet // list of spans with a free object full [2]spanSet // list of spans with no free objects } // Initialize a single central free list. func (c *mcentral) init(spc spanClass) { c.spanclass = spc lockInit(&c.partial[0].spineLock, lockRankSpanSetSpine) lockInit(&c.partial[1].spineLock, lockRankSpanSetSpine) lockInit(&c.full[0].spineLock, lockRankSpanSetSpine) lockInit(&c.full[1].spineLock, lockRankSpanSetSpine) } // partialUnswept returns the spanSet which holds partially-filled // unswept spans for this sweepgen. func (c *mcentral) partialUnswept(sweepgen uint32) *spanSet { return &c.partial[1-sweepgen/2%2] } // partialSwept returns the spanSet which holds partially-filled // swept spans for this sweepgen. func (c *mcentral) partialSwept(sweepgen uint32) *spanSet { return &c.partial[sweepgen/2%2] } // fullUnswept returns the spanSet which holds unswept spans without any // free slots for this sweepgen. func (c *mcentral) fullUnswept(sweepgen uint32) *spanSet { return &c.full[1-sweepgen/2%2] } // fullSwept returns the spanSet which holds swept spans without any // free slots for this sweepgen. func (c *mcentral) fullSwept(sweepgen uint32) *spanSet { return &c.full[sweepgen/2%2] } // Allocate a span to use in an mcache. func (c *mcentral) cacheSpan() *mspan { // Deduct credit for this span allocation and sweep if necessary. spanBytes := uintptr(class_to_allocnpages[c.spanclass.sizeclass()]) * _PageSize deductSweepCredit(spanBytes, 0) traceDone := false if trace.enabled { traceGCSweepStart() } // If we sweep spanBudget spans without finding any free // space, just allocate a fresh span. This limits the amount // of time we can spend trying to find free space and // amortizes the cost of small object sweeping over the // benefit of having a full free span to allocate from. By // setting this to 100, we limit the space overhead to 1%. // // TODO(austin,mknyszek): This still has bad worst-case // throughput. For example, this could find just one free slot // on the 100th swept span. That limits allocation latency, but // still has very poor throughput. We could instead keep a // running free-to-used budget and switch to fresh span // allocation if the budget runs low. spanBudget := 100 var s *mspan var sl sweepLocker // Try partial swept spans first. sg := mheap_.sweepgen if s = c.partialSwept(sg).pop(); s != nil { goto havespan } sl = sweep.active.begin() if sl.valid { // Now try partial unswept spans. for ; spanBudget >= 0; spanBudget-- { s = c.partialUnswept(sg).pop() if s == nil { break } if s, ok := sl.tryAcquire(s); ok { // We got ownership of the span, so let's sweep it and use it. s.sweep(true) sweep.active.end(sl) goto havespan } // We failed to get ownership of the span, which means it's being or // has been swept by an asynchronous sweeper that just couldn't remove it // from the unswept list. That sweeper took ownership of the span and // responsibility for either freeing it to the heap or putting it on the // right swept list. Either way, we should just ignore it (and it's unsafe // for us to do anything else). } // Now try full unswept spans, sweeping them and putting them into the // right list if we fail to get a span. for ; spanBudget >= 0; spanBudget-- { s = c.fullUnswept(sg).pop() if s == nil { break } if s, ok := sl.tryAcquire(s); ok { // We got ownership of the span, so let's sweep it. s.sweep(true) // Check if there's any free space. freeIndex := s.nextFreeIndex() if freeIndex != s.nelems { s.freeindex = freeIndex sweep.active.end(sl) goto havespan } // Add it to the swept list, because sweeping didn't give us any free space. c.fullSwept(sg).push(s.mspan) } // See comment for partial unswept spans. } sweep.active.end(sl) } if trace.enabled { traceGCSweepDone() traceDone = true } // We failed to get a span from the mcentral so get one from mheap. s = c.grow() if s == nil { return nil } // At this point s is a span that should have free slots. havespan: if trace.enabled && !traceDone { traceGCSweepDone() } n := int(s.nelems) - int(s.allocCount) if n == 0 || s.freeindex == s.nelems || uintptr(s.allocCount) == s.nelems { throw("span has no free objects") } freeByteBase := s.freeindex &^ (64 - 1) whichByte := freeByteBase / 8 // Init alloc bits cache. s.refillAllocCache(whichByte) // Adjust the allocCache so that s.freeindex corresponds to the low bit in // s.allocCache. s.allocCache >>= s.freeindex % 64 return s } // Return span from an mcache. // // s must have a span class corresponding to this // mcentral and it must not be empty. func (c *mcentral) uncacheSpan(s *mspan) { if s.allocCount == 0 { throw("uncaching span but s.allocCount == 0") } sg := mheap_.sweepgen stale := s.sweepgen == sg+1 // Fix up sweepgen. if stale { // Span was cached before sweep began. It's our // responsibility to sweep it. // // Set sweepgen to indicate it's not cached but needs // sweeping and can't be allocated from. sweep will // set s.sweepgen to indicate s is swept. atomic.Store(&s.sweepgen, sg-1) } else { // Indicate that s is no longer cached. atomic.Store(&s.sweepgen, sg) } // Put the span in the appropriate place. if stale { // It's stale, so just sweep it. Sweeping will put it on // the right list. // // We don't use a sweepLocker here. Stale cached spans // aren't in the global sweep lists, so mark termination // itself holds up sweep completion until all mcaches // have been swept. ss := sweepLocked{s} ss.sweep(false) } else { if int(s.nelems)-int(s.allocCount) > 0 { // Put it back on the partial swept list. c.partialSwept(sg).push(s) } else { // There's no free space and it's not stale, so put it on the // full swept list. c.fullSwept(sg).push(s) } } } // grow allocates a new empty span from the heap and initializes it for c's size class. func (c *mcentral) grow() *mspan { npages := uintptr(class_to_allocnpages[c.spanclass.sizeclass()]) size := uintptr(class_to_size[c.spanclass.sizeclass()]) s := mheap_.alloc(npages, c.spanclass) if s == nil { return nil } // Use division by multiplication and shifts to quickly compute: // n := (npages << _PageShift) / size n := s.divideByElemSize(npages << _PageShift) s.limit = s.base() + size*n s.initHeapBits(false) return s }